gecko/gfx/2d/Matrix.cpp

247 lines
7.4 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Matrix.h"
#include "Tools.h"
#include <algorithm>
#include <math.h>
#include "mozilla/FloatingPoint.h" // for UnspecifiedNaN
using namespace std;
namespace mozilla {
namespace gfx {
Matrix
Matrix::Rotation(Float aAngle)
{
Matrix newMatrix;
Float s = sin(aAngle);
Float c = cos(aAngle);
newMatrix._11 = c;
newMatrix._12 = s;
newMatrix._21 = -s;
newMatrix._22 = c;
return newMatrix;
}
Rect
Matrix::TransformBounds(const Rect &aRect) const
{
int i;
Point quad[4];
Float min_x, max_x;
Float min_y, max_y;
quad[0] = *this * aRect.TopLeft();
quad[1] = *this * aRect.TopRight();
quad[2] = *this * aRect.BottomLeft();
quad[3] = *this * aRect.BottomRight();
min_x = max_x = quad[0].x;
min_y = max_y = quad[0].y;
for (i = 1; i < 4; i++) {
if (quad[i].x < min_x)
min_x = quad[i].x;
if (quad[i].x > max_x)
max_x = quad[i].x;
if (quad[i].y < min_y)
min_y = quad[i].y;
if (quad[i].y > max_y)
max_y = quad[i].y;
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
void
Matrix::NudgeToIntegers()
{
NudgeToInteger(&_11);
NudgeToInteger(&_12);
NudgeToInteger(&_21);
NudgeToInteger(&_22);
NudgeToInteger(&_31);
NudgeToInteger(&_32);
}
Rect
Matrix4x4::TransformBounds(const Rect& aRect) const
{
Point quad[4];
Float min_x, max_x;
Float min_y, max_y;
quad[0] = *this * aRect.TopLeft();
quad[1] = *this * aRect.TopRight();
quad[2] = *this * aRect.BottomLeft();
quad[3] = *this * aRect.BottomRight();
min_x = max_x = quad[0].x;
min_y = max_y = quad[0].y;
for (int i = 1; i < 4; i++) {
if (quad[i].x < min_x) {
min_x = quad[i].x;
}
if (quad[i].x > max_x) {
max_x = quad[i].x;
}
if (quad[i].y < min_y) {
min_y = quad[i].y;
}
if (quad[i].y > max_y) {
max_y = quad[i].y;
}
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
Point4D ComputePerspectivePlaneIntercept(const Point4D& aFirst,
const Point4D& aSecond)
{
// FIXME: See bug 1035611
// Since we can't easily deal with points as w=0 (since we divide by w), we
// approximate this by finding a point with w just greater than 0. Unfortunately
// this is a tradeoff between accuracy and floating point precision.
// We want to interpolate aFirst and aSecond to find a point as close to
// the positive side of the w=0 plane as possible.
// Since we know what we want the w component to be, we can rearrange the
// interpolation equation and solve for t.
float w = 0.00001f;
float t = (w - aFirst.w) / (aSecond.w - aFirst.w);
// Use t to find the remainder of the components
return aFirst + (aSecond - aFirst) * t;
}
Rect Matrix4x4::ProjectRectBounds(const Rect& aRect) const
{
Point4D points[4];
points[0] = ProjectPoint(aRect.TopLeft());
points[1] = ProjectPoint(aRect.TopRight());
points[2] = ProjectPoint(aRect.BottomLeft());
points[3] = ProjectPoint(aRect.BottomRight());
Float min_x = std::numeric_limits<Float>::max();
Float min_y = std::numeric_limits<Float>::max();
Float max_x = -std::numeric_limits<Float>::max();
Float max_y = -std::numeric_limits<Float>::max();
bool foundPoint = false;
for (int i=0; i<4; i++) {
// Only use points that exist above the w=0 plane
if (points[i].HasPositiveWCoord()) {
foundPoint = true;
Point point2d = points[i].As2DPoint();
min_x = min<Float>(point2d.x, min_x);
max_x = max<Float>(point2d.x, max_x);
min_y = min<Float>(point2d.y, min_y);
max_y = max<Float>(point2d.y, max_y);
}
int next = (i == 3) ? 0 : i + 1;
if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
// If the line between two points crosses the w=0 plane, then interpolate a point
// as close to the w=0 plane as possible and use that instead.
Point4D intercept = ComputePerspectivePlaneIntercept(points[i], points[next]);
Point point2d = intercept.As2DPoint();
min_x = min<Float>(point2d.x, min_x);
max_x = max<Float>(point2d.x, max_x);
min_y = min<Float>(point2d.y, min_y);
max_y = max<Float>(point2d.y, max_y);
}
}
if (!foundPoint) {
return Rect(0, 0, 0, 0);
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
bool
Matrix4x4::Invert()
{
Float det = Determinant();
if (!det) {
return false;
}
Matrix4x4 result;
result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;
result._11 /= det;
result._12 /= det;
result._13 /= det;
result._14 /= det;
result._21 /= det;
result._22 /= det;
result._23 /= det;
result._24 /= det;
result._31 /= det;
result._32 /= det;
result._33 /= det;
result._34 /= det;
result._41 /= det;
result._42 /= det;
result._43 /= det;
result._44 /= det;
*this = result;
return true;
}
void
Matrix4x4::SetNAN()
{
_11 = UnspecifiedNaN<Float>();
_21 = UnspecifiedNaN<Float>();
_31 = UnspecifiedNaN<Float>();
_41 = UnspecifiedNaN<Float>();
_12 = UnspecifiedNaN<Float>();
_22 = UnspecifiedNaN<Float>();
_32 = UnspecifiedNaN<Float>();
_42 = UnspecifiedNaN<Float>();
_13 = UnspecifiedNaN<Float>();
_23 = UnspecifiedNaN<Float>();
_33 = UnspecifiedNaN<Float>();
_43 = UnspecifiedNaN<Float>();
_14 = UnspecifiedNaN<Float>();
_24 = UnspecifiedNaN<Float>();
_34 = UnspecifiedNaN<Float>();
_44 = UnspecifiedNaN<Float>();
}
}
}