mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
3ec44ade0c
--HG-- extra : rebase_source : f9bd24d5f4bc6124b431ce22e6ac72bd218dc208
1375 lines
43 KiB
C
1375 lines
43 KiB
C
/*
|
|
// qcms
|
|
// Copyright (C) 2009 Mozilla Corporation
|
|
// Copyright (C) 1998-2007 Marti Maria
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the "Software"),
|
|
// to deal in the Software without restriction, including without limitation
|
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// and/or sell copies of the Software, and to permit persons to whom the Software
|
|
// is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
|
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
#include "qcmsint.h"
|
|
|
|
/* for MSVC, GCC, Intel, and Sun compilers */
|
|
#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64)
|
|
#define X86
|
|
#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */
|
|
|
|
//XXX: could use a bettername
|
|
typedef uint16_t uint16_fract_t;
|
|
|
|
/* value must be a value between 0 and 1 */
|
|
//XXX: is the above a good restriction to have?
|
|
float lut_interp_linear(double value, uint16_t *table, int length)
|
|
{
|
|
int upper, lower;
|
|
value = value * (length - 1); // scale to length of the array
|
|
upper = ceil(value);
|
|
lower = floor(value);
|
|
//XXX: can we be more performant here?
|
|
value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
|
|
/* scale the value */
|
|
return value * (1./65535.);
|
|
}
|
|
|
|
/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
|
|
uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
|
|
{
|
|
/* Start scaling input_value to the length of the array: 65535*(length-1).
|
|
* We'll divide out the 65535 next */
|
|
uint32_t value = (input_value * (length - 1));
|
|
uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
|
|
uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */
|
|
/* interp is the distance from upper to value scaled to 0..65535 */
|
|
uint32_t interp = value % 65535;
|
|
|
|
value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
|
|
|
|
return value;
|
|
}
|
|
|
|
/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
|
|
* and returns a uint8_t value representing a range from 0..1 */
|
|
static
|
|
uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length)
|
|
{
|
|
/* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
|
|
* We'll divide out the PRECACHE_OUTPUT_MAX next */
|
|
uint32_t value = (input_value * (length - 1));
|
|
|
|
/* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
|
|
uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
|
|
/* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
|
|
uint32_t lower = value / PRECACHE_OUTPUT_MAX;
|
|
/* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
|
|
uint32_t interp = value % PRECACHE_OUTPUT_MAX;
|
|
|
|
/* the table values range from 0..65535 */
|
|
value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
|
|
|
|
/* round and scale */
|
|
value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
|
|
value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
|
|
return value;
|
|
}
|
|
|
|
#if 0
|
|
/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
|
|
* because we can avoid the divisions and use a shifting instead */
|
|
/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
|
|
uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
|
|
{
|
|
uint32_t value = (input_value * (length - 1));
|
|
uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
|
|
uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */
|
|
uint32_t interp = value % 4096;
|
|
|
|
value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
|
|
|
|
return value;
|
|
}
|
|
#endif
|
|
|
|
void compute_curve_gamma_table_type1(float gamma_table[256], double gamma)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < 256; i++) {
|
|
gamma_table[i] = pow(i/255., gamma);
|
|
}
|
|
}
|
|
|
|
void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < 256; i++) {
|
|
gamma_table[i] = lut_interp_linear(i/255., table, length);
|
|
}
|
|
}
|
|
|
|
void compute_curve_gamma_table_type0(float gamma_table[256])
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < 256; i++) {
|
|
gamma_table[i] = i/255.;
|
|
}
|
|
}
|
|
|
|
unsigned char clamp_u8(float v)
|
|
{
|
|
if (v > 255.)
|
|
return 255;
|
|
else if (v < 0)
|
|
return 0;
|
|
else
|
|
return floor(v+.5);
|
|
}
|
|
|
|
struct vector {
|
|
float v[3];
|
|
};
|
|
|
|
struct matrix {
|
|
float m[3][3];
|
|
bool invalid;
|
|
};
|
|
|
|
struct vector matrix_eval(struct matrix mat, struct vector v)
|
|
{
|
|
struct vector result;
|
|
result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
|
|
result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
|
|
result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
|
|
return result;
|
|
}
|
|
|
|
//XXX: should probably pass by reference and we could
|
|
//probably reuse this computation in matrix_invert
|
|
float matrix_det(struct matrix mat)
|
|
{
|
|
float det;
|
|
det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
|
|
mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
|
|
mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
|
|
mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
|
|
mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
|
|
mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
