mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
bb4a03e7ad
--HG-- extra : rebase_source : 65af577f5ffcf7f7a0b650f1693f4159ddac4ac6
242 lines
12 KiB
C++
242 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2010 Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "Reverb.h"
|
|
|
|
#include <math.h>
|
|
#include "ReverbConvolver.h"
|
|
#include "mozilla/FloatingPoint.h"
|
|
|
|
using namespace mozilla;
|
|
|
|
namespace WebCore {
|
|
|
|
// Empirical gain calibration tested across many impulse responses to ensure perceived volume is same as dry (unprocessed) signal
|
|
const float GainCalibration = -58;
|
|
const float GainCalibrationSampleRate = 44100;
|
|
|
|
// A minimum power value to when normalizing a silent (or very quiet) impulse response
|
|
const float MinPower = 0.000125f;
|
|
|
|
static float calculateNormalizationScale(ThreadSharedFloatArrayBufferList* response, size_t aLength, float sampleRate)
|
|
{
|
|
// Normalize by RMS power
|
|
size_t numberOfChannels = response->GetChannels();
|
|
|
|
float power = 0;
|
|
|
|
for (size_t i = 0; i < numberOfChannels; ++i) {
|
|
float channelPower = AudioBufferSumOfSquares(static_cast<const float*>(response->GetData(i)), aLength);
|
|
power += channelPower;
|
|
}
|
|
|
|
power = sqrt(power / (numberOfChannels * aLength));
|
|
|
|
// Protect against accidental overload
|
|
if (!IsFinite(power) || IsNaN(power) || power < MinPower)
|
|
power = MinPower;
|
|
|
|
float scale = 1 / power;
|
|
|
|
scale *= powf(10, GainCalibration * 0.05f); // calibrate to make perceived volume same as unprocessed
|
|
|
|
// Scale depends on sample-rate.
|
|
if (sampleRate)
|
|
scale *= GainCalibrationSampleRate / sampleRate;
|
|
|
|
// True-stereo compensation
|
|
if (response->GetChannels() == 4)
|
|
scale *= 0.5f;
|
|
|
|
return scale;
|
|
}
|
|
|
|
Reverb::Reverb(ThreadSharedFloatArrayBufferList* impulseResponse, size_t impulseResponseBufferLength, size_t renderSliceSize, size_t maxFFTSize, size_t numberOfChannels, bool useBackgroundThreads, bool normalize, float sampleRate)
|
|
{
|
|
float scale = 1;
|
|
|
|
nsAutoTArray<const float*,4> irChannels;
|
|
for (size_t i = 0; i < impulseResponse->GetChannels(); ++i) {
|
|
irChannels.AppendElement(impulseResponse->GetData(i));
|
|
}
|
|
nsAutoTArray<float,1024> tempBuf;
|
|
|
|
if (normalize) {
|
|
scale = calculateNormalizationScale(impulseResponse, impulseResponseBufferLength, sampleRate);
|
|
|
|
if (scale) {
|
|
tempBuf.SetLength(irChannels.Length()*impulseResponseBufferLength);
|
|
for (uint32_t i = 0; i < irChannels.Length(); ++i) {
|
|
float* buf = &tempBuf[i*impulseResponseBufferLength];
|
|
AudioBufferCopyWithScale(irChannels[i], scale, buf,
|
|
impulseResponseBufferLength);
|
|
irChannels[i] = buf;
|
|
}
|
|
}
|
|
}
|
|
|
|
initialize(irChannels, impulseResponseBufferLength, renderSliceSize,
|
|
maxFFTSize, numberOfChannels, useBackgroundThreads);
|
|
}
|
|
|
|
void Reverb::initialize(const nsTArray<const float*>& impulseResponseBuffer,
|
|
size_t impulseResponseBufferLength, size_t renderSliceSize,
|
|
size_t maxFFTSize, size_t numberOfChannels, bool useBackgroundThreads)
|
|
{
|
|
m_impulseResponseLength = impulseResponseBufferLength;
|
|
|
|
// The reverb can handle a mono impulse response and still do stereo processing
|
|
size_t numResponseChannels = impulseResponseBuffer.Length();
|
|
m_convolvers.SetCapacity(numberOfChannels);
|
|
|
|
int convolverRenderPhase = 0;
|
|
for (size_t i = 0; i < numResponseChannels; ++i) {
|
|
const float* channel = impulseResponseBuffer[i];
|
|
size_t length = impulseResponseBufferLength;
|
|
|
|
nsAutoPtr<ReverbConvolver> convolver(new ReverbConvolver(channel, length, renderSliceSize, maxFFTSize, convolverRenderPhase, useBackgroundThreads));
|
|
m_convolvers.AppendElement(convolver.forget());
|
|
|
|
convolverRenderPhase += renderSliceSize;
|
|
}
|
|
|
|
// For "True" stereo processing we allocate a temporary buffer to avoid repeatedly allocating it in the process() method.
