gecko/dom/bindings/BindingUtils.h
2014-07-03 13:05:03 +02:00

2931 lines
84 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* vim: set ts=2 sw=2 et tw=79: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_dom_BindingUtils_h__
#define mozilla_dom_BindingUtils_h__
#include "jsfriendapi.h"
#include "jswrapper.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/Alignment.h"
#include "mozilla/Array.h"
#include "mozilla/Assertions.h"
#include "mozilla/dom/BindingDeclarations.h"
#include "mozilla/dom/CallbackObject.h"
#include "mozilla/dom/DOMJSClass.h"
#include "mozilla/dom/DOMJSProxyHandler.h"
#include "mozilla/dom/Exceptions.h"
#include "mozilla/dom/NonRefcountedDOMObject.h"
#include "mozilla/dom/Nullable.h"
#include "mozilla/dom/RootedDictionary.h"
#include "mozilla/dom/workers/Workers.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/Likely.h"
#include "mozilla/MemoryReporting.h"
#include "nsCycleCollector.h"
#include "nsIXPConnect.h"
#include "MainThreadUtils.h"
#include "nsISupportsImpl.h"
#include "qsObjectHelper.h"
#include "xpcpublic.h"
#include "nsIVariant.h"
#include "pldhash.h" // For PLDHashOperator
#include "nsWrapperCacheInlines.h"
class nsIJSID;
class nsPIDOMWindow;
extern nsresult
xpc_qsUnwrapArgImpl(JSContext* cx, JS::Handle<JS::Value> v, const nsIID& iid, void** ppArg,
nsISupports** ppArgRef, JS::MutableHandle<JS::Value> vp);
namespace mozilla {
namespace dom {
template<typename DataType> class MozMap;
struct SelfRef
{
SelfRef() : ptr(nullptr) {}
explicit SelfRef(nsISupports *p) : ptr(p) {}
~SelfRef() { NS_IF_RELEASE(ptr); }
nsISupports* ptr;
};
/** Convert a jsval to an XPCOM pointer. */
template <class Interface, class StrongRefType>
inline nsresult
UnwrapArg(JSContext* cx, JS::Handle<JS::Value> v, Interface** ppArg,
StrongRefType** ppArgRef, JS::MutableHandle<JS::Value> vp)
{
nsISupports* argRef = *ppArgRef;
nsresult rv = xpc_qsUnwrapArgImpl(cx, v, NS_GET_TEMPLATE_IID(Interface),
reinterpret_cast<void**>(ppArg), &argRef,
vp);
*ppArgRef = static_cast<StrongRefType*>(argRef);
return rv;
}
inline const ErrNum
GetInvalidThisErrorForMethod(bool aSecurityError)
{
return aSecurityError ? MSG_METHOD_THIS_UNWRAPPING_DENIED :
MSG_METHOD_THIS_DOES_NOT_IMPLEMENT_INTERFACE;
}
inline const ErrNum
GetInvalidThisErrorForGetter(bool aSecurityError)
{
return aSecurityError ? MSG_GETTER_THIS_UNWRAPPING_DENIED :
MSG_GETTER_THIS_DOES_NOT_IMPLEMENT_INTERFACE;
}
inline const ErrNum
GetInvalidThisErrorForSetter(bool aSecurityError)
{
return aSecurityError ? MSG_SETTER_THIS_UNWRAPPING_DENIED :
MSG_SETTER_THIS_DOES_NOT_IMPLEMENT_INTERFACE;
}
bool
ThrowInvalidThis(JSContext* aCx, const JS::CallArgs& aArgs,
const ErrNum aErrorNumber,
const char* aInterfaceName);
bool
ThrowInvalidThis(JSContext* aCx, const JS::CallArgs& aArgs,
const ErrNum aErrorNumber,
prototypes::ID aProtoId);
inline bool
ThrowMethodFailedWithDetails(JSContext* cx, ErrorResult& rv,
const char* ifaceName,
const char* memberName,
bool reportJSContentExceptions = false)
{
if (rv.IsTypeError()) {
rv.ReportTypeError(cx);
return false;
}
if (rv.IsJSException()) {
if (reportJSContentExceptions) {
rv.ReportJSExceptionFromJSImplementation(cx);
} else {
rv.ReportJSException(cx);
}
return false;
}
if (rv.IsNotEnoughArgsError()) {
rv.ReportNotEnoughArgsError(cx, ifaceName, memberName);
return false;
}
return Throw(cx, rv.ErrorCode());
}
// Returns true if the JSClass is used for DOM objects.
inline bool
IsDOMClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMJSCLASS;
}
inline bool
IsDOMClass(const js::Class* clasp)
{
return IsDOMClass(Jsvalify(clasp));
}
// Return true if the JSClass is used for non-proxy DOM objects.
inline bool
IsNonProxyDOMClass(const js::Class* clasp)
{
return IsDOMClass(clasp) && !clasp->isProxy();
}
inline bool
IsNonProxyDOMClass(const JSClass* clasp)
{
return IsNonProxyDOMClass(js::Valueify(clasp));
}
// Returns true if the JSClass is used for DOM interface and interface
// prototype objects.
inline bool
IsDOMIfaceAndProtoClass(const JSClass* clasp)
{
return clasp->flags & JSCLASS_IS_DOMIFACEANDPROTOJSCLASS;
}
inline bool
IsDOMIfaceAndProtoClass(const js::Class* clasp)
{
return IsDOMIfaceAndProtoClass(Jsvalify(clasp));
}
static_assert(DOM_OBJECT_SLOT == js::PROXY_PRIVATE_SLOT,
"js::PROXY_PRIVATE_SLOT doesn't match DOM_OBJECT_SLOT. "
"Expect bad things");
template <class T>
inline T*
UnwrapDOMObject(JSObject* obj)
{
MOZ_ASSERT(IsDOMClass(js::GetObjectClass(obj)),
"Don't pass non-DOM objects to this function");
JS::Value val = js::GetReservedSlot(obj, DOM_OBJECT_SLOT);
return static_cast<T*>(val.toPrivate());
}
inline const DOMJSClass*
GetDOMClass(JSObject* obj)
{
const js::Class* clasp = js::GetObjectClass(obj);
if (IsDOMClass(clasp)) {
return DOMJSClass::FromJSClass(clasp);
}
return nullptr;
}
inline nsISupports*
UnwrapDOMObjectToISupports(JSObject* aObject)
{
const DOMJSClass* clasp = GetDOMClass(aObject);
if (!clasp || !clasp->mDOMObjectIsISupports) {
return nullptr;
}
return UnwrapDOMObject<nsISupports>(aObject);
}
inline bool
IsDOMObject(JSObject* obj)
{
return IsDOMClass(js::GetObjectClass(obj));
}
#define UNWRAP_OBJECT(Interface, obj, value) \
mozilla::dom::UnwrapObject<mozilla::dom::prototypes::id::Interface, \
mozilla::dom::Interface##Binding::NativeType>(obj, value)
// Some callers don't want to set an exception when unwrapping fails
// (for example, overload resolution uses unwrapping to tell what sort
// of thing it's looking at).