|
|
return det;
|
|
}
|
|
|
|
/* from pixman and cairo and Mathematics for Game Programmers */
|
|
/* lcms uses gauss-jordan elimination with partial pivoting which is
|
|
* less efficient and not as numerically stable. See Mathematics for
|
|
* Game Programmers. */
|
|
struct matrix matrix_invert(struct matrix mat)
|
|
{
|
|
struct matrix dest_mat;
|
|
int i,j;
|
|
static int a[3] = { 2, 2, 1 };
|
|
static int b[3] = { 1, 0, 0 };
|
|
|
|
/* inv (A) = 1/det (A) * adj (A) */
|
|
float det = matrix_det(mat);
|
|
|
|
if (det == 0) {
|
|
dest_mat.invalid = true;
|
|
} else {
|
|
dest_mat.invalid = false;
|
|
}
|
|
|
|
det = 1/det;
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
for (i = 0; i < 3; i++) {
|
|
double p;
|
|
int ai = a[i];
|
|
int aj = a[j];
|
|
int bi = b[i];
|
|
int bj = b[j];
|
|
|
|
p = mat.m[ai][aj] * mat.m[bi][bj] -
|
|
mat.m[ai][bj] * mat.m[bi][aj];
|
|
if (((i + j) & 1) != 0)
|
|
p = -p;
|
|
|
|
dest_mat.m[j][i] = det * p;
|
|
}
|
|
}
|
|
return dest_mat;
|
|
}
|
|
|
|
struct matrix matrix_identity(void)
|
|
{
|
|
struct matrix i;
|
|
i.m[0][0] = 1;
|
|
i.m[0][1] = 0;
|
|
i.m[0][2] = 0;
|
|
i.m[1][0] = 0;
|
|
i.m[1][1] = 1;
|
|
i.m[1][2] = 0;
|
|
i.m[2][0] = 0;
|
|
i.m[2][1] = 0;
|
|
i.m[2][2] = 1;
|
|
i.invalid = false;
|
|
return i;
|
|
}
|
|
|
|
static struct matrix matrix_invalid(void)
|
|
{
|
|
struct matrix inv = matrix_identity();
|
|
inv.invalid = true;
|
|
return inv;
|
|
}
|
|
|
|
|
|
/* from pixman */
|
|
/* MAT3per... */
|
|
struct matrix matrix_multiply(struct matrix a, struct matrix b)
|
|
{
|
|
struct matrix result;
|
|
int dx, dy;
|
|
int o;
|
|
for (dy = 0; dy < 3; dy++) {
|
|
for (dx = 0; dx < 3; dx++) {
|
|
double v = 0;
|
|
for (o = 0; o < 3; o++) {
|
|
v += a.m[dy][o] * b.m[o][dx];
|
|
}
|
|
result.m[dy][dx] = v;
|
|
}
|
|
}
|
|
result.invalid = a.invalid || b.invalid;
|
|
return result;
|
|
}
|
|
|
|
float u8Fixed8Number_to_float(uint16_t x)
|
|
{
|
|
// 0x0000 = 0.
|
|
// 0x0100 = 1.
|
|
// 0xffff = 255 + 255/256
|
|
return x/256.;
|
|
}
|
|
|
|
float *build_input_gamma_table(struct curveType *TRC)
|
|
{
|
|
float *gamma_table = malloc(sizeof(float)*256);
|
|
if (gamma_table) {
|
|
if (TRC->count == 0) {
|
|
compute_curve_gamma_table_type0(gamma_table);
|
|
} else if (TRC->count == 1) {
|
|
compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0]));
|
|
} else {
|
|
compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
|
|
}
|
|
}
|
|
return gamma_table;
|
|
}
|
|
|
|
struct matrix build_colorant_matrix(qcms_profile *p)
|
|
{
|
|
struct matrix result;
|
|
result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
|
|
result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
|
|
result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
|
|
result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
|
|
result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
|
|
result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
|
|
result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
|
|
result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
|
|
result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
|
|
result.invalid = false;
|
|
return result;
|
|
}
|
|
|
|
/* The following code is copied nearly directly from lcms.
|
|
* I think it could be much better. For example, Argyll seems to have better code in
|
|
* icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
|
|
* to a working solution and allows for easy comparing with lcms. */
|
|
uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
|
|
{
|
|
int l = 1;
|
|
int r = 0x10000;
|
|
int x = 0, res; // 'int' Give spacing for negative values
|
|
int NumZeroes, NumPoles;
|
|
int cell0, cell1;
|
|
double val2;
|
|
double y0, y1, x0, x1;
|
|
double a, b, f;
|
|
|
|
// July/27 2001 - Expanded to handle degenerated curves with an arbitrary
|
|
// number of elements containing 0 at the begining of the table (Zeroes)
|
|
// and another arbitrary number of poles (FFFFh) at the end.
|
|
// First the zero and pole extents are computed, then value is compared.
|
|
|
|
NumZeroes = 0;
|
|
while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
|
|
NumZeroes++;
|
|
|
|
// There are no zeros at the beginning and we are trying to find a zero, so
|
|
// return anything. It seems zero would be the less destructive choice
|
|
/* I'm not sure that this makes sense, but oh well... */
|
|
if (NumZeroes == 0 && Value == 0)
|
|
return 0;
|
|
|
|
NumPoles = 0;
|
|
while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
|
|
NumPoles++;
|
|
|
|
// Does the curve belong to this case?
|
|
if (NumZeroes > 1 || NumPoles > 1)
|
|
{
|
|
int a, b;
|
|
|
|
// Identify if value fall downto 0 or FFFF zone
|
|
if (Value == 0) return 0;
|
|
// if (Value == 0xFFFF) return 0xFFFF;
|
|
|
|
// else restrict to valid zone
|
|
|
|
a = ((NumZeroes-1) * 0xFFFF) / (length-1);
|
|
b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
|
|
|
|
l = a - 1;
|
|
r = b + 1;
|
|
}
|
|
|
|
|
|
// Seems not a degenerated case... apply binary search
|
|
|
|
while (r > l) {
|
|
|
|
x = (l + r) / 2;
|
|
|
|
res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
|
|
|
|
if (res == Value) {
|
|
|
|
// Found exact match.
|
|
|
|
return (uint16_fract_t) (x - 1);
|
|
}
|
|
|
|
if (res > Value) r = x - 1;
|
|
else l = x + 1;
|
|
}
|
|
|
|
// Not found, should we interpolate?
