mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
650 lines
22 KiB
C++
650 lines
22 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is mozilla.org code.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Mozilla Corporation
|
|
*
|
|
* Contributor(s):
|
|
* Keith Schwarz <kschwarz@mozilla.com> (original author)
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/*
|
|
* A class used for intermediate representations of the -moz-transform property.
|
|
*/
|
|
|
|
#include "nsStyleTransformMatrix.h"
|
|
#include "nsAutoPtr.h"
|
|
#include "nsCSSValue.h"
|
|
#include "nsStyleContext.h"
|
|
#include "nsPresContext.h"
|
|
#include "nsRuleNode.h"
|
|
#include "nsCSSKeywords.h"
|
|
#include "nsMathUtils.h"
|
|
#include "CSSCalc.h"
|
|
#include "nsCSSStruct.h"
|
|
|
|
namespace css = mozilla::css;
|
|
|
|
/* Note on floating point precision: The transform matrix is an array
|
|
* of single precision 'float's, and so are most of the input values
|
|
* we get from the style system, but intermediate calculations
|
|
* involving angles need to be done in 'double'.
|
|
*/
|
|
|
|
/* Force small values to zero. We do this to avoid having sin(360deg)
|
|
* evaluate to a tiny but nonzero value.
|
|
*/
|
|
static double FlushToZero(double aVal)
|
|
{
|
|
if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON)
|
|
return 0.0f;
|
|
else
|
|
return aVal;
|
|
}
|
|
|
|
/* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is
|
|
* undefined or very large, SafeTangent returns a manageably large value
|
|
* of the correct sign.
|
|
*/
|
|
static double SafeTangent(double aTheta)
|
|
{
|
|
const double kEpsilon = 0.0001;
|
|
|
|
/* tan(theta) = sin(theta)/cos(theta); problems arise when
|
|
* cos(theta) is too close to zero. Limit cos(theta) to the
|
|
* range [-1, -epsilon] U [epsilon, 1].
|
|
*/
|
|
double sinTheta = sin(aTheta);
|
|
double cosTheta = cos(aTheta);
|
|
|
|
if (cosTheta >= 0 && cosTheta < kEpsilon)
|
|
cosTheta = kEpsilon;
|
|
else if (cosTheta < 0 && cosTheta >= -kEpsilon)
|
|
cosTheta = -kEpsilon;
|
|
|
|
return FlushToZero(sinTheta / cosTheta);
|
|
}
|
|
|
|
/* Constructor sets the data to the identity matrix. */
|
|
nsStyleTransformMatrix::nsStyleTransformMatrix()
|
|
{
|
|
SetToIdentity();
|
|
}
|
|
|
|
/* SetToIdentity just fills in the appropriate values. */
|
|
void nsStyleTransformMatrix::SetToIdentity()
|
|
{
|
|
/* Set the main matrix to the identity. */
|
|
mMain[0] = 1.0f;
|
|
mMain[1] = 0.0f;
|
|
mMain[2] = 0.0f;
|
|
mMain[3] = 1.0f;
|
|
mDelta[0] = 0;
|
|
mDelta[1] = 0;
|
|
|
|
/* Both translation matrices are zero. */
|
|
mX[0] = 0.0f;
|
|
mX[1] = 0.0f;
|
|
mY[0] = 0.0f;
|
|
mY[1] = 0.0f;
|
|
}
|
|
|
|
/* Adds the constant translation to the scale factor translation components. */
|
|
nscoord nsStyleTransformMatrix::GetXTranslation(const nsRect& aBounds) const
|
|
{
|
|
return NSToCoordRound(aBounds.width * mX[0] + aBounds.height * mY[0]) +
|
|
mDelta[0];
|
|
}
|
|
nscoord nsStyleTransformMatrix::GetYTranslation(const nsRect& aBounds) const
|
|
{
|
|
return NSToCoordRound(aBounds.width * mX[1] + aBounds.height * mY[1]) +
|
|
mDelta[1];
|
|
}
|
|
|
|
/* GetThebesMatrix converts the stored matrix in a few steps. */
|
|
gfxMatrix nsStyleTransformMatrix::GetThebesMatrix(const nsRect& aBounds,
|
|
float aScale) const
|
|
{
|
|
/* Compute the graphics matrix. We take the stored main elements, along with
|
|
* the delta, and add in the matrices:
|
|
*
|
|
* | 0 0 dx1|
|
|
* | 0 0 dx2| * width
|
|
* | 0 0 0|
|
|
*
|
|
* | 0 0 dy1|
|
|
* | 0 0 dy2| * height
|
|
* | 0 0 0|
|
|
*/
|
|
return gfxMatrix(mMain[0], mMain[1], mMain[2], mMain[3],
|
|
NSAppUnitsToFloatPixels(GetXTranslation(aBounds), aScale),
|
|
NSAppUnitsToFloatPixels(GetYTranslation(aBounds), aScale));
|
|
}
|
|
|
|
/* Performs the matrix multiplication necessary to multiply the two matrices,
|
|
* then hands back a reference to ourself.
