gecko/media/libvpx/vp9/common/vp9_blockd.h
Jan Gerber 7daba17fb2 Bug 918550 - Update libvpx to 1.3.0 r=glandium,cpearce
This updates our in-tree copy of libvpx to the
v1.3.0 git tag (2e88f2f2ec777259bda1714e72f1ecd2519bceb5)
libvpx 1.3.0 adds support for VP9. VP9 support is built
but not yet exposed with this commit.

Our update.sh script is replaced with update.py that can
update the build system to a given git commit.
 - checkout out upstream git
 - create platform dependend config files
 - add/remove changed libvpx files
 - update moz.build
 - warn about new build categories in libvpx
2013-12-06 03:19:00 -08:00

502 lines
15 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
#include "./vpx_config.h"
#include "vpx_ports/mem.h"
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_common_data.h"
#include "vp9/common/vp9_enums.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_scale.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_treecoder.h"
#define BLOCK_SIZE_GROUPS 4
#define MBSKIP_CONTEXTS 3
/* Segment Feature Masks */
#define MAX_MV_REF_CANDIDATES 2
#define INTRA_INTER_CONTEXTS 4
#define COMP_INTER_CONTEXTS 5
#define REF_CONTEXTS 5
typedef enum {
PLANE_TYPE_Y_WITH_DC,
PLANE_TYPE_UV,
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
typedef char PARTITION_CONTEXT;
static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a,
ENTROPY_CONTEXT b) {
return (a != 0) + (b != 0);
}
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1,
FRAME_TYPES,
} FRAME_TYPE;
typedef enum {
DC_PRED, // Average of above and left pixels
V_PRED, // Vertical
H_PRED, // Horizontal
D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi)
D135_PRED, // Directional 135 deg = 180 - 45
D117_PRED, // Directional 117 deg = 180 - 63
D153_PRED, // Directional 153 deg = 180 - 27
D207_PRED, // Directional 207 deg = 180 + 27
D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi)
TM_PRED, // True-motion
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
MB_MODE_COUNT
} MB_PREDICTION_MODE;
static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWMV;
}
#define INTRA_MODES (TM_PRED + 1)
#define INTER_MODES (1 + NEWMV - NEARESTMV)
#define INTER_OFFSET(mode) ((mode) - NEARESTMV)
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
typedef struct {
MB_PREDICTION_MODE as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
} b_mode_info;
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
} MV_REFERENCE_FRAME;
static INLINE int b_width_log2(BLOCK_SIZE sb_type) {
return b_width_log2_lookup[sb_type];
}
static INLINE int b_height_log2(BLOCK_SIZE sb_type) {
return b_height_log2_lookup[sb_type];
}
static INLINE int mi_width_log2(BLOCK_SIZE sb_type) {
return mi_width_log2_lookup[sb_type];
}
static INLINE int mi_height_log2(BLOCK_SIZE sb_type) {
return mi_height_log2_lookup[sb_type];
}
// This structure now relates to 8x8 block regions.
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
MV_REFERENCE_FRAME ref_frame[2];
TX_SIZE tx_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv[2];
uint8_t mode_context[MAX_REF_FRAMES];
unsigned char skip_coeff; // 0=need to decode coeffs, 1=no coefficients
unsigned char segment_id; // Segment id for this block.