|
|
|
|
|
|
// Get surrounding nodes
|
|
|
|
val2 = (length-1) * ((double) (x - 1) / 65535.0);
|
|
|
|
cell0 = (int) floor(val2);
|
|
cell1 = (int) ceil(val2);
|
|
|
|
if (cell0 == cell1) return (uint16_fract_t) x;
|
|
|
|
y0 = LutTable[cell0] ;
|
|
x0 = (65535.0 * cell0) / (length-1);
|
|
|
|
y1 = LutTable[cell1] ;
|
|
x1 = (65535.0 * cell1) / (length-1);
|
|
|
|
a = (y1 - y0) / (x1 - x0);
|
|
b = y0 - a * x0;
|
|
|
|
if (fabs(a) < 0.01) return (uint16_fract_t) x;
|
|
|
|
f = ((Value - b) / a);
|
|
|
|
if (f < 0.0) return (uint16_fract_t) 0;
|
|
if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
|
|
|
|
return (uint16_fract_t) floor(f + 0.5);
|
|
|
|
}
|
|
|
|
// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
|
|
// This is just an approximation, I am not handling all the non-linear
|
|
// aspects of the RGB to XYZ process, and assumming that the gamma correction
|
|
// has transitive property in the tranformation chain.
|
|
//
|
|
// the alghoritm:
|
|
//
|
|
// - First I build the absolute conversion matrix using
|
|
// primaries in XYZ. This matrix is next inverted
|
|
// - Then I eval the source white point across this matrix
|
|
// obtaining the coeficients of the transformation
|
|
// - Then, I apply these coeficients to the original matrix
|
|
static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs)
|
|
{
|
|
struct matrix primaries;
|
|
struct matrix primaries_invert;
|
|
struct matrix result;
|
|
struct vector white_point;
|
|
struct vector coefs;
|
|
|
|
double xn, yn;
|
|
double xr, yr;
|
|
double xg, yg;
|
|
double xb, yb;
|
|
|
|
xn = white.x;
|
|
yn = white.y;
|
|
|
|
if (yn == 0.0)
|
|
return matrix_invalid();
|
|
|
|
xr = primrs.red.x;
|
|
yr = primrs.red.y;
|
|
xg = primrs.green.x;
|
|
yg = primrs.green.y;
|
|
xb = primrs.blue.x;
|
|
yb = primrs.blue.y;
|
|
|
|
primaries.m[0][0] = xr;
|
|
primaries.m[0][1] = xg;
|
|
primaries.m[0][2] = xb;
|
|
|
|
primaries.m[1][0] = yr;
|
|
primaries.m[1][1] = yg;
|
|
primaries.m[1][2] = yb;
|
|
|
|
primaries.m[2][0] = 1 - xr - yr;
|
|
primaries.m[2][1] = 1 - xg - yg;
|
|
primaries.m[2][2] = 1 - xb - yb;
|
|
primaries.invalid = false;
|
|
|
|
white_point.v[0] = xn/yn;
|
|
white_point.v[1] = 1.;
|
|
white_point.v[2] = (1.0-xn-yn)/yn;
|
|
|
|
primaries_invert = matrix_invert(primaries);
|
|
|
|
coefs = matrix_eval(primaries_invert, white_point);
|
|
|
|
result.m[0][0] = coefs.v[0]*xr;
|
|
result.m[0][1] = coefs.v[1]*xg;
|
|
result.m[0][2] = coefs.v[2]*xb;
|
|
|
|
result.m[1][0] = coefs.v[0]*yr;
|
|
result.m[1][1] = coefs.v[1]*yg;
|
|
result.m[1][2] = coefs.v[2]*yb;
|
|
|
|
result.m[2][0] = coefs.v[0]*(1.-xr-yr);
|
|
result.m[2][1] = coefs.v[1]*(1.-xg-yg);
|
|
result.m[2][2] = coefs.v[2]*(1.-xb-yb);
|
|
result.invalid = primaries_invert.invalid;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct CIE_XYZ {
|
|
double X;
|
|
double Y;
|
|
double Z;
|
|
};
|
|
|
|
/* CIE Illuminant D50 */
|
|
static const struct CIE_XYZ D50_XYZ = {
|
|
0.9642,
|
|
1.0000,
|
|
0.8249
|
|
};
|
|
|
|
/* from lcms: xyY2XYZ()
|
|
* corresponds to argyll: icmYxy2XYZ() */
|
|
static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source)
|
|
{
|
|
struct CIE_XYZ dest;
|
|
dest.X = (source.x / source.y) * source.Y;
|
|
dest.Y = source.Y;
|
|
dest.Z = ((1 - source.x - source.y) / source.y) * source.Y;
|
|
return dest;
|
|
}
|
|
|
|
/* from lcms: ComputeChromaticAdaption */
|
|
// Compute chromatic adaption matrix using chad as cone matrix
|
|
static struct matrix
|
|
compute_chromatic_adaption(struct CIE_XYZ source_white_point,
|
|
struct CIE_XYZ dest_white_point,
|
|
struct matrix chad)
|
|
{
|
|
struct matrix chad_inv;
|
|
struct vector cone_source_XYZ, cone_source_rgb;
|
|
struct vector cone_dest_XYZ, cone_dest_rgb;
|
|
struct matrix cone, tmp;
|
|
|
|
tmp = chad;
|
|
chad_inv = matrix_invert(tmp);
|
|
|
|
cone_source_XYZ.v[0] = source_white_point.X;
|
|
cone_source_XYZ.v[1] = source_white_point.Y;
|
|
cone_source_XYZ.v[2] = source_white_point.Z;
|
|
|
|
cone_dest_XYZ.v[0] = dest_white_point.X;
|
|
cone_dest_XYZ.v[1] = dest_white_point.Y;
|
|
cone_dest_XYZ.v[2] = dest_white_point.Z;
|
|
|
|
cone_source_rgb = matrix_eval(chad, cone_source_XYZ);
|
|
cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ);
|
|
|
|
cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0];
|
|
cone.m[0][1] = 0;
|
|
cone.m[0][2] = 0;
|
|
cone.m[1][0] = 0;
|
|
cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1];
|
|
cone.m[1][2] = 0;
|
|
cone.m[2][0] = 0;
|
|
cone.m[2][1] = 0;
|
|
cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2];
|
|
cone.invalid = false;
|
|
|
|
// Normalize
|
|
return matrix_multiply(chad_inv, matrix_multiply(cone, chad));
|
|
}
|
|
|
|
/* from lcms: cmsAdaptionMatrix */
|
|
// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
|
|
// Bradford is assumed
|
|
static struct matrix
|
|
adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination)
|
|
{
|
|
struct matrix lam_rigg = {{ // Bradford matrix
