gecko/mfbt/HashFunctions.h
2012-03-02 17:46:09 -05:00

113 lines
3.4 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sw=4 et tw=99 ft=cpp:
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Utilities for hashing */
#ifndef mozilla_HashFunctions_h_
#define mozilla_HashFunctions_h_
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/StandardInteger.h"
#ifdef __cplusplus
namespace mozilla {
/**
* The golden ratio as a 32-bit fixed-point value.
*/
static const uint32_t GoldenRatioU32 = 0x9E3779B9U;
inline uint32_t
RotateLeft32(uint32_t value, uint8_t bits)
{
MOZ_ASSERT(bits < 32);
return (value << bits) | (value >> (32 - bits));
}
/**
* Add the given value(s) to the given hashcode and return the new hashcode.
*
* AddToHash(h, x, y) is equivalent to AddToHash(AddToHash(h, x), y).
*/
MOZ_WARN_UNUSED_RESULT
inline uint32_t
AddToHash(uint32_t hash, uint32_t value)
{
/*
* This is not a sophisticated hash routine, but it seems to work well for our
* mostly plain-text inputs. Implementation notes follow.
*
* Our use of the golden ratio here is arbitrary; we could pick almost any
* number which:
*
* * is odd (because otherwise, all our hash values will be even)
*
* * has a reasonably-even mix of 1's and 0's (consider the extreme case
* where we multiply by 0x3 or 0xeffffff -- this will not produce good
* mixing across all bits of the hash).
*
* The rotation length of 5 is also arbitrary, although an odd number is again
* preferable so our hash explores the whole universe of possible rotations.
*
* Finally, we multiply by the golden ratio *after* xor'ing, not before.
* Otherwise, if |hash| is 0 (as it often is for the beginning of a message),
* the expression
*
* (GoldenRatioU32 * RotateLeft(hash, 5)) ^ value
*
* evaluates to |value|.
*
* (Number-theoretic aside: Because any odd number |m| is relatively prime to
* our modulus (2^32), the list
*
* [x * m (mod 2^32) for 0 <= x < 2^32]
*
* has no duplicate elements. This means that multiplying by |m| does not
* cause us to skip any possible hash values.
*
* It's also nice if |m| has larger order mod 2^32 -- that is, if the smallest
* k such that m^k == 1 (mod 2^32) is large -- so we can safely multiply our
* hash value by |m| a few times without negating the multiplicative effect.
* Our golden ratio constant has order 2^29, which is more than enough for our
* purposes.)
*/
return GoldenRatioU32 * (RotateLeft32(hash, 5) ^ value);
}
MOZ_WARN_UNUSED_RESULT
inline uint32_t
AddToHash(uint32_t hash, uint32_t v1, uint32_t v2)
{
return AddToHash(AddToHash(hash, v1), v2);
}
MOZ_WARN_UNUSED_RESULT
inline uint32_t
AddToHash(uint32_t hash, uint32_t v1, uint32_t v2, uint32_t v3)
{
return AddToHash(AddToHash(hash, v1, v2), v3);
}
MOZ_WARN_UNUSED_RESULT
inline uint32_t
AddToHash(uint32_t hash, uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4)
{
return AddToHash(AddToHash(hash, v1, v2, v3), v4);
}
MOZ_WARN_UNUSED_RESULT
inline uint32_t
AddToHash(uint32_t hash, uint32_t v1, uint32_t v2, uint32_t v3, uint32_t v4, uint32_t v5)
{
return AddToHash(AddToHash(hash, v1, v2, v3, v4), v5);
}
} /* namespace mozilla */
#endif /* __cplusplus */
#endif /* mozilla_HashFunctions_h_ */