// Flags used for prediction status of various bit-stream signals
unsigned char seg_id_predicted;
INTERPOLATION_TYPE interp_filter;
BLOCK_SIZE sb_type;
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
b_mode_info bmi[4];
} MODE_INFO;
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[1] > INTRA_FRAME;
}
enum mv_precision {
MV_PRECISION_Q3,
MV_PRECISION_Q4
};
#if CONFIG_ALPHA
enum { MAX_MB_PLANE = 4 };
#else
enum { MAX_MB_PLANE = 3 };
#endif
struct buf_2d {
uint8_t *buf;
int stride;
};
struct macroblockd_plane {
int16_t *qcoeff;
int16_t *dqcoeff;
uint16_t *eobs;
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
int16_t *dequant;
ENTROPY_CONTEXT *above_context;
ENTROPY_CONTEXT *left_context;
};
#define BLOCK_OFFSET(x, i) ((x) + (i) * 16)
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
struct scale_factors scale_factor[2];
MODE_INFO *last_mi;
int mode_info_stride;
// A NULL indicates that the 8x8 is not part of the image
MODE_INFO **mi_8x8;
MODE_INFO **prev_mi_8x8;
MODE_INFO *mi_stream;
int up_available;
int left_available;
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
int lossless;
/* Inverse transform function pointers. */
void (*itxm_add)(const int16_t *input, uint8_t *dest, int stride, int eob);
struct subpix_fn_table subpix;
int corrupted;
/* Y,U,V,(A) */
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
ENTROPY_CONTEXT left_context[MAX_MB_PLANE][16];
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT left_seg_context[8];
} MACROBLOCKD;
static BLOCK_SIZE get_subsize(BLOCK_SIZE bsize, PARTITION_TYPE partition) {
const BLOCK_SIZE subsize = subsize_lookup[partition][bsize];
assert(subsize < BLOCK_SIZES);
return subsize;
}
extern const TX_TYPE mode2txfm_map[MB_MODE_COUNT];
static INLINE TX_TYPE get_tx_type_4x4(PLANE_TYPE plane_type,
const MACROBLOCKD *xd, int ib) {
const MODE_INFO *const mi = xd->mi_8x8[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (plane_type != PLANE_TYPE_Y_WITH_DC ||
xd->lossless ||
is_inter_block(mbmi))
return DCT_DCT;
return mode2txfm_map[mbmi->sb_type < BLOCK_8X8 ?
mi->bmi[ib].as_mode : mbmi->mode];
}
static INLINE TX_TYPE get_tx_type_8x8(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
return plane_type == PLANE_TYPE_Y_WITH_DC ?
mode2txfm_map[xd->mi_8x8[0]->mbmi.mode] : DCT_DCT;
}
static INLINE TX_TYPE get_tx_type_16x16(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
return plane_type == PLANE_TYPE_Y_WITH_DC ?
mode2txfm_map[xd->mi_8x8[0]->mbmi.mode] : DCT_DCT;
}
static void setup_block_dptrs(MACROBLOCKD *xd, int ss_x, int ss_y) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].plane_type = i ? PLANE_TYPE_UV : PLANE_TYPE_Y_WITH_DC;
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
#if CONFIG_ALPHA
// TODO(jkoleszar): Using the Y w/h for now
xd->plane[3].subsampling_x = 0;
xd->plane[3].subsampling_y = 0;
#endif
}
static INLINE TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi) {
return MIN(mbmi->tx_size, max_uv_txsize_lookup[mbmi->sb_type]);
}
static BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd) {
BLOCK_SIZE bs = ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y];
assert(bs < BLOCK_SIZES);
return bs;
}
static INLINE int plane_block_width(BLOCK_SIZE bsize,
const struct macroblockd_plane* plane) {
return 4 << (b_width_log2(bsize) - plane->subsampling_x);
}
static INLINE int plane_block_height(BLOCK_SIZE bsize,
const struct macroblockd_plane* plane) {
return 4 << (b_height_log2(bsize) - plane->subsampling_y);
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size,
void *arg);
static INLINE void foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const MB_MODE_INFO* mbmi = &xd->mi_8x8[0]->mbmi;
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi)
: mbmi->tx_size;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int step = 1 << (tx_size << 1);
int i;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) {
int r, c;
int max_blocks_wide = num_4x4_w;
int max_blocks_high = num_4x4_h;
// xd->mb_to_right_edge is in units of pixels * 8. This converts
// it to 4x4 block sizes.
if (xd->mb_to_right_edge < 0)
max_blocks_wide += (xd->mb_to_right_edge >> (5 + pd->subsampling_x));
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += (xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
i = 0;
// Unlike the normal case - in here we have to keep track of the
// row and column of the blocks we use so that we know if we are in
// the unrestricted motion border.