|
|
{ 0.8951, 0.2664, -0.1614 },
|
|
{ -0.7502, 1.7135, 0.0367 },
|
|
{ 0.0389, -0.0685, 1.0296 }
|
|
}};
|
|
return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg);
|
|
}
|
|
|
|
/* from lcms: cmsAdaptMatrixToD50 */
|
|
static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt)
|
|
{
|
|
struct CIE_XYZ Dn;
|
|
struct matrix Bradford;
|
|
|
|
if (source_white_pt.y == 0.0)
|
|
return matrix_invalid();
|
|
|
|
Dn = xyY2XYZ(source_white_pt);
|
|
|
|
Bradford = adaption_matrix(Dn, D50_XYZ);
|
|
return matrix_multiply(Bradford, r);
|
|
}
|
|
|
|
qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
|
|
{
|
|
struct matrix colorants;
|
|
colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
|
|
colorants = adapt_matrix_to_D50(colorants, white_point);
|
|
|
|
if (colorants.invalid)
|
|
return false;
|
|
|
|
/* note: there's a transpose type of operation going on here */
|
|
profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]);
|
|
profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]);
|
|
profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]);
|
|
|
|
profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]);
|
|
profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]);
|
|
profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]);
|
|
|
|
profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]);
|
|
profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]);
|
|
profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
The number of entries needed to invert a lookup table should not
|
|
necessarily be the same as the original number of entries. This is
|
|
especially true of lookup tables that have a small number of entries.
|
|
|
|
For example:
|
|
Using a table like:
|
|
{0, 3104, 14263, 34802, 65535}
|
|
invert_lut will produce an inverse of:
|
|
{3, 34459, 47529, 56801, 65535}
|
|
which has an maximum error of about 9855 (pixel difference of ~38.346)
|
|
|
|
For now, we punt the decision of output size to the caller. */
|
|
static uint16_t *invert_lut(uint16_t *table, int length, int out_length)
|
|
{
|
|
int i;
|
|
/* for now we invert the lut by creating a lut of size out_length
|
|
* and attempting to lookup a value for each entry using lut_inverse_interp16 */
|
|
uint16_t *output = malloc(sizeof(uint16_t)*out_length);
|
|
if (!output)
|
|
return NULL;
|
|
|
|
for (i = 0; i < out_length; i++) {
|
|
double x = ((double) i * 65535.) / (double) (out_length - 1);
|
|
uint16_fract_t input = floor(x + .5);
|
|
output[i] = lut_inverse_interp16(input, table, length);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
static uint16_t *build_linear_table(int length)
|
|
{
|
|
int i;
|
|
uint16_t *output = malloc(sizeof(uint16_t)*length);
|
|
if (!output)
|
|
return NULL;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
double x = ((double) i * 65535.) / (double) (length - 1);
|
|
uint16_fract_t input = floor(x + .5);
|
|
output[i] = input;
|
|
}
|
|
return output;
|
|
}
|
|
|
|
static uint16_t *build_pow_table(float gamma, int length)
|
|
{
|
|
int i;
|
|
uint16_t *output = malloc(sizeof(uint16_t)*length);
|
|
if (!output)
|
|
return NULL;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
uint16_fract_t result;
|
|
double x = ((double) i) / (double) (length - 1);
|
|
x = pow(x, gamma);
|
|
//XXX turn this conversion into a function
|
|
result = floor(x*65535. + .5);
|
|
output[i] = result;
|
|
}
|
|
return output;
|
|
}
|
|
|
|
static float clamp_float(float a)
|
|
{
|
|
if (a > 1.)
|
|
return 1.;
|
|
else if (a < 0)
|
|
return 0;
|
|
else
|
|
return a;
|
|
}
|
|
|
|
#if 0
|
|
static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
for (i=0; i<length; i++) {
|
|
unsigned char device_r = *src++;
|
|
unsigned char device_g = *src++;
|
|
unsigned char device_b = *src++;
|
|
|
|
float linear_r = transform->input_gamma_table_r[device_r];
|
|
float linear_g = transform->input_gamma_table_g[device_g];
|
|
float linear_b = transform->input_gamma_table_b[device_b];
|
|
|
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
|
|
|
float out_device_r = pow(out_linear_r, transform->out_gamma_r);
|
|
float out_device_g = pow(out_linear_g, transform->out_gamma_g);
|
|
float out_device_b = pow(out_linear_b, transform->out_gamma_b);
|
|
|
|
*dest++ = clamp_u8(255*out_device_r);
|
|
*dest++ = clamp_u8(255*out_device_g);
|
|
*dest++ = clamp_u8(255*out_device_b);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < length; i++) {
|
|
float out_device_r, out_device_g, out_device_b;
|
|
unsigned char device = *src++;
|
|
|
|
float linear = transform->input_gamma_table_gray[device];
|
|
|
|
out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
|
out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
|
out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
|
|
|
*dest++ = clamp_u8(out_device_r*255);
|
|
*dest++ = clamp_u8(out_device_g*255);
|
|
*dest++ = clamp_u8(out_device_b*255);
|
|
}
|
|
}
|
|
|
|
/* Alpha is not corrected.