|
|
*/
|
|
nsStyleTransformMatrix&
|
|
nsStyleTransformMatrix::operator *= (const nsStyleTransformMatrix &aOther)
|
|
{
|
|
/* We'll buffer all of our results into a temporary storage location
|
|
* during this operation since we don't want to overwrite the values of
|
|
* the old matrix with the values of the new.
|
|
*/
|
|
float newMatrix[4];
|
|
nscoord newDelta[2];
|
|
float newX[2];
|
|
float newY[2];
|
|
|
|
/* [this] [aOther]
|
|
* |a1 c1 e1| |a0 c0 e0| |a0a1 + b0c1 c0a1 + d0c1 e0a1 + f0c1 + e1|
|
|
* |b1 d1 f1|x|b0 d0 f0| = |a0b1 + b0d1 c0b1 + d0d1 e0b1 + f0d1 + f1|
|
|
* |0 0 1 | | 0 0 1| | 0 0 1|
|
|
*/
|
|
newMatrix[0] = aOther.mMain[0] * mMain[0] + aOther.mMain[1] * mMain[2];
|
|
newMatrix[1] = aOther.mMain[0] * mMain[1] + aOther.mMain[1] * mMain[3];
|
|
newMatrix[2] = aOther.mMain[2] * mMain[0] + aOther.mMain[3] * mMain[2];
|
|
newMatrix[3] = aOther.mMain[2] * mMain[1] + aOther.mMain[3] * mMain[3];
|
|
newDelta[0] = NSToCoordRound(aOther.mDelta[0] * mMain[0] +
|
|
aOther.mDelta[1] * mMain[2]) + mDelta[0];
|
|
newDelta[1] = NSToCoordRound(aOther.mDelta[0] * mMain[1] +
|
|
aOther.mDelta[1] * mMain[3]) + mDelta[1];
|
|
|
|
/* For consistent terminology, let u0, u1, v0, and v1 be the four transform
|
|
* coordinates from our matrix, and let x0, x1, y0, and y1 be the four
|
|
* transform coordinates from the other matrix. Then the new transform
|
|
* coordinates are:
|
|
*
|
|
* u0' = a1u0 + c1u1 + x0
|
|
* u1' = b1u0 + d1u1 + x1
|
|
* v0' = a1v0 + c1v1 + y0
|
|
* v1' = b1v0 + d1v1 + y1
|
|
*/
|
|
newX[0] = mMain[0] * aOther.mX[0] + mMain[2] * aOther.mX[1] + mX[0];
|
|
newX[1] = mMain[1] * aOther.mX[0] + mMain[3] * aOther.mX[1] + mX[1];
|
|
newY[0] = mMain[0] * aOther.mY[0] + mMain[2] * aOther.mY[1] + mY[0];
|
|
newY[1] = mMain[1] * aOther.mY[0] + mMain[3] * aOther.mY[1] + mY[1];
|
|
|
|
/* Now, write everything back in. */
|
|
for (PRInt32 index = 0; index < 4; ++index)
|
|
mMain[index] = newMatrix[index];
|
|
for (PRInt32 index = 0; index < 2; ++index) {
|
|
mDelta[index] = newDelta[index];
|
|
mX[index] = newX[index];
|
|
mY[index] = newY[index];
|
|
}
|
|
|
|
/* As promised, return a reference to ourselves. */
|
|
return *this;
|
|
}
|
|
|
|
/* op* is implemented in terms of op*=. */
|
|
const nsStyleTransformMatrix
|
|
nsStyleTransformMatrix::operator *(const nsStyleTransformMatrix &aOther) const
|
|
{
|
|
return nsStyleTransformMatrix(*this) *= aOther;
|
|
}
|
|
|
|
/* Helper function to fill in an nscoord with the specified nsCSSValue. */
|
|
static nscoord CalcLength(const nsCSSValue &aValue,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool &aCanStoreInRuleTree)
|
|
{
|
|
return nsRuleNode::CalcLength(aValue, aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
}
|
|
|
|
/* Helper function to process a matrix entry. */
|
|
static void ProcessMatrix(float aMain[4], nscoord aDelta[2],
|
|
float aX[2], float aY[2],
|
|
const nsCSSValue::Array* aData,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 7, "Invalid array!");
|
|
|
|
/* Take the first four elements out of the array as floats and store
|
|
* them in aMain.