for (r = 0; r < num_4x4_h; r += (1 << tx_size)) {
for (c = 0; c < num_4x4_w; c += (1 << tx_size)) {
if (r < max_blocks_high && c < max_blocks_wide)
visit(plane, i, plane_bsize, tx_size, arg);
i += step;
}
}
} else {
for (i = 0; i < num_4x4_w * num_4x4_h; i += step)
visit(plane, i, plane_bsize, tx_size, arg);
}
}
static INLINE void foreach_transformed_block(
const MACROBLOCKD* const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++)
foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
}
static INLINE void foreach_transformed_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++)
foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
}
static int raster_block_offset(BLOCK_SIZE plane_bsize,
int raster_block, int stride) {
const int bw = b_width_log2(plane_bsize);
const int y = 4 * (raster_block >> bw);
const int x = 4 * (raster_block & ((1 << bw) - 1));
return y * stride + x;
}
static int16_t* raster_block_offset_int16(BLOCK_SIZE plane_bsize,
int raster_block, int16_t *base) {
const int stride = 4 << b_width_log2(plane_bsize);
return base + raster_block_offset(plane_bsize, raster_block, stride);
}
static uint8_t* raster_block_offset_uint8(BLOCK_SIZE plane_bsize,
int raster_block, uint8_t *base,
int stride) {
return base + raster_block_offset(plane_bsize, raster_block, stride);
}
static int txfrm_block_to_raster_block(BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int block) {
const int bwl = b_width_log2(plane_bsize);
const int tx_cols_log2 = bwl - tx_size;
const int tx_cols = 1 << tx_cols_log2;
const int raster_mb = block >> (tx_size << 1);
const int x = (raster_mb & (tx_cols - 1)) << tx_size;
const int y = (raster_mb >> tx_cols_log2) << tx_size;
return x + (y << bwl);
}
static void txfrm_block_to_raster_xy(BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int block,
int *x, int *y) {
const int bwl = b_width_log2(plane_bsize);
const int tx_cols_log2 = bwl - tx_size;
const int tx_cols = 1 << tx_cols_log2;
const int raster_mb = block >> (tx_size << 1);
*x = (raster_mb & (tx_cols - 1)) << tx_size;
*y = (raster_mb >> tx_cols_log2) << tx_size;
}
static void extend_for_intra(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize,
int plane, int block, TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
uint8_t *const buf = pd->dst.buf;
const int stride = pd->dst.stride;
int x, y;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
x = x * 4 - 1;
y = y * 4 - 1;
// Copy a pixel into the umv if we are in a situation where the block size
// extends into the UMV.
// TODO(JBB): Should be able to do the full extend in place so we don't have
// to do this multiple times.
if (xd->mb_to_right_edge < 0) {
const int bw = 4 << b_width_log2(plane_bsize);
const int umv_border_start = bw + (xd->mb_to_right_edge >>
(3 + pd->subsampling_x));
if (x + bw > umv_border_start)
vpx_memset(&buf[y * stride + umv_border_start],
buf[y * stride + umv_border_start - 1], bw);
}
if (xd->mb_to_bottom_edge < 0) {
if (xd->left_available || x >= 0) {
const int bh = 4 << b_height_log2(plane_bsize);
const int umv_border_start =
bh + (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y));
if (y + bh > umv_border_start) {
const uint8_t c = buf[(umv_border_start - 1) * stride + x];
uint8_t *d = &buf[umv_border_start * stride + x];
int i;
for (i = 0; i < bh; ++i, d += stride)
*d = c;
}
}
}
}
static void set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int has_eob, int aoff, int loff) {
ENTROPY_CONTEXT *const a = pd->above_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_context + loff;
const int tx_size_in_blocks = 1 << tx_size;
// above
if (has_eob && xd->mb_to_right_edge < 0) {
int i;
const int blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize] +
(xd->mb_to_right_edge >> (5 + pd->subsampling_x));
int above_contexts = tx_size_in_blocks;
if (above_contexts + aoff > blocks_wide)
above_contexts = blocks_wide - aoff;
for (i = 0; i < above_contexts; ++i)
a[i] = has_eob;
for (i = above_contexts; i < tx_size_in_blocks; ++i)
a[i] = 0;
} else {
vpx_memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
int i;
const int blocks_high = num_4x4_blocks_high_lookup[plane_bsize] +
(xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
int left_contexts = tx_size_in_blocks;
if (left_contexts + loff > blocks_high)
left_contexts = blocks_high - loff;
for (i = 0; i < left_contexts; ++i)
l[i] = has_eob;
for (i = left_contexts; i < tx_size_in_blocks; ++i)
l[i] = 0;
} else {
vpx_memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks);
}
}
static int get_tx_eob(const struct segmentation *seg, int segment_id,
TX_SIZE tx_size) {
const int eob_max = 16 << (tx_size << 1);
return vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) ? 0 : eob_max;
}
#endif // VP9_COMMON_VP9_BLOCKD_H_