gecko/gfx/thebes/gfxPattern.cpp

461 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gfxTypes.h"
#include "gfxPattern.h"
#include "gfxASurface.h"
#include "gfxPlatform.h"
#include "cairo.h"
#include <vector>
using namespace mozilla::gfx;
gfxPattern::gfxPattern(cairo_pattern_t *aPattern)
: mGfxPattern(nullptr)
{
mPattern = cairo_pattern_reference(aPattern);
}
gfxPattern::gfxPattern(const gfxRGBA& aColor)
: mGfxPattern(nullptr)
{
mPattern = cairo_pattern_create_rgba(aColor.r, aColor.g, aColor.b, aColor.a);
}
// from another surface
gfxPattern::gfxPattern(gfxASurface *surface)
: mGfxPattern(nullptr)
{
mPattern = cairo_pattern_create_for_surface(surface->CairoSurface());
}
// linear
gfxPattern::gfxPattern(gfxFloat x0, gfxFloat y0, gfxFloat x1, gfxFloat y1)
: mGfxPattern(nullptr)
{
mPattern = cairo_pattern_create_linear(x0, y0, x1, y1);
}
// radial
gfxPattern::gfxPattern(gfxFloat cx0, gfxFloat cy0, gfxFloat radius0,
gfxFloat cx1, gfxFloat cy1, gfxFloat radius1)
: mGfxPattern(nullptr)
{
mPattern = cairo_pattern_create_radial(cx0, cy0, radius0,
cx1, cy1, radius1);
}
// Azure
gfxPattern::gfxPattern(SourceSurface *aSurface, const Matrix &aTransform)
: mPattern(nullptr)
, mGfxPattern(nullptr)
, mSourceSurface(aSurface)
, mTransform(aTransform)
, mExtend(EXTEND_NONE)
{
}
gfxPattern::~gfxPattern()
{
cairo_pattern_destroy(mPattern);
if (mGfxPattern) {
mGfxPattern->~Pattern();
}
}
cairo_pattern_t *
gfxPattern::CairoPattern()
{
return mPattern;
}
void
gfxPattern::AddColorStop(gfxFloat offset, const gfxRGBA& c)
{
if (mPattern) {
mStops = nullptr;
if (gfxPlatform::GetCMSMode() == eCMSMode_All) {
gfxRGBA cms;
qcms_transform *transform = gfxPlatform::GetCMSRGBTransform();
if (transform)
gfxPlatform::TransformPixel(c, cms, transform);
// Use the original alpha to avoid unnecessary float->byte->float
// conversion errors
cairo_pattern_add_color_stop_rgba(mPattern, offset,
cms.r, cms.g, cms.b, c.a);
}
else
cairo_pattern_add_color_stop_rgba(mPattern, offset, c.r, c.g, c.b, c.a);
}
}
void
gfxPattern::SetColorStops(mozilla::RefPtr<mozilla::gfx::GradientStops> aStops)
{
mStops = aStops;
}
void
gfxPattern::SetMatrix(const gfxMatrix& matrix)
{
if (mPattern) {
cairo_matrix_t mat = *reinterpret_cast<const cairo_matrix_t*>(&matrix);
cairo_pattern_set_matrix(mPattern, &mat);
} else {
mTransform = ToMatrix(matrix);
// Cairo-pattern matrices specify the conversion from DrawTarget to pattern
// space. Azure pattern matrices specify the conversion from pattern to
// DrawTarget space.