|
|
*/
|
|
for (PRUint16 index = 1; index <= 4; ++index)
|
|
aMain[index - 1] = aData->Item(index).GetFloatValue();
|
|
|
|
/* For the fifth element, if it's a percentage, store it in aX[0].
|
|
* Otherwise, it's a length that needs to go in aDelta[0]
|
|
*/
|
|
if (aData->Item(5).GetUnit() == eCSSUnit_Percent)
|
|
aX[0] = aData->Item(5).GetPercentValue();
|
|
else
|
|
aDelta[0] = CalcLength(aData->Item(5), aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
|
|
/* For the final element, if it's a percentage, store it in aY[1].
|
|
* Otherwise, it's a length that needs to go in aDelta[1].
|
|
*/
|
|
if (aData->Item(6).GetUnit() == eCSSUnit_Percent)
|
|
aY[1] = aData->Item(6).GetPercentValue();
|
|
else
|
|
aDelta[1] = CalcLength(aData->Item(6), aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
}
|
|
|
|
struct LengthPercentPairCalcOps : public css::NumbersAlreadyNormalizedOps
|
|
{
|
|
struct result_type {
|
|
nscoord mLength;
|
|
float mPercent;
|
|
|
|
result_type(nscoord aLength, float aPercent)
|
|
: mLength(aLength), mPercent(aPercent) {}
|
|
};
|
|
|
|
LengthPercentPairCalcOps(nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
: mContext(aContext),
|
|
mPresContext(aPresContext),
|
|
mCanStoreInRuleTree(aCanStoreInRuleTree) {}
|
|
|
|
nsStyleContext* mContext;
|
|
nsPresContext* mPresContext;
|
|
PRBool& mCanStoreInRuleTree;
|
|
|
|
result_type ComputeLeafValue(const nsCSSValue& aValue)
|
|
{
|
|
if (aValue.GetUnit() == eCSSUnit_Percent) {
|
|
return result_type(0, aValue.GetPercentValue());
|
|
} else {
|
|
return result_type(CalcLength(aValue, mContext, mPresContext,
|
|
mCanStoreInRuleTree),
|
|
0.0f);
|
|
}
|
|
}
|
|
|
|
result_type
|
|
MergeAdditive(nsCSSUnit aCalcFunction,
|
|
result_type aValue1, result_type aValue2)
|
|
{
|
|
if (aCalcFunction == eCSSUnit_Calc_Plus) {
|
|
return result_type(NSCoordSaturatingAdd(aValue1.mLength,
|
|
aValue2.mLength),
|
|
aValue1.mPercent + aValue2.mPercent);
|
|
}
|
|
NS_ABORT_IF_FALSE(aCalcFunction == eCSSUnit_Calc_Minus,
|
|
"min() and max() are not allowed in calc() on "
|
|
"transform");
|
|
return result_type(NSCoordSaturatingSubtract(aValue1.mLength,
|
|
aValue2.mLength, 0),
|
|
aValue1.mPercent - aValue2.mPercent);
|
|
}
|
|
|
|
result_type
|
|
MergeMultiplicativeL(nsCSSUnit aCalcFunction,
|
|
float aValue1, result_type aValue2)
|
|
{
|
|
NS_ABORT_IF_FALSE(aCalcFunction == eCSSUnit_Calc_Times_L,
|
|
"unexpected unit");
|
|
return result_type(NSCoordSaturatingMultiply(aValue2.mLength, aValue1),
|
|
aValue1 * aValue2.mPercent);
|
|
}
|
|
|
|
result_type
|
|
MergeMultiplicativeR(nsCSSUnit aCalcFunction,
|
|
result_type aValue1, float aValue2)
|
|
{
|
|
NS_ABORT_IF_FALSE(aCalcFunction == eCSSUnit_Calc_Times_R ||
|
|