// U must be something that a T* can be assigned to (e.g. T* or an nsRefPtr<T>).
template <class T, typename U>
MOZ_ALWAYS_INLINE nsresult
UnwrapObject(JSObject* obj, U& value, prototypes::ID protoID,
uint32_t protoDepth)
{
/* First check to see whether we have a DOM object */
const DOMJSClass* domClass = GetDOMClass(obj);
if (!domClass) {
/* Maybe we have a security wrapper or outer window? */
if (!js::IsWrapper(obj)) {
/* Not a DOM object, not a wrapper, just bail */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
obj = js::CheckedUnwrap(obj, /* stopAtOuter = */ false);
if (!obj) {
return NS_ERROR_XPC_SECURITY_MANAGER_VETO;
}
MOZ_ASSERT(!js::IsWrapper(obj));
domClass = GetDOMClass(obj);
if (!domClass) {
/* We don't have a DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
}
/* This object is a DOM object. Double-check that it is safely
castable to T by checking whether it claims to inherit from the
class identified by protoID. */
if (domClass->mInterfaceChain[protoDepth] == protoID) {
value = UnwrapDOMObject<T>(obj);
return NS_OK;
}
/* It's the wrong sort of DOM object */
return NS_ERROR_XPC_BAD_CONVERT_JS;
}
template <prototypes::ID PrototypeID, class T, typename U>
MOZ_ALWAYS_INLINE nsresult
UnwrapObject(JSObject* obj, U& value)
{
return UnwrapObject<T>(obj, value, PrototypeID,
PrototypeTraits<PrototypeID>::Depth);
}
inline bool
IsNotDateOrRegExp(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_ASSERT(obj);
return !JS_ObjectIsDate(cx, obj) && !JS_ObjectIsRegExp(cx, obj);
}
MOZ_ALWAYS_INLINE bool
IsObjectValueConvertibleToDictionary(JSContext* cx,
JS::Handle<JS::Value> objVal)
{
JS::Rooted<JSObject*> obj(cx, &objVal.toObject());
return IsNotDateOrRegExp(cx, obj);
}
MOZ_ALWAYS_INLINE bool
IsConvertibleToDictionary(JSContext* cx, JS::Handle<JS::Value> val)
{
return val.isNullOrUndefined() ||
(val.isObject() && IsObjectValueConvertibleToDictionary(cx, val));
}
MOZ_ALWAYS_INLINE bool
IsConvertibleToCallbackInterface(JSContext* cx, JS::Handle<JSObject*> obj)
{
return IsNotDateOrRegExp(cx, obj);
}
// The items in the protoAndIfaceCache are indexed by the prototypes::id::ID and
// constructors::id::ID enums, in that order. The end of the prototype objects
// should be the start of the interface objects.
static_assert((size_t)constructors::id::_ID_Start ==
(size_t)prototypes::id::_ID_Count,
"Overlapping or discontiguous indexes.");
const size_t kProtoAndIfaceCacheCount = constructors::id::_ID_Count;
class ProtoAndIfaceCache
{
// The caching strategy we use depends on what sort of global we're dealing
// with. For a window-like global, we want everything to be as fast as
// possible, so we use a flat array, indexed by prototype/constructor ID.
// For everything else (e.g. globals for JSMs), space is more important than
// speed, so we use a two-level lookup table.
class ArrayCache : public Array<JS::Heap<JSObject*>, kProtoAndIfaceCacheCount>
{
public:
JSObject* EntrySlotIfExists(size_t i) {
return (*this)[i];
}
JS::Heap<JSObject*>& EntrySlotOrCreate(size_t i) {
return (*this)[i];
}
JS::Heap<JSObject*>& EntrySlotMustExist(size_t i) {
MOZ_ASSERT((*this)[i]);
return (*this)[i];
}
void Trace(JSTracer* aTracer) {
for (size_t i = 0; i < ArrayLength(*this); ++i) {
if ((*this)[i]) {
JS_CallHeapObjectTracer(aTracer, &(*this)[i], "protoAndIfaceCache[i]");
}
}
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
return aMallocSizeOf(this);
}
};
class PageTableCache
{
public:
PageTableCache() {
memset(&mPages, 0, sizeof(mPages));
}
~PageTableCache() {
for (size_t i = 0; i < ArrayLength(mPages); ++i) {
delete mPages[i];
}
}
JSObject* EntrySlotIfExists(size_t i) {
MOZ_ASSERT(i < kProtoAndIfaceCacheCount);
size_t pageIndex = i / kPageSize;
size_t leafIndex = i % kPageSize;
Page* p = mPages[pageIndex];
if (!p) {
return nullptr;
}
return (*p)[leafIndex];
}
JS::Heap<JSObject*>& EntrySlotOrCreate(size_t i) {
MOZ_ASSERT(i < kProtoAndIfaceCacheCount);
size_t pageIndex = i / kPageSize;
size_t leafIndex = i % kPageSize;
Page* p = mPages[pageIndex];
if (!p) {
p = new Page;
mPages[pageIndex] = p;
}
return (*p)[leafIndex];
}
JS::Heap<JSObject*>& EntrySlotMustExist(size_t i) {
MOZ_ASSERT(i < kProtoAndIfaceCacheCount);
size_t pageIndex = i / kPageSize;
size_t leafIndex = i % kPageSize;
Page* p = mPages[pageIndex];
MOZ_ASSERT(p);
return (*p)[leafIndex];
}
void Trace(JSTracer* trc) {
for (size_t i = 0; i < ArrayLength(mPages); ++i) {
Page* p = mPages[i];
if (p) {
for (size_t j = 0; j < ArrayLength(*p); ++j) {
if ((*p)[j]) {
JS_CallHeapObjectTracer(trc, &(*p)[j], "protoAndIfaceCache[i]");
}
}
}
}
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
size_t n = aMallocSizeOf(this);
for (size_t i = 0; i < ArrayLength(mPages); ++i) {
n += aMallocSizeOf(mPages[i]);
}
return n;
}
private:
static const size_t kPageSize = 16;
typedef Array<JS::Heap<JSObject*>, kPageSize> Page;
static const size_t kNPages = kProtoAndIfaceCacheCount / kPageSize +
size_t(bool(kProtoAndIfaceCacheCount % kPageSize));
Array<Page*, kNPages> mPages;
};
public:
enum Kind {
WindowLike,
NonWindowLike
};
ProtoAndIfaceCache(Kind aKind) : mKind(aKind) {
MOZ_COUNT_CTOR(ProtoAndIfaceCache);
if (aKind == WindowLike) {
mArrayCache = new ArrayCache();
} else {
mPageTableCache = new PageTableCache();
}
}
~ProtoAndIfaceCache() {
if (mKind == WindowLike) {
delete mArrayCache;
} else {
delete mPageTableCache;
}
MOZ_COUNT_DTOR(ProtoAndIfaceCache);
}
#define FORWARD_OPERATION(opName, args) \
do { \
if (mKind == WindowLike) { \
return mArrayCache->opName args; \
} else { \
return mPageTableCache->opName args; \
} \
} while(0)
JSObject* EntrySlotIfExists(size_t i) {
FORWARD_OPERATION(EntrySlotIfExists, (i));
}
JS::Heap<JSObject*>& EntrySlotOrCreate(size_t i) {
FORWARD_OPERATION(EntrySlotOrCreate, (i));
}
JS::Heap<JSObject*>& EntrySlotMustExist(size_t i) {
FORWARD_OPERATION(EntrySlotMustExist, (i));
}
void Trace(JSTracer *aTracer) {
FORWARD_OPERATION(Trace, (aTracer));
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) {
size_t n = aMallocSizeOf(this);
n += (mKind == WindowLike
? mArrayCache->SizeOfIncludingThis(aMallocSizeOf)
: mPageTableCache->SizeOfIncludingThis(aMallocSizeOf));
return n;
}
#undef FORWARD_OPERATION
private:
union {
ArrayCache *mArrayCache;
PageTableCache *mPageTableCache;
};
Kind mKind;
};
inline void
AllocateProtoAndIfaceCache(JSObject* obj, ProtoAndIfaceCache::Kind aKind)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
MOZ_ASSERT(js::GetReservedSlot(obj, DOM_PROTOTYPE_SLOT).isUndefined());
ProtoAndIfaceCache* protoAndIfaceCache = new ProtoAndIfaceCache(aKind);
js::SetReservedSlot(obj, DOM_PROTOTYPE_SLOT,
JS::PrivateValue(protoAndIfaceCache));
}
#ifdef DEBUG
void
VerifyTraceProtoAndIfaceCacheCalled(JSTracer *trc, void **thingp,
JSGCTraceKind kind);
struct VerifyTraceProtoAndIfaceCacheCalledTracer : public JSTracer
{
bool ok;
VerifyTraceProtoAndIfaceCacheCalledTracer(JSRuntime *rt)
: JSTracer(rt, VerifyTraceProtoAndIfaceCacheCalled), ok(false)
{}
};
#endif
inline void
TraceProtoAndIfaceCache(JSTracer* trc, JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
#ifdef DEBUG
if (trc->callback == VerifyTraceProtoAndIfaceCacheCalled) {
// We don't do anything here, we only want to verify that
// TraceProtoAndIfaceCache was called.