mTransform.Invert();
}
}
gfxMatrix
gfxPattern::GetMatrix() const
{
if (mPattern) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
return gfxMatrix(*reinterpret_cast<gfxMatrix*>(&mat));
} else {
// invert at the higher precision of gfxMatrix
// cause we need to convert at some point anyways
gfxMatrix mat = ThebesMatrix(mTransform);
mat.Invert();
return mat;
}
}
gfxMatrix
gfxPattern::GetInverseMatrix() const
{
if (mPattern) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
cairo_matrix_invert(&mat);
return gfxMatrix(*reinterpret_cast<gfxMatrix*>(&mat));
} else {
return ThebesMatrix(mTransform);
}
}
Pattern*
gfxPattern::GetPattern(DrawTarget *aTarget, Matrix *aPatternTransform)
{
if (mGfxPattern) {
mGfxPattern->~Pattern();
mGfxPattern = nullptr;
}
if (!mPattern) {
mGfxPattern = new (mSurfacePattern.addr())
SurfacePattern(mSourceSurface, EXTEND_CLAMP, mTransform);
return mGfxPattern;
}
GraphicsExtend extend = (GraphicsExtend)cairo_pattern_get_extend(mPattern);
switch (cairo_pattern_get_type(mPattern)) {
case CAIRO_PATTERN_TYPE_SOLID:
{
double r, g, b, a;
cairo_pattern_get_rgba(mPattern, &r, &g, &b, &a);
new (mColorPattern.addr()) ColorPattern(Color(r, g, b, a));
return mColorPattern.addr();
}
case CAIRO_PATTERN_TYPE_SURFACE:
{
GraphicsFilter filter = (GraphicsFilter)cairo_pattern_get_filter(mPattern);
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
gfxMatrix matrix(*reinterpret_cast<gfxMatrix*>(&mat));
cairo_surface_t *surf = nullptr;
cairo_pattern_get_surface(mPattern, &surf);
if (!mSourceSurface) {
nsRefPtr<gfxASurface> gfxSurf = gfxASurface::Wrap(surf);
// The underlying surface here will be kept around by the gfxPattern.
// This function is intended to be used right away.
mSourceSurface =
gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(aTarget, gfxSurf);
}
if (mSourceSurface) {
Matrix newMat = ToMatrix(matrix);
AdjustTransformForPattern(newMat, aTarget->GetTransform(), aPatternTransform);
double x, y;
cairo_surface_get_device_offset(surf, &x, &y);
newMat.Translate(-x, -y);
mGfxPattern = new (mSurfacePattern.addr())
SurfacePattern(mSourceSurface, ToExtendMode(extend), newMat, ToFilter(filter));
return mGfxPattern;
}
break;
}
case CAIRO_PATTERN_TYPE_LINEAR:
{
double x1, y1, x2, y2;
cairo_pattern_get_linear_points(mPattern, &x1, &y1, &x2, &y2);
if (!mStops) {
int count = 0;
cairo_pattern_get_color_stop_count(mPattern, &count);
std::vector<GradientStop> stops;
for (int i = 0; i < count; i++) {
GradientStop stop;
double r, g, b, a, offset;
cairo_pattern_get_color_stop_rgba(mPattern, i, &offset, &r, &g, &b, &a);
stop.offset = offset;
stop.color = Color(Float(r), Float(g), Float(b), Float(a));
stops.push_back(stop);
}
mStops = aTarget->CreateGradientStops(&stops.front(), count, ToExtendMode(extend));
}
if (mStops) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
gfxMatrix matrix(*reinterpret_cast<gfxMatrix*>(&mat));
Matrix newMat = ToMatrix(matrix);
AdjustTransformForPattern(newMat, aTarget->GetTransform(), aPatternTransform);
mGfxPattern = new (mLinearGradientPattern.addr())
LinearGradientPattern(Point(x1, y1), Point(x2, y2), mStops, newMat);
return mGfxPattern;
}
break;
}
case CAIRO_PATTERN_TYPE_RADIAL:
{
if (!mStops) {
int count = 0;
cairo_pattern_get_color_stop_count(mPattern, &count);
std::vector<GradientStop> stops;
for (int i = 0; i < count; i++) {
GradientStop stop;
double r, g, b, a, offset;
cairo_pattern_get_color_stop_rgba(mPattern, i, &offset, &r, &g, &b, &a);
stop.offset = offset;
stop.color = Color(Float(r), Float(g), Float(b), Float(a));
stops.push_back(stop);
}
mStops = aTarget->CreateGradientStops(&stops.front(), count, ToExtendMode(extend));
}
if (mStops) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
gfxMatrix matrix(*reinterpret_cast<gfxMatrix*>(&mat));
Matrix newMat = ToMatrix(matrix);
AdjustTransformForPattern(newMat, aTarget->GetTransform(), aPatternTransform);
double x1, y1, x2, y2, r1, r2;
cairo_pattern_get_radial_circles(mPattern, &x1, &y1, &r1, &x2, &y2, &r2);
mGfxPattern = new (mRadialGradientPattern.addr())
RadialGradientPattern(Point(x1, y1), Point(x2, y2), r1, r2, mStops, newMat);
return mGfxPattern;
}
break;
}
default:
/* Reassure the compiler we are handling all the enum values. */
break;
}
new (mColorPattern.addr()) ColorPattern(Color(0, 0, 0, 0));
return mColorPattern.addr();
}
void
gfxPattern::SetExtend(GraphicsExtend extend)
{
if (mPattern) {
mStops = nullptr;
if (extend == EXTEND_PAD_EDGE) {
if (cairo_pattern_get_type(mPattern) == CAIRO_PATTERN_TYPE_SURFACE) {
cairo_surface_t *surf = nullptr;
cairo_pattern_get_surface (mPattern, &surf);
if (surf) {
switch (cairo_surface_get_type(surf)) {
case CAIRO_SURFACE_TYPE_WIN32_PRINTING:
case CAIRO_SURFACE_TYPE_QUARTZ:
extend = EXTEND_NONE;
break;
case CAIRO_SURFACE_TYPE_WIN32:
case CAIRO_SURFACE_TYPE_XLIB:
default:
extend = EXTEND_PAD;
break;
}
}
}
// if something went wrong, or not a surface pattern, use PAD
if (extend == EXTEND_PAD_EDGE)
extend = EXTEND_PAD;
}
cairo_pattern_set_extend(mPattern, (cairo_extend_t)extend);
} else {
// This is always a surface pattern and will default to EXTEND_PAD
// for EXTEND_PAD_EDGE.