aCalcFunction == eCSSUnit_Calc_Divided,
|
|
"unexpected unit");
|
|
if (aCalcFunction == eCSSUnit_Calc_Divided) {
|
|
aValue2 = 1.0f / aValue2;
|
|
}
|
|
return result_type(NSCoordSaturatingMultiply(aValue1.mLength, aValue2),
|
|
aValue1.mPercent * aValue2);
|
|
}
|
|
|
|
};
|
|
|
|
static void ProcessTranslatePart(nscoord& aOffset, float& aPercent,
|
|
const nsCSSValue& aValue,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
{
|
|
if (aValue.GetUnit() == eCSSUnit_Percent) {
|
|
aPercent = aValue.GetPercentValue();
|
|
} else if (aValue.IsCalcUnit()) {
|
|
LengthPercentPairCalcOps ops(aContext, aPresContext, aCanStoreInRuleTree);
|
|
LengthPercentPairCalcOps::result_type result =
|
|
css::ComputeCalc(aValue, ops);
|
|
aPercent = result.mPercent;
|
|
aOffset = result.mLength;
|
|
} else {
|
|
aOffset = CalcLength(aValue, aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
}
|
|
}
|
|
|
|
/* Helper function to process a translatex function. */
|
|
static void ProcessTranslateX(nscoord aDelta[2], float aX[2],
|
|
const nsCSSValue::Array* aData,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
|
|
|
|
/* There are two cases. If we have a number, we want our matrix to look
|
|
* like this:
|
|
*
|
|
* | 1 0 dx|
|
|
* | 0 1 0|
|
|
* | 0 0 1|
|
|
* So E = value
|
|
*
|
|
* Otherwise, we might have a percentage, so we want to set the dX component
|
|
* to the percent.
|
|
*/
|
|
ProcessTranslatePart(aDelta[0], aX[0], aData->Item(1),
|
|
aContext, aPresContext, aCanStoreInRuleTree);
|
|
}
|
|
|
|
/* Helper function to process a translatey function. */
|
|
static void ProcessTranslateY(nscoord aDelta[2], float aY[2],
|
|
const nsCSSValue::Array* aData,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
|
|
|
|
/* There are two cases. If we have a number, we want our matrix to look
|
|
* like this:
|
|
*
|
|
* | 1 0 0|
|
|
* | 0 1 dy|
|
|
* | 0 0 1|
|
|
* So E = value
|
|
*
|
|
* Otherwise, we might have a percentage, so we want to set the dY component
|
|
* to the percent.
|
|
*/
|
|
ProcessTranslatePart(aDelta[1], aY[1], aData->Item(1),
|
|
aContext, aPresContext, aCanStoreInRuleTree);
|
|
}
|
|
|
|
/* Helper function to process a translate function. */
|
|
static void ProcessTranslate(nscoord aDelta[2], float aX[2], float aY[2],
|
|
const nsCSSValue::Array* aData,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Invalid array!");
|
|
|
|
/* There are several cases to consider.
|
|
* First, we might have one value, or we might have two. If we have
|
|
* two, we need to consider both dX and dY components.
|
|
* Next, the values might be lengths, or they might be percents. If they're
|
|
* percents, store them in the dX and dY components. Otherwise, store them in
|
|
* the main matrix.