|
|
// It can be bad to allocate memory in a real-time thread.
|
|
if (numResponseChannels == 4) {
|
|
AllocateAudioBlock(2, &m_tempBuffer);
|
|
WriteZeroesToAudioBlock(&m_tempBuffer, 0, WEBAUDIO_BLOCK_SIZE);
|
|
}
|
|
}
|
|
|
|
void Reverb::process(const AudioChunk* sourceBus, AudioChunk* destinationBus, size_t framesToProcess)
|
|
{
|
|
// Do a fairly comprehensive sanity check.
|
|
// If these conditions are satisfied, all of the source and destination pointers will be valid for the various matrixing cases.
|
|
bool isSafeToProcess = sourceBus && destinationBus && sourceBus->mChannelData.Length() > 0 && destinationBus->mChannelData.Length() > 0
|
|
&& framesToProcess <= MaxFrameSize && framesToProcess <= size_t(sourceBus->mDuration) && framesToProcess <= size_t(destinationBus->mDuration);
|
|
|
|
MOZ_ASSERT(isSafeToProcess);
|
|
if (!isSafeToProcess)
|
|
return;
|
|
|
|
// For now only handle mono or stereo output
|
|
if (destinationBus->mChannelData.Length() > 2) {
|
|
destinationBus->SetNull(destinationBus->mDuration);
|
|
return;
|
|
}
|
|
|
|
float* destinationChannelL = static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[0]));
|
|
const float* sourceBusL = static_cast<const float*>(sourceBus->mChannelData[0]);
|
|
|
|
// Handle input -> output matrixing...
|
|
size_t numInputChannels = sourceBus->mChannelData.Length();
|
|
size_t numOutputChannels = destinationBus->mChannelData.Length();
|
|
size_t numReverbChannels = m_convolvers.Length();
|
|
|
|
if (numInputChannels == 2 && numReverbChannels == 2 && numOutputChannels == 2) {
|
|
// 2 -> 2 -> 2
|
|
const float* sourceBusR = static_cast<const float*>(sourceBus->mChannelData[1]);
|
|
float* destinationChannelR = static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
|
|
m_convolvers[0]->process(sourceBusL, sourceBus->mDuration, destinationChannelL, destinationBus->mDuration, framesToProcess);
|
|
m_convolvers[1]->process(sourceBusR, sourceBus->mDuration, destinationChannelR, destinationBus->mDuration, framesToProcess);
|
|
} else if (numInputChannels == 1 && numOutputChannels == 2 && numReverbChannels == 2) {
|
|
// 1 -> 2 -> 2
|
|
for (int i = 0; i < 2; ++i) {
|
|
float* destinationChannel = static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[i]));
|
|
m_convolvers[i]->process(sourceBusL, sourceBus->mDuration, destinationChannel, destinationBus->mDuration, framesToProcess);
|
|
}
|
|
} else if (numInputChannels == 1 && numReverbChannels == 1 && numOutputChannels == 2) {
|
|
// 1 -> 1 -> 2
|
|
m_convolvers[0]->process(sourceBusL, sourceBus->mDuration, destinationChannelL, destinationBus->mDuration, framesToProcess);
|
|
|
|
// simply copy L -> R
|
|
float* destinationChannelR = static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
|
|
bool isCopySafe = destinationChannelL && destinationChannelR && size_t(destinationBus->mDuration) >= framesToProcess && size_t(destinationBus->mDuration) >= framesToProcess;
|
|
MOZ_ASSERT(isCopySafe);
|
|
if (!isCopySafe)
|
|
return;
|
|
PodCopy(destinationChannelR, destinationChannelL, framesToProcess);
|
|
} else if (numInputChannels == 1 && numReverbChannels == 1 && numOutputChannels == 1) {
|
|