static_cast<VerifyTraceProtoAndIfaceCacheCalledTracer*>(trc)->ok = true;
return;
}
#endif
if (!HasProtoAndIfaceCache(obj))
return;
ProtoAndIfaceCache* protoAndIfaceCache = GetProtoAndIfaceCache(obj);
protoAndIfaceCache->Trace(trc);
}
inline void
DestroyProtoAndIfaceCache(JSObject* obj)
{
MOZ_ASSERT(js::GetObjectClass(obj)->flags & JSCLASS_DOM_GLOBAL);
ProtoAndIfaceCache* protoAndIfaceCache = GetProtoAndIfaceCache(obj);
delete protoAndIfaceCache;
}
/**
* Add constants to an object.
*/
bool
DefineConstants(JSContext* cx, JS::Handle<JSObject*> obj,
const ConstantSpec* cs);
struct JSNativeHolder
{
JSNative mNative;
const NativePropertyHooks* mPropertyHooks;
};
struct NamedConstructor
{
const char* mName;
const JSNativeHolder mHolder;
unsigned mNargs;
};
/*
* Create a DOM interface object (if constructorClass is non-null) and/or a
* DOM interface prototype object (if protoClass is non-null).
*
* global is used as the parent of the interface object and the interface
* prototype object
* protoProto is the prototype to use for the interface prototype object.
* interfaceProto is the prototype to use for the interface object.
* protoClass is the JSClass to use for the interface prototype object.
* This is null if we should not create an interface prototype
* object.
* protoCache a pointer to a JSObject pointer where we should cache the
* interface prototype object. This must be null if protoClass is and
* vice versa.
* constructorClass is the JSClass to use for the interface object.
* This is null if we should not create an interface object or
* if it should be a function object.
* constructor holds the JSNative to back the interface object which should be a
* Function, unless constructorClass is non-null in which case it is
* ignored. If this is null and constructorClass is also null then
* we should not create an interface object at all.
* ctorNargs is the length of the constructor function; 0 if no constructor
* constructorCache a pointer to a JSObject pointer where we should cache the
* interface object. This must be null if both constructorClass
* and constructor are null, and non-null otherwise.
* properties contains the methods, attributes and constants to be defined on
* objects in any compartment.
* chromeProperties contains the methods, attributes and constants to be defined
* on objects in chrome compartments. This must be null if the
* interface doesn't have any ChromeOnly properties or if the
* object is being created in non-chrome compartment.
* defineOnGlobal controls whether properties should be defined on the given
* global for the interface object (if any) and named
* constructors (if any) for this interface. This can be
* false in situations where we want the properties to only
* appear on privileged Xrays but not on the unprivileged
* underlying global.
*
* At least one of protoClass, constructorClass or constructor should be
* non-null. If constructorClass or constructor are non-null, the resulting
* interface object will be defined on the given global with property name
* |name|, which must also be non-null.
*/
void
CreateInterfaceObjects(JSContext* cx, JS::Handle<JSObject*> global,
JS::Handle<JSObject*> protoProto,
const JSClass* protoClass, JS::Heap<JSObject*>* protoCache,
JS::Handle<JSObject*> interfaceProto,
const JSClass* constructorClass, const JSNativeHolder* constructor,
unsigned ctorNargs, const NamedConstructor* namedConstructors,
JS::Heap<JSObject*>* constructorCache,
const NativeProperties* regularProperties,
const NativeProperties* chromeOnlyProperties,
const char* name, bool defineOnGlobal);
/**
* Define the properties (regular and chrome-only) on obj.
*
* obj the object to instal the properties on. This should be the interface
* prototype object for regular interfaces and the instance object for
* interfaces marked with Global.
* properties contains the methods, attributes and constants to be defined on
* objects in any compartment.
* chromeProperties contains the methods, attributes and constants to be defined
* on objects in chrome compartments. This must be null if the
* interface doesn't have any ChromeOnly properties or if the
* object is being created in non-chrome compartment.
*/
bool
DefineProperties(JSContext* cx, JS::Handle<JSObject*> obj,
const NativeProperties* properties,
const NativeProperties* chromeOnlyProperties);
/*
* Define the unforgeable attributes on an object.
*/
bool
DefineUnforgeableAttributes(JSContext* cx, JS::Handle<JSObject*> obj,
const Prefable<const JSPropertySpec>* props);
bool
DefineWebIDLBindingUnforgeablePropertiesOnXPCObject(JSContext* cx,
JS::Handle<JSObject*> obj,
const NativeProperties* properties);
bool
DefineWebIDLBindingPropertiesOnXPCObject(JSContext* cx,
JS::Handle<JSObject*> obj,
const NativeProperties* properties);
#ifdef _MSC_VER
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check(char (*)[(&V::_name == 0) + 1])
#else
#define HAS_MEMBER_CHECK(_name) \
template<typename V> static yes& Check(char (*)[sizeof(&V::_name) + 1])
#endif
#define HAS_MEMBER(_name) \
template<typename T> \
class Has##_name##Member { \
typedef char yes[1]; \
typedef char no[2]; \
HAS_MEMBER_CHECK(_name); \
template<typename V> static no& Check(...); \
\
public: \
static bool const Value = sizeof(Check<T>(nullptr)) == sizeof(yes); \
};
HAS_MEMBER(WrapObject)
// HasWrapObject<T>::Value will be true if T has a WrapObject member but it's
// not nsWrapperCache::WrapObject.
template<typename T>
struct HasWrapObject
{
private:
typedef char yes[1];
typedef char no[2];
typedef JSObject* (nsWrapperCache::*WrapObject)(JSContext*,
JS::Handle<JSObject*>);
template<typename U, U> struct SFINAE;
template <typename V> static no& Check(SFINAE<WrapObject, &V::WrapObject>*);
template <typename V> static yes& Check(...);
public:
static bool const Value = HasWrapObjectMember<T>::Value &&
sizeof(Check<T>(nullptr)) == sizeof(yes);
};
#ifdef DEBUG
template <class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct
CheckWrapperCacheCast
{
static bool Check()
{
return reinterpret_cast<uintptr_t>(
static_cast<nsWrapperCache*>(
reinterpret_cast<T*>(1))) == 1;
}
};
template <class T>
struct
CheckWrapperCacheCast<T, true>
{
static bool Check()
{
return true;
}
};
#endif
MOZ_ALWAYS_INLINE bool
CouldBeDOMBinding(void*)
{
return true;
}
MOZ_ALWAYS_INLINE bool
CouldBeDOMBinding(nsWrapperCache* aCache)
{
return aCache->IsDOMBinding();
}
inline bool
TryToOuterize(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
if (js::IsInnerObject(&rval.toObject())) {
JS::Rooted<JSObject*> obj(cx, &rval.toObject());
obj = JS_ObjectToOuterObject(cx, obj);
if (!obj) {
return false;
}
rval.set(JS::ObjectValue(*obj));
}
return true;
}
// Make sure to wrap the given string value into the right compartment, as
// needed.