|
|
*/
|
|
|
|
ProcessTranslatePart(aDelta[0], aX[0], aData->Item(1),
|
|
aContext, aPresContext, aCanStoreInRuleTree);
|
|
|
|
/* If we read in a Y component, set it appropriately */
|
|
if (aData->Count() == 3) {
|
|
ProcessTranslatePart(aDelta[1], aY[1], aData->Item(2),
|
|
aContext, aPresContext, aCanStoreInRuleTree);
|
|
}
|
|
}
|
|
|
|
/* Helper function to set up a scale matrix. */
|
|
static void ProcessScaleHelper(float aXScale, float aYScale, float aMain[4])
|
|
{
|
|
/* We want our matrix to look like this:
|
|
* | dx 0 0|
|
|
* | 0 dy 0|
|
|
* | 0 0 1|
|
|
* So A = value
|
|
*/
|
|
aMain[0] = aXScale;
|
|
aMain[3] = aYScale;
|
|
}
|
|
|
|
/* Process a scalex function. */
|
|
static void ProcessScaleX(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2, "Bad array!");
|
|
ProcessScaleHelper(aData->Item(1).GetFloatValue(), 1.0f, aMain);
|
|
}
|
|
|
|
/* Process a scaley function. */
|
|
static void ProcessScaleY(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2, "Bad array!");
|
|
ProcessScaleHelper(1.0f, aData->Item(1).GetFloatValue(), aMain);
|
|
}
|
|
|
|
/* Process a scale function. */
|
|
static void ProcessScale(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
|
|
/* We either have one element or two. If we have one, it's for both X and Y.
|
|
* Otherwise it's one for each.
|
|
*/
|
|
const nsCSSValue& scaleX = aData->Item(1);
|
|
const nsCSSValue& scaleY = (aData->Count() == 2 ? scaleX :
|
|
aData->Item(2));
|
|
|
|
ProcessScaleHelper(scaleX.GetFloatValue(),
|
|
scaleY.GetFloatValue(), aMain);
|
|
}
|
|
|
|
/* Helper function that, given a set of angles, constructs the appropriate
|
|
* skew matrix.
|
|
*/
|
|
static void ProcessSkewHelper(double aXAngle, double aYAngle, float aMain[4])
|
|
{
|
|
/* We want our matrix to look like this:
|
|
* | 1 tan(ThetaX) 0|
|
|
* | tan(ThetaY) 1 0|
|
|
* | 0 0 1|
|
|
* However, to avoid infinite values, we'll use the SafeTangent function
|
|
* instead of the C standard tan function.
|
|
*/
|
|
aMain[2] = SafeTangent(aXAngle);
|
|
aMain[1] = SafeTangent(aYAngle);
|
|
}
|
|
|
|
/* Function that converts a skewx transform into a matrix. */
|
|
static void ProcessSkewX(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_ASSERTION(aData->Count() == 2, "Bad array!");
|
|
ProcessSkewHelper(aData->Item(1).GetAngleValueInRadians(), 0.0, aMain);
|
|
}
|
|
|
|
/* Function that converts a skewy transform into a matrix. */
|
|
static void ProcessSkewY(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_ASSERTION(aData->Count() == 2, "Bad array!");
|
|
ProcessSkewHelper(0.0, aData->Item(1).GetAngleValueInRadians(), aMain);
|
|
}
|
|
|
|
/* Function that converts a skew transform into a matrix. */
|
|
static void ProcessSkew(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_ASSERTION(aData->Count() == 2 || aData->Count() == 3, "Bad array!");
|
|
|
|
double xSkew = aData->Item(1).GetAngleValueInRadians();
|
|
double ySkew = (aData->Count() == 2
|
|
? 0.0 : aData->Item(2).GetAngleValueInRadians());
|
|
|
|
ProcessSkewHelper(xSkew, ySkew, aMain);
|
|
}
|
|
|
|
/* Function that converts a rotate transform into a matrix. */
|
|
static void ProcessRotate(float aMain[4], const nsCSSValue::Array* aData)
|
|
{
|
|
NS_PRECONDITION(aData->Count() == 2, "Invalid array!");
|
|
|
|
/* We want our matrix to look like this:
|
|
* | cos(theta) -sin(theta) 0|
|
|
* | sin(theta) cos(theta) 0|
|
|
* | 0 0 1|
|
|
* (see http://www.w3.org/TR/SVG/coords.html#RotationDefined)
|
|
*/
|
|
double theta = aData->Item(1).GetAngleValueInRadians();
|
|
float cosTheta = FlushToZero(cos(theta));
|
|
float sinTheta = FlushToZero(sin(theta));
|
|
|
|
aMain[0] = cosTheta;
|
|
aMain[1] = sinTheta;
|
|
aMain[2] = -sinTheta;
|
|
aMain[3] = cosTheta;
|
|
}
|
|
|
|
/**
|
|
* SetToTransformFunction is essentially a giant switch statement that fans
|
|
* out to many smaller helper functions.