// 1 -> 1 -> 1
|
|
m_convolvers[0]->process(sourceBusL, sourceBus->mDuration, destinationChannelL, destinationBus->mDuration, framesToProcess);
|
|
} else if (numInputChannels == 2 && numReverbChannels == 4 && numOutputChannels == 2) {
|
|
// 2 -> 4 -> 2 ("True" stereo)
|
|
const float* sourceBusR = static_cast<const float*>(sourceBus->mChannelData[1]);
|
|
float* destinationChannelR = static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
|
|
|
|
float* tempChannelL = static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[0]));
|
|
float* tempChannelR = static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[1]));
|
|
|
|
// Process left virtual source
|
|
m_convolvers[0]->process(sourceBusL, sourceBus->mDuration, destinationChannelL, destinationBus->mDuration, framesToProcess);
|
|
m_convolvers[1]->process(sourceBusL, sourceBus->mDuration, destinationChannelR, destinationBus->mDuration, framesToProcess);
|
|
|
|
// Process right virtual source
|
|
m_convolvers[2]->process(sourceBusR, sourceBus->mDuration, tempChannelL, m_tempBuffer.mDuration, framesToProcess);
|
|
m_convolvers[3]->process(sourceBusR, sourceBus->mDuration, tempChannelR, m_tempBuffer.mDuration, framesToProcess);
|
|
|
|
AudioBufferAddWithScale(tempChannelL, 1.0f, destinationChannelL, sourceBus->mDuration);
|
|
AudioBufferAddWithScale(tempChannelR, 1.0f, destinationChannelR, sourceBus->mDuration);
|
|
} else if (numInputChannels == 1 && numReverbChannels == 4 && numOutputChannels == 2) {
|
|
// 1 -> 4 -> 2 (Processing mono with "True" stereo impulse response)
|
|
// This is an inefficient use of a four-channel impulse response, but we should handle the case.
|
|
float* destinationChannelR = static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
|
|
|
|
float* tempChannelL = static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[0]));
|
|
float* tempChannelR = static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[1]));
|
|
|
|
// Process left virtual source
|
|
m_convolvers[0]->process(sourceBusL, sourceBus->mDuration, destinationChannelL, destinationBus->mDuration, framesToProcess);
|
|
m_convolvers[1]->process(sourceBusL, sourceBus->mDuration, destinationChannelR, destinationBus->mDuration, framesToProcess);
|
|
|
|
// Process right virtual source
|
|
m_convolvers[2]->process(sourceBusL, sourceBus->mDuration, tempChannelL, m_tempBuffer.mDuration, framesToProcess);
|
|
m_convolvers[3]->process(sourceBusL, sourceBus->mDuration, tempChannelR, m_tempBuffer.mDuration, framesToProcess);
|
|
|
|
AudioBufferAddWithScale(tempChannelL, 1.0f, destinationChannelL, sourceBus->mDuration);
|
|
AudioBufferAddWithScale(tempChannelR, 1.0f, destinationChannelR, sourceBus->mDuration);
|
|
} else {
|
|
// Handle gracefully any unexpected / unsupported matrixing
|
|
// FIXME: add code for 5.1 support...
|
|
destinationBus->SetNull(destinationBus->mDuration);
|
|
}
|
|
}
|
|
|
|
void Reverb::reset()
|
|
{
|
|
for (size_t i = 0; i < m_convolvers.Length(); ++i)
|
|
m_convolvers[i]->reset();
|
|
}
|
|
|
|
size_t Reverb::latencyFrames() const
|
|
{
|
|
return !m_convolvers.IsEmpty() ? m_convolvers[0]->latencyFrames() : 0;
|
|
}
|
|
|
|
} // namespace WebCore
|