MOZ_ALWAYS_INLINE
bool
MaybeWrapStringValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isString());
JSString* str = rval.toString();
if (JS::GetGCThingZone(str) != js::GetContextZone(cx)) {
return JS_WrapValue(cx, rval);
}
return true;
}
// Make sure to wrap the given object value into the right compartment as
// needed. This will work correctly, but possibly slowly, on all objects.
MOZ_ALWAYS_INLINE
bool
MaybeWrapObjectValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObject());
// Cross-compartment always requires wrapping.
JSObject* obj = &rval.toObject();
if (js::GetObjectCompartment(obj) != js::GetContextCompartment(cx)) {
return JS_WrapValue(cx, rval);
}
// We're same-compartment, but even then we might need to wrap
// objects specially. Check for that.
if (IsDOMObject(obj)) {
return TryToOuterize(cx, rval);
}
// It's not a WebIDL object. But it might be an XPConnect one, in which case
// we may need to outerize here, so make sure to call JS_WrapValue.
return JS_WrapValue(cx, rval);
}
// Like MaybeWrapObjectValue, but also allows null
MOZ_ALWAYS_INLINE
bool
MaybeWrapObjectOrNullValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObjectOrNull());
if (rval.isNull()) {
return true;
}
return MaybeWrapObjectValue(cx, rval);
}
// Wrapping for objects that are known to not be DOM or XPConnect objects
MOZ_ALWAYS_INLINE
bool
MaybeWrapNonDOMObjectValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObject());
MOZ_ASSERT(!GetDOMClass(&rval.toObject()));
MOZ_ASSERT(!(js::GetObjectClass(&rval.toObject())->flags &
JSCLASS_PRIVATE_IS_NSISUPPORTS));
JSObject* obj = &rval.toObject();
if (js::GetObjectCompartment(obj) == js::GetContextCompartment(cx)) {
return true;
}
return JS_WrapValue(cx, rval);
}
// Like MaybeWrapNonDOMObjectValue but allows null
MOZ_ALWAYS_INLINE
bool
MaybeWrapNonDOMObjectOrNullValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(rval.isObjectOrNull());
if (rval.isNull()) {
return true;
}
return MaybeWrapNonDOMObjectValue(cx, rval);
}
// If rval is a gcthing and is not in the compartment of cx, wrap rval
// into the compartment of cx (typically by replacing it with an Xray or
// cross-compartment wrapper around the original object).
MOZ_ALWAYS_INLINE bool
MaybeWrapValue(JSContext* cx, JS::MutableHandle<JS::Value> rval)
{
if (rval.isString()) {
return MaybeWrapStringValue(cx, rval);
}
if (!rval.isObject()) {
return true;
}
return MaybeWrapObjectValue(cx, rval);
}
// Create a JSObject wrapping "value", if there isn't one already, and store it
// in rval. "value" must be a concrete class that implements a
// GetWrapperPreserveColor() which can return its existing wrapper, if any, and
// a WrapObject() which will try to create a wrapper. Typically, this is done by
// having "value" inherit from nsWrapperCache.
template <class T>
MOZ_ALWAYS_INLINE bool
WrapNewBindingObject(JSContext* cx, T* value, JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(value);
JSObject* obj = value->GetWrapperPreserveColor();
// We can get rid of this when we remove support for hasXPConnectImpls.
bool couldBeDOMBinding = CouldBeDOMBinding(value);
if (obj) {
JS::ExposeObjectToActiveJS(obj);
} else {
// Inline this here while we have non-dom objects in wrapper caches.
if (!couldBeDOMBinding) {
return false;
}
obj = value->WrapObject(cx);
if (!obj) {
// At this point, obj is null, so just return false.
// Callers seem to be testing JS_IsExceptionPending(cx) to
// figure out whether WrapObject() threw.
return false;
}
}
#ifdef DEBUG
const DOMJSClass* clasp = GetDOMClass(obj);
// clasp can be null if the cache contained a non-DOM object.
if (clasp) {
// Some sanity asserts about our object. Specifically:
// 1) If our class claims we're nsISupports, we better be nsISupports
// XXXbz ideally, we could assert that reinterpret_cast to nsISupports
// does the right thing, but I don't see a way to do it. :(
// 2) If our class doesn't claim we're nsISupports we better be
// reinterpret_castable to nsWrapperCache.
MOZ_ASSERT(clasp, "What happened here?");
MOZ_ASSERT_IF(clasp->mDOMObjectIsISupports, (IsBaseOf<nsISupports, T>::value));
MOZ_ASSERT(CheckWrapperCacheCast<T>::Check());
}
#endif
rval.set(JS::ObjectValue(*obj));
bool sameCompartment =
js::GetObjectCompartment(obj) == js::GetContextCompartment(cx);
if (sameCompartment && couldBeDOMBinding) {
// We only need to outerize Window objects, so anything inheriting from
// nsGlobalWindow (which inherits from EventTarget itself).
return IsBaseOf<nsGlobalWindow, T>::value || IsSame<EventTarget, T>::value ?
TryToOuterize(cx, rval) : true;
}
return JS_WrapValue(cx, rval);
}
// Create a JSObject wrapping "value", for cases when "value" is a
// non-wrapper-cached object using WebIDL bindings. "value" must implement a
// WrapObject() method taking a JSContext and a scope.
template <class T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx,
JS::Handle<JSObject*> scopeArg,
T* value,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(value);
// We try to wrap in the compartment of the underlying object of "scope"
JS::Rooted<JSObject*> obj(cx);
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
// Maybe<Handle> doesn't so much work, and in any case, adding
// more Maybe (one for a Rooted and one for a Handle) adds more
// code (and branches!) than just adding a single rooted.
JS::Rooted<JSObject*> scope(cx, scopeArg);
if (js::IsWrapper(scope)) {
scope = js::CheckedUnwrap(scope, /* stopAtOuter = */ false);
if (!scope)
return false;
ac.construct(cx, scope);
}
MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx));
obj = value->WrapObject(cx);
}
if (!obj) {
return false;
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
rval.set(JS::ObjectValue(*obj));
return JS_WrapValue(cx, rval);
}
// Create a JSObject wrapping "value", for cases when "value" is a
// non-wrapper-cached owned object using WebIDL bindings. "value" must implement a
// WrapObject() method taking a JSContext, a scope, and a boolean outparam that
// is true if the JSObject took ownership
template <class T>
inline bool
WrapNewBindingNonWrapperCachedOwnedObject(JSContext* cx,
JS::Handle<JSObject*> scopeArg,
nsAutoPtr<T>& value,
JS::MutableHandle<JS::Value> rval)
{
// We do a runtime check on value, because otherwise we might in
// fact end up wrapping a null and invoking methods on it later.
if (!value) {
NS_RUNTIMEABORT("Don't try to wrap null objects");
}
// We try to wrap in the compartment of the underlying object of "scope"
JS::Rooted<JSObject*> obj(cx);
{
// scope for the JSAutoCompartment so that we restore the compartment
// before we call JS_WrapValue.