mExtend = extend;
}
}
bool
gfxPattern::IsOpaque()
{
if (mPattern) {
switch (cairo_pattern_get_type(mPattern)) {
case CAIRO_PATTERN_TYPE_SURFACE:
{
cairo_surface_t *surf = nullptr;
cairo_pattern_get_surface(mPattern, &surf);
if (cairo_surface_get_content(surf) == CAIRO_CONTENT_COLOR) {
return true;
}
}
default:
return false;
}
}
if (mSourceSurface->GetFormat() == FORMAT_B8G8R8X8) {
return true;
}
return false;
}
gfxPattern::GraphicsExtend
gfxPattern::Extend() const
{
if (mPattern) {
return (GraphicsExtend)cairo_pattern_get_extend(mPattern);
} else {
return mExtend;
}
}
void
gfxPattern::SetFilter(GraphicsFilter filter)
{
if (mPattern) {
cairo_pattern_set_filter(mPattern, (cairo_filter_t)filter);
} else {
mFilter = ToFilter(filter);
}
}
gfxPattern::GraphicsFilter
gfxPattern::Filter() const
{
if (mPattern) {
return (GraphicsFilter)cairo_pattern_get_filter(mPattern);
} else {
return ThebesFilter(mFilter);
}
}
bool
gfxPattern::GetSolidColor(gfxRGBA& aColor)
{
return cairo_pattern_get_rgba(mPattern,
&aColor.r,
&aColor.g,
&aColor.b,
&aColor.a) == CAIRO_STATUS_SUCCESS;
}
already_AddRefed<gfxASurface>
gfxPattern::GetSurface()
{
if (mPattern) {
cairo_surface_t *surf = nullptr;
if (cairo_pattern_get_surface (mPattern, &surf) != CAIRO_STATUS_SUCCESS)
return nullptr;
return gfxASurface::Wrap(surf);
} else {
// We should never be trying to get the surface off an Azure gfx Pattern.
NS_ERROR("Attempt to get surface off an Azure gfxPattern!");
return nullptr;
}
}
gfxPattern::GraphicsPatternType
gfxPattern::GetType() const
{
if (mPattern) {
return (GraphicsPatternType) cairo_pattern_get_type(mPattern);
} else {
// We should never be trying to get the type off an Azure gfx Pattern.
MOZ_ASSERT(0);
return PATTERN_SURFACE;
}
}
int
gfxPattern::CairoStatus()
{
if (mPattern) {
return cairo_pattern_status(mPattern);
} else {
// An Azure pattern as this point is never in error status.
return CAIRO_STATUS_SUCCESS;
}
}
void
gfxPattern::AdjustTransformForPattern(Matrix &aPatternTransform,
const Matrix &aCurrentTransform,
const Matrix *aOriginalTransform)
{
aPatternTransform.Invert();
if (!aOriginalTransform) {
// User space is unchanged, so to get from pattern space to user space,
// just invert the cairo matrix.
aPatternTransform.NudgeToIntegers();
return;
}
// aPatternTransform now maps from pattern space to the user space defined
// by *aOriginalTransform.
Matrix mat = aCurrentTransform;
mat.Invert();
// mat maps from device space to current user space
// First, transform from pattern space to original user space. Then transform
// from original user space to device space. Then transform from
// device space to current user space.
aPatternTransform = aPatternTransform * *aOriginalTransform * mat;
aPatternTransform.NudgeToIntegers();
}