|
|
A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If
|
|
RGB Is?" Tech Memo 17 (December 14, 1998).
|
|
See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf
|
|
*/
|
|
|
|
static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < length; i++) {
|
|
float out_device_r, out_device_g, out_device_b;
|
|
unsigned char device = *src++;
|
|
unsigned char alpha = *src++;
|
|
|
|
float linear = transform->input_gamma_table_gray[device];
|
|
|
|
out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
|
out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
|
out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
|
|
|
*dest++ = clamp_u8(out_device_r*255);
|
|
*dest++ = clamp_u8(out_device_g*255);
|
|
*dest++ = clamp_u8(out_device_b*255);
|
|
*dest++ = alpha;
|
|
}
|
|
}
|
|
|
|
|
|
static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device = *src++;
|
|
uint16_t gray;
|
|
|
|
float linear = transform->input_gamma_table_gray[device];
|
|
|
|
/* we could round here... */
|
|
gray = linear * PRECACHE_OUTPUT_MAX;
|
|
|
|
*dest++ = transform->output_table_r->data[gray];
|
|
*dest++ = transform->output_table_g->data[gray];
|
|
*dest++ = transform->output_table_b->data[gray];
|
|
}
|
|
}
|
|
|
|
static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device = *src++;
|
|
unsigned char alpha = *src++;
|
|
uint16_t gray;
|
|
|
|
float linear = transform->input_gamma_table_gray[device];
|
|
|
|
/* we could round here... */
|
|
gray = linear * PRECACHE_OUTPUT_MAX;
|
|
|
|
*dest++ = transform->output_table_r->data[gray];
|
|
*dest++ = transform->output_table_g->data[gray];
|
|
*dest++ = transform->output_table_b->data[gray];
|
|
*dest++ = alpha;
|
|
}
|
|
}
|
|
|
|
static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device_r = *src++;
|
|
unsigned char device_g = *src++;
|
|
unsigned char device_b = *src++;
|
|
uint16_t r, g, b;
|
|
|
|
float linear_r = transform->input_gamma_table_r[device_r];
|
|
float linear_g = transform->input_gamma_table_g[device_g];
|
|
float linear_b = transform->input_gamma_table_b[device_b];
|
|
|
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
|
|
|
out_linear_r = clamp_float(out_linear_r);
|
|
out_linear_g = clamp_float(out_linear_g);
|
|
out_linear_b = clamp_float(out_linear_b);
|
|
|
|
/* we could round here... */
|
|
r = out_linear_r * PRECACHE_OUTPUT_MAX;
|
|
g = out_linear_g * PRECACHE_OUTPUT_MAX;
|
|
b = out_linear_b * PRECACHE_OUTPUT_MAX;
|
|
|
|
*dest++ = transform->output_table_r->data[r];
|
|
*dest++ = transform->output_table_g->data[g];
|
|
*dest++ = transform->output_table_b->data[b];
|
|
}
|
|
}
|
|
|
|
static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device_r = *src++;
|
|
unsigned char device_g = *src++;
|
|
unsigned char device_b = *src++;
|
|
unsigned char alpha = *src++;
|
|
uint16_t r, g, b;
|
|
|
|
float linear_r = transform->input_gamma_table_r[device_r];
|
|
float linear_g = transform->input_gamma_table_g[device_g];
|
|
float linear_b = transform->input_gamma_table_b[device_b];
|
|
|
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
|
|
|
out_linear_r = clamp_float(out_linear_r);
|
|
out_linear_g = clamp_float(out_linear_g);
|
|
out_linear_b = clamp_float(out_linear_b);
|
|
|
|
/* we could round here... */
|
|
r = out_linear_r * PRECACHE_OUTPUT_MAX;
|
|
g = out_linear_g * PRECACHE_OUTPUT_MAX;
|
|
b = out_linear_b * PRECACHE_OUTPUT_MAX;
|
|
|
|
*dest++ = transform->output_table_r->data[r];
|
|
*dest++ = transform->output_table_g->data[g];
|
|
*dest++ = transform->output_table_b->data[b];
|
|
*dest++ = alpha;
|
|
}
|
|
}
|
|
|
|
static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device_r = *src++;
|
|
unsigned char device_g = *src++;
|
|
unsigned char device_b = *src++;
|
|
float out_device_r, out_device_g, out_device_b;
|
|
|
|
float linear_r = transform->input_gamma_table_r[device_r];
|
|
float linear_g = transform->input_gamma_table_g[device_g];
|
|
float linear_b = transform->input_gamma_table_b[device_b];
|
|
|
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
|
|
|
out_linear_r = clamp_float(out_linear_r);
|
|
out_linear_g = clamp_float(out_linear_g);
|
|
out_linear_b = clamp_float(out_linear_b);
|
|
|
|
out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
|
out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
|
out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
|
|
|
*dest++ = clamp_u8(out_device_r*255);
|
|
*dest++ = clamp_u8(out_device_g*255);
|
|
*dest++ = clamp_u8(out_device_b*255);
|
|
}
|
|
}
|
|
|
|
static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
unsigned int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device_r = *src++;
|
|
unsigned char device_g = *src++;
|
|
unsigned char device_b = *src++;
|
|
unsigned char alpha = *src++;
|
|