Maybe<JSAutoCompartment> ac;
// Maybe<Handle> doesn't so much work, and in any case, adding
// more Maybe (one for a Rooted and one for a Handle) adds more
// code (and branches!) than just adding a single rooted.
JS::Rooted<JSObject*> scope(cx, scopeArg);
if (js::IsWrapper(scope)) {
scope = js::CheckedUnwrap(scope, /* stopAtOuter = */ false);
if (!scope)
return false;
ac.construct(cx, scope);
}
bool tookOwnership = false;
MOZ_ASSERT(js::IsObjectInContextCompartment(scope, cx));
obj = value->WrapObject(cx, &tookOwnership);
MOZ_ASSERT_IF(obj, tookOwnership);
if (tookOwnership) {
value.forget();
}
}
if (!obj) {
return false;
}
// We can end up here in all sorts of compartments, per above. Make
// sure to JS_WrapValue!
rval.set(JS::ObjectValue(*obj));
return JS_WrapValue(cx, rval);
}
// Helper for smart pointers (nsAutoPtr/nsRefPtr/nsCOMPtr).
template <template <typename> class SmartPtr, typename T>
inline bool
WrapNewBindingNonWrapperCachedObject(JSContext* cx, JS::Handle<JSObject*> scope,
const SmartPtr<T>& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingNonWrapperCachedObject(cx, scope, value.get(), rval);
}
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
NativeInterface2JSObjectAndThrowIfFailed(JSContext* aCx,
JS::Handle<JSObject*> aScope,
JS::MutableHandle<JS::Value> aRetval,
xpcObjectHelper& aHelper,
const nsIID* aIID,
bool aAllowNativeWrapper);
/**
* A method to handle new-binding wrap failure, by possibly falling back to
* wrapping as a non-new-binding object.
*/
template <class T>
MOZ_ALWAYS_INLINE bool
HandleNewBindingWrappingFailure(JSContext* cx, JS::Handle<JSObject*> scope,
T* value, JS::MutableHandle<JS::Value> rval)
{
if (JS_IsExceptionPending(cx)) {
return false;
}
qsObjectHelper helper(value, GetWrapperCache(value));
return NativeInterface2JSObjectAndThrowIfFailed(cx, scope, rval,
helper, nullptr, true);
}
// Helper for calling HandleNewBindingWrappingFailure with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
HAS_MEMBER(get)
template <class T, bool isSmartPtr=HasgetMember<T>::Value>
struct HandleNewBindingWrappingFailureHelper
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope,
const T& value, JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailure(cx, scope, value.get(), rval);
}
};
template <class T>
struct HandleNewBindingWrappingFailureHelper<T, false>
{
static inline bool Wrap(JSContext* cx, JS::Handle<JSObject*> scope, T& value,
JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailure(cx, scope, &value, rval);
}
};
template<class T>
inline bool
HandleNewBindingWrappingFailure(JSContext* cx, JS::Handle<JSObject*> scope,
T& value, JS::MutableHandle<JS::Value> rval)
{
return HandleNewBindingWrappingFailureHelper<T>::Wrap(cx, scope, value, rval);
}
template<bool Fatal>
inline bool
EnumValueNotFound(JSContext* cx, JSString* str, const char* type,
const char* sourceDescription)
{
return false;
}
template<>
inline bool
EnumValueNotFound<false>(JSContext* cx, JSString* str, const char* type,
const char* sourceDescription)
{
// TODO: Log a warning to the console.
return true;
}
template<>
inline bool
EnumValueNotFound<true>(JSContext* cx, JSString* str, const char* type,
const char* sourceDescription)
{
JSAutoByteString deflated(cx, str);
if (!deflated) {
return false;
}
return ThrowErrorMessage(cx, MSG_INVALID_ENUM_VALUE, sourceDescription,
deflated.ptr(), type);
}
template<typename CharT>
inline int
FindEnumStringIndexImpl(const CharT* chars, size_t length, const EnumEntry* values)
{
int i = 0;
for (const EnumEntry* value = values; value->value; ++value, ++i) {
if (length != value->length) {
continue;
}
bool equal = true;
const char* val = value->value;
for (size_t j = 0; j != length; ++j) {
if (unsigned(val[j]) != unsigned(chars[j])) {
equal = false;
break;
}
}
if (equal) {
return i;
}
}
return -1;
}
template<bool InvalidValueFatal>
inline int
FindEnumStringIndex(JSContext* cx, JS::Handle<JS::Value> v, const EnumEntry* values,
const char* type, const char* sourceDescription, bool* ok)
{
// JS_StringEqualsAscii is slow as molasses, so don't use it here.
JSString* str = JS::ToString(cx, v);
if (!str) {
*ok = false;
return 0;
}
JS::Anchor<JSString*> anchor(str);
{
int index;
size_t length;
JS::AutoCheckCannotGC nogc;
if (js::StringHasLatin1Chars(str)) {
const JS::Latin1Char* chars = JS_GetLatin1StringCharsAndLength(cx, nogc, str,
&length);
if (!chars) {
*ok = false;
return 0;
}
index = FindEnumStringIndexImpl(chars, length, values);
} else {
const jschar* chars = JS_GetTwoByteStringCharsAndLength(cx, nogc, str,
&length);
if (!chars) {
*ok = false;
return 0;
}
index = FindEnumStringIndexImpl(chars, length, values);
}
if (index >= 0) {
*ok = true;
return index;
}
}
*ok = EnumValueNotFound<InvalidValueFatal>(cx, str, type, sourceDescription);
return -1;
}
inline nsWrapperCache*
GetWrapperCache(const ParentObject& aParentObject)
{
return aParentObject.mWrapperCache;
}
template<class T>
inline T*
GetParentPointer(T* aObject)
{
return aObject;
}
inline nsISupports*
GetParentPointer(const ParentObject& aObject)
{
return aObject.mObject;
}
template <typename T>
inline bool
GetUseXBLScope(T* aParentObject)
{
return false;
}
inline bool
GetUseXBLScope(const ParentObject& aParentObject)
{
return aParentObject.mUseXBLScope;
}
template<class T>
inline void
ClearWrapper(T* p, nsWrapperCache* cache)
{
cache->ClearWrapper();
}
template<class T>
inline void
ClearWrapper(T* p, void*)
{
nsWrapperCache* cache;
CallQueryInterface(p, &cache);
ClearWrapper(p, cache);
}
// Attempt to preserve the wrapper, if any, for a Paris DOM bindings object.
// Return true if we successfully preserved the wrapper, or there is no wrapper
// to preserve. In the latter case we don't need to preserve the wrapper, because
// the object can only be obtained by JS once, or they cannot be meaningfully
// owned from the native side.