|
|
*/
|
|
void
|
|
nsStyleTransformMatrix::SetToTransformFunction(const nsCSSValue::Array * aData,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool& aCanStoreInRuleTree)
|
|
{
|
|
NS_PRECONDITION(aData, "Why did you want to get data from a null array?");
|
|
NS_PRECONDITION(aContext, "Need a context for unit conversion!");
|
|
NS_PRECONDITION(aPresContext, "Need a context for unit conversion!");
|
|
|
|
/* Reset the matrix to the identity so that each subfunction can just
|
|
* worry about its own components.
|
|
*/
|
|
SetToIdentity();
|
|
|
|
/* Get the keyword for the transform. */
|
|
nsAutoString keyword;
|
|
aData->Item(0).GetStringValue(keyword);
|
|
switch (nsCSSKeywords::LookupKeyword(keyword)) {
|
|
case eCSSKeyword_translatex:
|
|
ProcessTranslateX(mDelta, mX, aData, aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
break;
|
|
case eCSSKeyword_translatey:
|
|
ProcessTranslateY(mDelta, mY, aData, aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
break;
|
|
case eCSSKeyword_translate:
|
|
ProcessTranslate(mDelta, mX, mY, aData, aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
break;
|
|
case eCSSKeyword_scalex:
|
|
ProcessScaleX(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_scaley:
|
|
ProcessScaleY(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_scale:
|
|
ProcessScale(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_skewx:
|
|
ProcessSkewX(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_skewy:
|
|
ProcessSkewY(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_skew:
|
|
ProcessSkew(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_rotate:
|
|
ProcessRotate(mMain, aData);
|
|
break;
|
|
case eCSSKeyword_matrix:
|
|
ProcessMatrix(mMain, mDelta, mX, mY, aData, aContext, aPresContext,
|
|
aCanStoreInRuleTree);
|
|
break;
|
|
default:
|
|
NS_NOTREACHED("Unknown transform function!");
|
|
}
|
|
}
|
|
|
|
/* Given a -moz-transform token stream, accumulates them into an
|
|
* nsStyleTransformMatrix
|
|
*
|
|
* @param aList The nsCSSValueList of arrays to read into transform functions.
|
|
* @param aContext The style context to use for unit conversion.
|
|
* @param aPresContext The presentation context to use for unit conversion
|
|
* @param aCanStoreInRuleTree This is set to PR_FALSE if the value cannot be stored in the rule tree.
|
|
* @return An nsStyleTransformMatrix corresponding to the net transform.
|
|
*/
|
|
/* static */ nsStyleTransformMatrix
|
|
nsStyleTransformMatrix::ReadTransforms(const nsCSSValueList* aList,
|
|
nsStyleContext* aContext,
|
|
nsPresContext* aPresContext,
|
|
PRBool &aCanStoreInRuleTree)
|
|
{
|
|
nsStyleTransformMatrix result;
|
|
|
|
for (const nsCSSValueList* curr = aList; curr != nsnull; curr = curr->mNext) {
|
|
const nsCSSValue &currElem = curr->mValue;
|
|
NS_ASSERTION(currElem.GetUnit() == eCSSUnit_Function,
|
|
"Stream should consist solely of functions!");
|
|
NS_ASSERTION(currElem.GetArrayValue()->Count() >= 1,
|
|
"Incoming function is too short!");
|
|
|
|
/* Read in a single transform matrix, then accumulate it with the total. */
|
|
nsStyleTransformMatrix currMatrix;
|
|
currMatrix.SetToTransformFunction(currElem.GetArrayValue(), aContext,
|
|
aPresContext, aCanStoreInRuleTree);
|
|
result *= currMatrix;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Does an element-by-element comparison and returns whether or not the
|
|
* matrices are equal.
|
|
*/
|
|
PRBool
|
|
nsStyleTransformMatrix::operator ==(const nsStyleTransformMatrix &aOther) const
|
|
{
|
|
for (PRInt32 index = 0; index < 4; ++index)
|
|
if (mMain[index] != aOther.mMain[index])
|
|
return PR_FALSE;
|
|
|
|
for (PRInt32 index = 0; index < 2; ++index)
|
|
if (mDelta[index] != aOther.mDelta[index] ||
|
|
mX[index] != aOther.mX[index] ||
|
|
mY[index] != aOther.mY[index])
|
|
return PR_FALSE;
|
|
|
|
return PR_TRUE;
|
|
}
|