float out_device_r, out_device_g, out_device_b;
|
|
|
|
float linear_r = transform->input_gamma_table_r[device_r];
|
|
float linear_g = transform->input_gamma_table_g[device_g];
|
|
float linear_b = transform->input_gamma_table_b[device_b];
|
|
|
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
|
|
|
out_linear_r = clamp_float(out_linear_r);
|
|
out_linear_g = clamp_float(out_linear_g);
|
|
out_linear_b = clamp_float(out_linear_b);
|
|
|
|
out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
|
|
out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
|
|
out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
|
|
|
|
*dest++ = clamp_u8(out_device_r*255);
|
|
*dest++ = clamp_u8(out_device_g*255);
|
|
*dest++ = clamp_u8(out_device_b*255);
|
|
*dest++ = alpha;
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
|
{
|
|
int i;
|
|
float (*mat)[4] = transform->matrix;
|
|
for (i = 0; i < length; i++) {
|
|
unsigned char device_r = *src++;
|
|
unsigned char device_g = *src++;
|
|
unsigned char device_b = *src++;
|
|
|
|
float linear_r = transform->input_gamma_table_r[device_r];
|
|
float linear_g = transform->input_gamma_table_g[device_g];
|
|
float linear_b = transform->input_gamma_table_b[device_b];
|
|
|
|
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
|
|
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
|
|
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
|
|
|
|
*dest++ = clamp_u8(out_linear_r*255);
|
|
*dest++ = clamp_u8(out_linear_g*255);
|
|
*dest++ = clamp_u8(out_linear_b*255);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static struct precache_output *precache_reference(struct precache_output *p)
|
|
{
|
|
p->ref_count++;
|
|
return p;
|
|
}
|
|
|
|
static struct precache_output *precache_create()
|
|
{
|
|
struct precache_output *p = malloc(sizeof(struct precache_output));
|
|
if (p)
|
|
p->ref_count = 1;
|
|
return p;
|
|
}
|
|
|
|
void precache_release(struct precache_output *p)
|
|
{
|
|
if (--p->ref_count == 0) {
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
#ifdef HAS_POSIX_MEMALIGN
|
|
static qcms_transform *transform_alloc(void)
|
|
{
|
|
qcms_transform *t;
|
|
if (!posix_memalign(&t, 16, sizeof(*t))) {
|
|
return t;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
static void transform_free(qcms_transform *t)
|
|
{
|
|
free(t);
|
|
}
|
|
#else
|
|
static qcms_transform *transform_alloc(void)
|
|
{
|
|
/* transform needs to be aligned on a 16byte boundrary */
|
|
char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1);
|
|
/* make room for a pointer to the block returned by calloc */
|
|
void *transform_start = original_block + sizeof(void*);
|
|
/* align transform_start */
|
|
qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf);
|
|
|
|
/* store a pointer to the block returned by calloc so that we can free it later */
|
|
void **(original_block_ptr) = (void**)transform_aligned;
|
|
if (!original_block)
|
|
return NULL;
|
|
original_block_ptr--;
|
|
*original_block_ptr = original_block;
|
|
|
|
return transform_aligned;
|
|
}
|
|
static void transform_free(qcms_transform *t)
|
|
{
|
|
/* get at the pointer to the unaligned block returned by calloc */
|
|
void **p = (void**)t;
|
|
p--;
|
|
free(*p);
|
|
}
|
|
#endif
|
|
|
|
void qcms_transform_release(qcms_transform *t)
|
|
{
|
|
/* ensure we only free the gamma tables once even if there are
|
|
* multiple references to the same data */
|
|
|
|
if (t->output_table_r)
|
|
precache_release(t->output_table_r);
|
|
if (t->output_table_g)
|
|
precache_release(t->output_table_g);
|
|
if (t->output_table_b)
|
|
precache_release(t->output_table_b);
|
|
|
|
free(t->input_gamma_table_r);
|
|
if (t->input_gamma_table_g != t->input_gamma_table_r)
|
|
free(t->input_gamma_table_g);
|
|
if (t->input_gamma_table_g != t->input_gamma_table_r &&
|
|
t->input_gamma_table_g != t->input_gamma_table_b)
|
|
free(t->input_gamma_table_b);
|
|
|
|
free(t->input_gamma_table_gray);
|
|
|
|
free(t->output_gamma_lut_r);
|
|
free(t->output_gamma_lut_g);
|
|
free(t->output_gamma_lut_b);
|
|
|
|
transform_free(t);
|
|
}
|
|
|
|
static void compute_precache_pow(uint8_t *output, float gamma)
|
|
{
|
|
uint32_t v = 0;
|
|
for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
|
|
//XXX: don't do integer/float conversion... and round?
|
|
output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
|
|
}
|
|
}
|
|
|
|
void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
|
|
{
|
|
uint32_t v = 0;
|
|
for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
|
|
output[v] = lut_interp_linear_precache_output(v, table, length);
|
|
}
|
|
}
|
|
|
|
void compute_precache_linear(uint8_t *output)
|
|
{
|
|
uint32_t v = 0;
|
|
for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
|
|
//XXX: round?