//
// This operation will return false only for non-nsISupports cycle-collected
// objects, because we cannot determine if they are wrappercached or not.
bool
TryPreserveWrapper(JSObject* obj);
// Can only be called with a DOM JSClass.
bool
InstanceClassHasProtoAtDepth(const js::Class* clasp,
uint32_t protoID, uint32_t depth);
// Only set allowNativeWrapper to false if you really know you need it, if in
// doubt use true. Setting it to false disables security wrappers.
bool
XPCOMObjectToJsval(JSContext* cx, JS::Handle<JSObject*> scope,
xpcObjectHelper& helper, const nsIID* iid,
bool allowNativeWrapper, JS::MutableHandle<JS::Value> rval);
// Special-cased wrapping for variants
bool
VariantToJsval(JSContext* aCx, nsIVariant* aVariant,
JS::MutableHandle<JS::Value> aRetval);
// Wrap an object "p" which is not using WebIDL bindings yet. This _will_
// actually work on WebIDL binding objects that are wrappercached, but will be
// much slower than WrapNewBindingObject. "cache" must either be null or be the
// nsWrapperCache for "p".
template<class T>
inline bool
WrapObject(JSContext* cx, T* p, nsWrapperCache* cache, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
if (xpc_FastGetCachedWrapper(cx, cache, rval))
return true;
qsObjectHelper helper(p, cache);
JS::Rooted<JSObject*> scope(cx, JS::CurrentGlobalOrNull(cx));
return XPCOMObjectToJsval(cx, scope, helper, iid, true, rval);
}
// A specialization of the above for nsIVariant, because that needs to
// do something different.
template<>
inline bool
WrapObject<nsIVariant>(JSContext* cx, nsIVariant* p,
nsWrapperCache* cache, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
MOZ_ASSERT(iid);
MOZ_ASSERT(iid->Equals(NS_GET_IID(nsIVariant)));
return VariantToJsval(cx, p, rval);
}
// Wrap an object "p" which is not using WebIDL bindings yet. Just like the
// variant that takes an nsWrapperCache above, but will try to auto-derive the
// nsWrapperCache* from "p".
template<class T>
inline bool
WrapObject(JSContext* cx, T* p, const nsIID* iid,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, GetWrapperCache(p), iid, rval);
}
// Just like the WrapObject above, but without requiring you to pick which
// interface you're wrapping as. This should only be used for objects that have
// classinfo, for which it doesn't matter what IID is used to wrap.
template<class T>
inline bool
WrapObject(JSContext* cx, T* p, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, nullptr, rval);
}
// Helper to make it possible to wrap directly out of an nsCOMPtr
template<class T>
inline bool
WrapObject(JSContext* cx, const nsCOMPtr<T>& p,
const nsIID* iid, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p.get(), iid, rval);
}
// Helper to make it possible to wrap directly out of an nsCOMPtr
template<class T>
inline bool
WrapObject(JSContext* cx, const nsCOMPtr<T>& p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, nullptr, rval);
}
// Helper to make it possible to wrap directly out of an nsRefPtr
template<class T>
inline bool
WrapObject(JSContext* cx, const nsRefPtr<T>& p,
const nsIID* iid, JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p.get(), iid, rval);
}
// Helper to make it possible to wrap directly out of an nsRefPtr
template<class T>
inline bool
WrapObject(JSContext* cx, const nsRefPtr<T>& p,
JS::MutableHandle<JS::Value> rval)
{
return WrapObject(cx, p, nullptr, rval);
}
// Specialization to make it easy to use WrapObject in codegen.
template<>
inline bool
WrapObject<JSObject>(JSContext* cx, JSObject* p,
JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectOrNullValue(p));
return true;
}
inline bool
WrapObject(JSContext* cx, JSObject& p, JS::MutableHandle<JS::Value> rval)
{
rval.set(JS::ObjectValue(p));
return true;
}
// Given an object "p" that inherits from nsISupports, wrap it and return the
// result. Null is returned on wrapping failure. This is somewhat similar to
// WrapObject() above, but does NOT allow Xrays around the result, since we
// don't want those for our parent object.
template<typename T>
static inline JSObject*
WrapNativeISupportsParent(JSContext* cx, T* p, nsWrapperCache* cache)
{
qsObjectHelper helper(ToSupports(p), cache);
JS::Rooted<JSObject*> scope(cx, JS::CurrentGlobalOrNull(cx));
JS::Rooted<JS::Value> v(cx);
return XPCOMObjectToJsval(cx, scope, helper, nullptr, false, &v) ?
v.toObjectOrNull() :
nullptr;
}
// Fallback for when our parent is not a WebIDL binding object.
template<typename T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct WrapNativeParentFallback
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
return nullptr;
}
};
// Fallback for when our parent is not a WebIDL binding object but _is_ an
// nsISupports object.
template<typename T >
struct WrapNativeParentFallback<T, true >
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
return WrapNativeISupportsParent(cx, parent, cache);
}
};
// Wrapping of our native parent, for cases when it's a WebIDL object (though
// possibly preffed off).
template<typename T, bool hasWrapObject=HasWrapObject<T>::Value >
struct WrapNativeParentHelper
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
MOZ_ASSERT(cache);
JSObject* obj;
if ((obj = cache->GetWrapper())) {
return obj;
}
// Inline this here while we have non-dom objects in wrapper caches.
if (!CouldBeDOMBinding(parent)) {
obj = WrapNativeParentFallback<T>::Wrap(cx, parent, cache);
} else {
obj = parent->WrapObject(cx);
}
return obj;
}
};
// Wrapping of our native parent, for cases when it's not a WebIDL object. In
// this case it must be nsISupports.
template<typename T>
struct WrapNativeParentHelper<T, false >
{
static inline JSObject* Wrap(JSContext* cx, T* parent, nsWrapperCache* cache)
{
JSObject* obj;
if (cache && (obj = cache->GetWrapper())) {
#ifdef DEBUG
NS_ASSERTION(WrapNativeISupportsParent(cx, parent, cache) == obj,
"Unexpected object in nsWrapperCache");
#endif
return obj;
}
return WrapNativeISupportsParent(cx, parent, cache);
}
};
// Wrapping of our native parent.
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, T* p, nsWrapperCache* cache,
bool useXBLScope = false)
{
if (!p) {
return JS::CurrentGlobalOrNull(cx);
}
JSObject* parent = WrapNativeParentHelper<T>::Wrap(cx, p, cache);
if (!useXBLScope) {
return parent;
}
// If useXBLScope is true, it means that the canonical reflector for this
// native object should live in the content XBL scope. Note that we never put
// anonymous content inside an add-on scope.
if (xpc::IsInContentXBLScope(parent)) {
return parent;
}
JS::Rooted<JSObject*> rootedParent(cx, parent);
JS::Rooted<JSObject*> xblScope(cx, xpc::GetXBLScope(cx, rootedParent));
JSAutoCompartment ac(cx, xblScope);
if (NS_WARN_IF(!JS_WrapObject(cx, &rootedParent))) {
return nullptr;
}
return rootedParent;
}
// Wrapping of our native parent, when we don't want to explicitly pass in
// things like the nsWrapperCache for it.
template<typename T>
static inline JSObject*
WrapNativeParent(JSContext* cx, const T& p)
{
return WrapNativeParent(cx, GetParentPointer(p), GetWrapperCache(p), GetUseXBLScope(p));
}
// A way to differentiate between nodes, which use the parent object
// returned by native->GetParentObject(), and all other objects, which
// just use the parent's global.
static inline JSObject*
GetRealParentObject(void* aParent, JSObject* aParentObject)
{
return aParentObject ?
js::GetGlobalForObjectCrossCompartment(aParentObject) : nullptr;
}
static inline JSObject*
GetRealParentObject(Element* aParent, JSObject* aParentObject)
{
return aParentObject;
}
HAS_MEMBER(GetParentObject)
template<typename T, bool WrapperCached=HasGetParentObjectMember<T>::Value>
struct GetParentObject
{
static JSObject* Get(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_ASSERT(js::IsObjectInContextCompartment(obj, cx));
T* native = UnwrapDOMObject<T>(obj);
return
GetRealParentObject(native,
WrapNativeParent(cx, native->GetParentObject()));
}
};
template<typename T>
struct GetParentObject<T, false>
{
static JSObject* Get(JSContext* cx, JS::Handle<JSObject*> obj)
{
MOZ_CRASH();
return nullptr;
}
};
MOZ_ALWAYS_INLINE
JSObject* GetJSObjectFromCallback(CallbackObject* callback)
{
return callback->Callback();
}
MOZ_ALWAYS_INLINE
JSObject* GetJSObjectFromCallback(void* noncallback)
{
return nullptr;
}
template<typename T>
static inline JSObject*
WrapCallThisObject(JSContext* cx, const T& p)
{
// Callbacks are nsISupports, so WrapNativeParent will just happily wrap them
// up as an nsISupports XPCWrappedNative... which is not at all what we want.