|
|
output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
|
|
}
|
|
}
|
|
|
|
qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
|
|
{
|
|
if (trc->count == 0) {
|
|
compute_precache_linear(output);
|
|
} else if (trc->count == 1) {
|
|
compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
|
|
} else {
|
|
uint16_t *inverted;
|
|
int inverted_size = trc->count;
|
|
//XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses.
|
|
// the maximum number we would need is 65535 because that's the accuracy used for computing the precache table
|
|
if (inverted_size < 256)
|
|
inverted_size = 256;
|
|
|
|
inverted = invert_lut(trc->data, trc->count, inverted_size);
|
|
if (!inverted)
|
|
return false;
|
|
compute_precache_lut(output, inverted, inverted_size);
|
|
free(inverted);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifdef X86
|
|
// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in
|
|
// mozilla/jpeg)
|
|
// -------------------------------------------------------------------------
|
|
#if defined(_M_IX86) && defined(_MSC_VER)
|
|
#define HAS_CPUID
|
|
/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC
|
|
register - I'm not sure if that ever happens on windows, but cpuid isn't
|
|
on the critical path so we just preserve the register to be safe and to be
|
|
consistent with the non-windows version. */
|
|
static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
|
|
uint32_t a_, b_, c_, d_;
|
|
__asm {
|
|
xchg ebx, esi
|
|
mov eax, fxn
|
|
cpuid
|
|
mov a_, eax
|
|
mov b_, ebx
|
|
mov c_, ecx
|
|
mov d_, edx
|
|
xchg ebx, esi
|
|
}
|
|
*a = a_;
|
|
*b = b_;
|
|
*c = c_;
|
|
*d = d_;
|
|
}
|
|
#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386))
|
|
#define HAS_CPUID
|
|
/* Get us a CPUID function. We can't use ebx because it's the PIC register on
|
|
some platforms, so we use ESI instead and save ebx to avoid clobbering it. */
|
|
static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {
|
|
|
|
uint32_t a_, b_, c_, d_;
|
|
__asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;"
|
|
: "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn));
|
|
*a = a_;
|
|
*b = b_;
|
|
*c = c_;
|
|
*d = d_;
|
|
}
|
|
#endif
|
|
|
|
// -------------------------Runtime SSEx Detection-----------------------------
|
|
|
|
/* MMX is always supported per
|
|
* Gecko v1.9.1 minimum CPU requirements */
|
|
#define SSE1_EDX_MASK (1UL << 25)
|
|
#define SSE2_EDX_MASK (1UL << 26)
|
|
#define SSE3_ECX_MASK (1UL << 0)
|
|
|
|
static int sse_version_available(void)
|
|
{
|
|
#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64)
|
|
/* we know at build time that 64-bit CPUs always have SSE2
|
|
* this tells the compiler that non-SSE2 branches will never be
|
|
* taken (i.e. OK to optimze away the SSE1 and non-SIMD code */
|
|
return 2;
|
|
#elif defined(HAS_CPUID)
|
|
static int sse_version = -1;
|
|
uint32_t a, b, c, d;
|
|
uint32_t function = 0x00000001;
|
|
|
|
if (sse_version == -1) {
|
|
sse_version = 0;
|
|
cpuid(function, &a, &b, &c, &d);
|
|
if (c & SSE3_ECX_MASK)
|
|
sse_version = 3;
|
|
else if (d & SSE2_EDX_MASK)
|
|
sse_version = 2;
|
|
else if (d & SSE1_EDX_MASK)
|
|
sse_version = 1;
|
|
}
|
|
|
|
return sse_version;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void build_output_lut(struct curveType *trc,
|
|
uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
|
|
{
|
|
if (trc->count == 0) {
|
|
*output_gamma_lut = build_linear_table(4096);
|
|
*output_gamma_lut_length = 4096;
|
|
} else if (trc->count == 1) {
|
|
float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
|
|
*output_gamma_lut = build_pow_table(gamma, 4096);
|
|
*output_gamma_lut_length = 4096;
|
|
} else {
|
|
//XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses.
|
|
*output_gamma_lut_length = trc->count;
|
|
if (*output_gamma_lut_length < 256)
|
|
*output_gamma_lut_length = 256;
|
|
|
|
*output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);
|
|
}
|
|
|
|
}
|
|
|
|
void qcms_profile_precache_output_transform(qcms_profile *profile)
|
|
{
|
|
/* we only support precaching on rgb profiles */
|
|
if (profile->color_space != RGB_SIGNATURE)
|
|
return;
|
|
|
|
if (!profile->output_table_r) {
|
|
profile->output_table_r = precache_create();
|
|
if (profile->output_table_r &&
|
|
!compute_precache(profile->redTRC, profile->output_table_r->data)) {
|
|
precache_release(profile->output_table_r);
|
|
profile->output_table_r = NULL;
|
|
}
|
|
}
|
|
if (!profile->output_table_g) {
|
|
profile->output_table_g = precache_create();
|
|
if (profile->output_table_g &&
|
|
!compute_precache(profile->greenTRC, profile->output_table_g->data)) {
|
|
precache_release(profile->output_table_g);
|
|
profile->output_table_g = NULL;
|
|
}
|
|
}
|
|
if (!profile->output_table_b) {
|
|
profile->output_table_b = precache_create();
|
|
if (profile->output_table_b &&
|
|
!compute_precache(profile->blueTRC, profile->output_table_b->data)) {
|
|
precache_release(profile->output_table_b);
|
|
profile->output_table_b = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define NO_MEM_TRANSFORM NULL
|
|
|
|
qcms_transform* qcms_transform_create(
|
|
qcms_profile *in, qcms_data_type in_type,
|
|
qcms_profile* out, qcms_data_type out_type,
|
|
qcms_intent intent)
|
|
{
|
|
bool precache = false;
|
|
|
|
qcms_transform *transform = transform_alloc();
|
|
if (!transform) {
|
|
return NULL;
|
|
}
|
|
if (out_type != QCMS_DATA_RGB_8 &&
|
|
out_type != QCMS_DATA_RGBA_8) {
|
|
assert(0 && "output type");
|
|
transform_free(transform);
|
|
return NULL;
|
|
}
|
|
|
|
if (out->output_table_r &&
|
|
out->output_table_g &&
|
|
out->output_table_b) {
|
|
precache = true;
|
|
}
|
|
|
|
if (precache) {
|
|
transform->output_table_r = precache_reference(out->output_table_r);
|
|
transform->output_table_g = precache_reference(out->output_table_g);
|
|
transform->output_table_b = precache_reference(out->output_table_b);
|
|
} else {
|
|
build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length);
|
|
build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length);
|
|
build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length);
|
|
if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) {
|
|
qcms_transform_release(transform);
|
|
return NO_MEM_TRANSFORM;
|
|
}
|
|
}
|
|
|
|
if (in->color_space == RGB_SIGNATURE) {
|
|
struct matrix in_matrix, out_matrix, result;
|
|
|
|
if (in_type != QCMS_DATA_RGB_8 &&
|
|
in_type != QCMS_DATA_RGBA_8){
|
|
assert(0 && "input type");
|
|
transform_free(transform);
|
|
return NULL;
|
|
}
|
|
if (precache) {
|
|
#ifdef X86
|
|
if (sse_version_available() >= 2) {
|
|
if (in_type == QCMS_DATA_RGB_8)
|
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2;
|
|
else
|
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2;
|
|
|
|
#if !(defined(_MSC_VER) && defined(_M_AMD64))
|
|
/* Microsoft Compiler for x64 doesn't support MMX.
|
|
* SSE code uses MMX so that we disable on x64 */
|
|
} else
|
|
if (sse_version_available() >= 1) {
|
|
if (in_type == QCMS_DATA_RGB_8)
|
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1;
|
|
else
|
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1;
|
|
#endif
|
|
} else
|
|
#endif
|
|
{
|
|
if (in_type == QCMS_DATA_RGB_8)
|
|
transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
|
|
else
|
|
transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
|
|
}
|
|
} else {
|
|
if (in_type == QCMS_DATA_RGB_8)
|
|
transform->transform_fn = qcms_transform_data_rgb_out_lut;
|
|
else
|
|
transform->transform_fn = qcms_transform_data_rgba_out_lut;
|
|
}
|
|
|
|
//XXX: avoid duplicating tables if we can
|
|
transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
|
|
transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
|
|
transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
|
|
|
|
if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
|
|
qcms_transform_release(transform);
|
|
return NO_MEM_TRANSFORM;
|
|
}
|
|
|
|
/* build combined colorant matrix */
|
|
in_matrix = build_colorant_matrix(in);
|
|
out_matrix = build_colorant_matrix(out);
|
|
out_matrix = matrix_invert(out_matrix);
|
|
if (out_matrix.invalid) {
|
|
qcms_transform_release(transform);
|
|
return NULL;
|
|
}
|
|
result = matrix_multiply(out_matrix, in_matrix);
|
|
|
|
/* store the results in column major mode
|
|
* this makes doing the multiplication with sse easier */
|
|
transform->matrix[0][0] = result.m[0][0];
|
|
transform->matrix[1][0] = result.m[0][1];
|
|
transform->matrix[2][0] = result.m[0][2];
|
|
transform->matrix[0][1] = result.m[1][0];
|
|
transform->matrix[1][1] = result.m[1][1];
|
|
transform->matrix[2][1] = result.m[1][2];
|
|
transform->matrix[0][2] = result.m[2][0];
|
|
transform->matrix[1][2] = result.m[2][1];
|
|
transform->matrix[2][2] = result.m[2][2];
|
|
|
|
} else if (in->color_space == GRAY_SIGNATURE) {
|
|
if (in_type != QCMS_DATA_GRAY_8 &&
|
|
in_type != QCMS_DATA_GRAYA_8){
|
|
assert(0 && "input type");
|
|
transform_free(transform);
|
|
return NULL;
|
|
}
|
|
|
|
transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
|
|
if (!transform->input_gamma_table_gray) {
|
|
qcms_transform_release(transform);
|
|
return NO_MEM_TRANSFORM;
|
|
}
|
|
|
|
if (precache) {
|
|
if (in_type == QCMS_DATA_GRAY_8) {
|
|
transform->transform_fn = qcms_transform_data_gray_out_precache;
|
|
} else {
|
|
transform->transform_fn = qcms_transform_data_graya_out_precache;
|
|
}
|
|
} else {
|
|
if (in_type == QCMS_DATA_GRAY_8) {
|
|
transform->transform_fn = qcms_transform_data_gray_out_lut;
|
|
} else {
|
|
transform->transform_fn = qcms_transform_data_graya_out_lut;
|
|
}
|
|
}
|
|
} else {
|
|
assert(0 && "unexpected colorspace");
|
|
qcms_transform_release(transform);
|
|
return NO_MEM_TRANSFORM;
|
|
}
|
|
return transform;
|
|
}
|
|
|
|
#if defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__)
|
|
/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */
|
|
__attribute__((__force_align_arg_pointer__))
|
|
#endif
|
|
void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length)
|
|
{
|
|
transform->transform_fn(transform, src, dest, length);
|
|
}
|