// So we need to special-case them.
JS::Rooted<JSObject*> obj(cx, GetJSObjectFromCallback(p));
if (!obj) {
// WrapNativeParent is a bit of a Swiss army knife that will
// wrap anything for us.
obj = WrapNativeParent(cx, p);
if (!obj) {
return nullptr;
}
}
// But all that won't necessarily put things in the compartment of cx.
if (!JS_WrapObject(cx, &obj)) {
return nullptr;
}
return obj;
}
/*
* This specialized function simply wraps a JS::Rooted<> since
* WrapNativeParent() is not applicable for JS objects.
*/
template<>
inline JSObject*
WrapCallThisObject<JS::Rooted<JSObject*>>(JSContext* cx,
const JS::Rooted<JSObject*>& p)
{
JS::Rooted<JSObject*> obj(cx, p);
if (!JS_WrapObject(cx, &obj)) {
return nullptr;
}
return obj;
}
// Helper for calling WrapNewBindingObject with smart pointers
// (nsAutoPtr/nsRefPtr/nsCOMPtr) or references.
template <class T, bool isSmartPtr=HasgetMember<T>::Value>
struct WrapNewBindingObjectHelper
{
static inline bool Wrap(JSContext* cx, const T& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObject(cx, value.get(), rval);
}
};
template <class T>
struct WrapNewBindingObjectHelper<T, false>
{
static inline bool Wrap(JSContext* cx, T& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObject(cx, &value, rval);
}
};
template<class T>
inline bool
WrapNewBindingObject(JSContext* cx, T& value, JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObjectHelper<T>::Wrap(cx, value, rval);
}
// We need this version of WrapNewBindingObject for codegen, so it'll have the
// same signature as WrapNewBindingNonWrapperCachedObject and
// WrapNewBindingNonWrapperCachedOwnedObject, which still need the scope.
template<class T>
inline bool
WrapNewBindingObject(JSContext* cx, JS::Handle<JSObject*> scope, T& value,
JS::MutableHandle<JS::Value> rval)
{
return WrapNewBindingObject(cx, value, rval);
}
template <class T>
inline JSObject*
GetCallbackFromCallbackObject(T* aObj)
{
return aObj->Callback();
}
// Helper for getting the callback JSObject* of a smart ptr around a
// CallbackObject or a reference to a CallbackObject or something like
// that.
template <class T, bool isSmartPtr=HasgetMember<T>::Value>
struct GetCallbackFromCallbackObjectHelper
{
static inline JSObject* Get(const T& aObj)
{
return GetCallbackFromCallbackObject(aObj.get());
}
};
template <class T>
struct GetCallbackFromCallbackObjectHelper<T, false>
{
static inline JSObject* Get(T& aObj)
{
return GetCallbackFromCallbackObject(&aObj);
}
};
template<class T>
inline JSObject*
GetCallbackFromCallbackObject(T& aObj)
{
return GetCallbackFromCallbackObjectHelper<T>::Get(aObj);
}
static inline bool
InternJSString(JSContext* cx, jsid& id, const char* chars)
{
if (JSString *str = ::JS_InternString(cx, chars)) {
id = INTERNED_STRING_TO_JSID(cx, str);
return true;
}
return false;
}
// Spec needs a name property
template <typename Spec>
static bool
InitIds(JSContext* cx, const Prefable<Spec>* prefableSpecs, jsid* ids)
{
MOZ_ASSERT(prefableSpecs);
MOZ_ASSERT(prefableSpecs->specs);
do {
// We ignore whether the set of ids is enabled and just intern all the IDs,
// because this is only done once per application runtime.
Spec* spec = prefableSpecs->specs;
do {
if (!InternJSString(cx, *ids, spec->name)) {
return false;
}
} while (++ids, (++spec)->name);
// We ran out of ids for that pref. Put a JSID_VOID in on the id
// corresponding to the list terminator for the pref.
*ids = JSID_VOID;
++ids;
} while ((++prefableSpecs)->specs);
return true;
}
bool
QueryInterface(JSContext* cx, unsigned argc, JS::Value* vp);
template <class T>
struct
WantsQueryInterface
{
static_assert(IsBaseOf<nsISupports, T>::value,
"QueryInterface can't work without an nsISupports.");
static bool Enabled(JSContext* aCx, JSObject* aGlobal)
{
return NS_IsMainThread() && IsChromeOrXBL(aCx, aGlobal);
}
};
void
GetInterfaceImpl(JSContext* aCx, nsIInterfaceRequestor* aRequestor,
nsWrapperCache* aCache, nsIJSID* aIID,
JS::MutableHandle<JS::Value> aRetval, ErrorResult& aError);
template<class T>
void
GetInterface(JSContext* aCx, T* aThis, nsIJSID* aIID,
JS::MutableHandle<JS::Value> aRetval, ErrorResult& aError)
{
GetInterfaceImpl(aCx, aThis, aThis, aIID, aRetval, aError);
}
bool
ThrowingConstructor(JSContext* cx, unsigned argc, JS::Value* vp);
bool
ThrowConstructorWithoutNew(JSContext* cx, const char* name);
// vp is allowed to be null; in that case no get will be attempted,
// and *found will simply indicate whether the property exists.
bool
GetPropertyOnPrototype(JSContext* cx, JS::Handle<JSObject*> proxy,
JS::Handle<jsid> id, bool* found,
JS::Value* vp);
bool
HasPropertyOnPrototype(JSContext* cx, JS::Handle<JSObject*> proxy,
JS::Handle<jsid> id);
// Append the property names in "names" to "props". If
// shadowPrototypeProperties is false then skip properties that are also
// present on the proto chain of proxy. If shadowPrototypeProperties is true,
// then the "proxy" argument is ignored.
bool
AppendNamedPropertyIds(JSContext* cx, JS::Handle<JSObject*> proxy,
nsTArray<nsString>& names,
bool shadowPrototypeProperties, JS::AutoIdVector& props);
namespace binding_detail {
// A struct that has the same layout as an nsString but much faster
// constructor and destructor behavior. FakeString uses inline storage
// for small strings and a nsStringBuffer for longer strings.
struct FakeString {
FakeString() :
mFlags(nsString::F_TERMINATED)
{
}
~FakeString() {
if (mFlags & nsString::F_SHARED) {
nsStringBuffer::FromData(mData)->Release();
}
}
void Rebind(const nsString::char_type* aData, nsString::size_type aLength) {
MOZ_ASSERT(mFlags == nsString::F_TERMINATED);
mData = const_cast<nsString::char_type*>(aData);
mLength = aLength;
}
void Truncate() {
MOZ_ASSERT(mFlags == nsString::F_TERMINATED);
mData = nsString::char_traits::sEmptyBuffer;
mLength = 0;
}
void SetIsVoid(bool aValue) {
MOZ_ASSERT(aValue,
"We don't support SetIsVoid(false) on FakeString!");
Truncate();
mFlags |= nsString::F_VOIDED;
}
const nsString::char_type* Data() const
{
return mData;
}
nsString::char_type* BeginWriting()
{
return mData;
}
nsString::size_type Length() const
{
return mLength;
}
// Reserve space to write aCapacity chars, including null-terminator.
// Caller is responsible for calling SetLength and writing the null-
// terminator.
bool SetCapacity(nsString::size_type aCapacity, mozilla::fallible_t const&) {
MOZ_ASSERT(aCapacity > 0, "Capacity must include null-terminator");
// Use mInlineStorage for small strings.
if (aCapacity <= sInlineCapacity) {
SetData(mInlineStorage);
return true;
}
nsRefPtr<nsStringBuffer> buf = nsStringBuffer::Alloc(aCapacity * sizeof(nsString::char_type));
if (MOZ_UNLIKELY(!buf)) {
return false;
}
SetData(static_cast<nsString::char_type*>(buf.forget().take()->Data()));
mFlags = nsString::F_SHARED | nsString::F_TERMINATED;
return true;
}
void SetLength(nsString::size_type aLength) {
mLength = aLength;
}
// If this ever changes, change the corresponding code in the
// Optional<nsAString> specialization as well.
const nsAString* ToAStringPtr() const {
return reinterpret_cast<const nsString*>(this);
}
nsAString* ToAStringPtr() {
return reinterpret_cast<nsString*>(this);
}
operator const nsAString& () const {
return *reinterpret_cast<const nsString*>(this);
}
private:
nsString::char_type* mData;
nsString::size_type mLength;
uint32_t mFlags;
static const size_t sInlineCapacity = 64;
nsString::char_type mInlineStorage[sInlineCapacity];
FakeString(const FakeString& other) MOZ_DELETE;
void operator=(const FakeString& other) MOZ_DELETE;
void SetData(nsString::char_type* aData) {
MOZ_ASSERT(mFlags == nsString::F_TERMINATED);
mData = const_cast<nsString::char_type*>(aData);
}
// A class to use for our static asserts to ensure our object layout
// matches that of nsString.
class StringAsserter;
friend class StringAsserter;
class StringAsserter : public nsString {
public:
static void StaticAsserts() {
static_assert(offsetof(FakeString, mInlineStorage) ==
sizeof(nsString),
"FakeString should include all nsString members");
static_assert(offsetof(FakeString, mData) ==
offsetof(StringAsserter, mData),
"Offset of mData should match");
static_assert(offsetof(FakeString, mLength) ==
offsetof(StringAsserter, mLength),
"Offset of mLength should match");
static_assert(offsetof(FakeString, mFlags) ==
offsetof(StringAsserter, mFlags),
"Offset of mFlags should match");
}
};
};
template<typename T>
inline bool
AssignJSString(JSContext *cx, T &dest, JSString *s)
{
size_t len = js::GetStringLength(s);
static_assert(js::MaxStringLength < (1 << 28),
"Shouldn't overflow here or in FakeString::SetCapacity");
if (MOZ_UNLIKELY(!dest.SetCapacity(len + 1, mozilla::fallible_t()))) {
JS_ReportOutOfMemory(cx);
return false;
}
if (MOZ_UNLIKELY(!js::CopyStringChars(cx, dest.BeginWriting(), s, len))) {
return false;
}
dest.BeginWriting()[len] = '\0';
dest.SetLength(len);
return true;
}
} // namespace binding_detail
enum StringificationBehavior {
eStringify,
eEmpty,
eNull
};
template<typename T>
static inline bool
ConvertJSValueToString(JSContext* cx, JS::Handle<JS::Value> v,
StringificationBehavior nullBehavior,
StringificationBehavior undefinedBehavior,
T& result)
{
JSString *s;
if (v.isString()) {
s = v.toString();
} else {
StringificationBehavior behavior;
if (v.isNull()) {
behavior = nullBehavior;
} else if (v.isUndefined()) {
behavior = undefinedBehavior;
} else {
behavior = eStringify;
}
if (behavior != eStringify) {
if (behavior == eEmpty) {
result.Truncate();
} else {
result.SetIsVoid(true);
}
return true;
}
s = JS::ToString(cx, v);
if (!s) {
return false;
}
}
return binding_detail::AssignJSString(cx, result, s);
}
bool
ConvertJSValueToByteString(JSContext* cx, JS::Handle<JS::Value> v,
bool nullable, nsACString& result);
template<typename T>
void DoTraceSequence(JSTracer* trc, FallibleTArray<T>& seq);
template<typename T>
void DoTraceSequence(JSTracer* trc, InfallibleTArray<T>& seq);
// Class for simple sequence arguments, only used internally by codegen.
namespace binding_detail {
template<typename T>
class AutoSequence : public AutoFallibleTArray<T, 16>
{
public:
AutoSequence() : AutoFallibleTArray<T, 16>()
{}
// Allow converting to const sequences as needed
operator const Sequence<T>&() const {
return *reinterpret_cast<const Sequence<T>*>(this);
}
};
} // namespace binding_detail
// Class used to trace sequences, with specializations for various
// sequence types.
template<typename T,
bool isDictionary=IsBaseOf<DictionaryBase, T>::value,
bool isTypedArray=IsBaseOf<AllTypedArraysBase, T>::value,
bool isOwningUnion=IsBaseOf<AllOwningUnionBase, T>::value>
class SequenceTracer
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
};
// sequence<object> or sequence<object?>
template<>
class SequenceTracer<JSObject*, false, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, JSObject** objp, JSObject** end) {
for (; objp != end; ++objp) {
JS_CallObjectTracer(trc, objp, "sequence<object>");
}
}
};
// sequence<any>
template<>
class SequenceTracer<JS::Value, false, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, JS::Value* valp, JS::Value* end) {
for (; valp != end; ++valp) {
JS_CallValueTracer(trc, valp, "sequence<any>");
}
}
};
// sequence<sequence<T>>
template<typename T>
class SequenceTracer<Sequence<T>, false, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, Sequence<T>* seqp, Sequence<T>* end) {
for (; seqp != end; ++seqp) {
DoTraceSequence(trc, *seqp);
}
}
};
// sequence<sequence<T>> as return value
template<typename T>
class SequenceTracer<nsTArray<T>, false, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, nsTArray<T>* seqp, nsTArray<T>* end) {
for (; seqp != end; ++seqp) {
DoTraceSequence(trc, *seqp);
}
}
};
// sequence<someDictionary>
template<typename T>
class SequenceTracer<T, true, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* dictp, T* end) {
for (; dictp != end; ++dictp) {
dictp->TraceDictionary(trc);
}
}
};
// sequence<SomeTypedArray>
template<typename T>
class SequenceTracer<T, false, true, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* arrayp, T* end) {
for (; arrayp != end; ++arrayp) {
arrayp->TraceSelf(trc);
}
}
};
// sequence<SomeOwningUnion>
template<typename T>
class SequenceTracer<T, false, false, true>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, T* arrayp, T* end) {
for (; arrayp != end; ++arrayp) {
arrayp->TraceUnion(trc);
}
}
};
// sequence<T?> with T? being a Nullable<T>
template<typename T>
class SequenceTracer<Nullable<T>, false, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, Nullable<T>* seqp,
Nullable<T>* end) {
for (; seqp != end; ++seqp) {
if (!seqp->IsNull()) {
// Pretend like we actually have a length-one sequence here so
// we can do template instantiation correctly for T.
T& val = seqp->Value();
T* ptr = &val;
SequenceTracer<T>::TraceSequence(trc, ptr, ptr+1);
}
}
}
};
// XXXbz It's not clear whether it's better to add a pldhash dependency here
// (for PLDHashOperator) or add a BindingUtils.h dependency (for
// SequenceTracer) to MozMap.h...
template<typename T>
static PLDHashOperator
TraceMozMapValue(T* aValue, void* aClosure)
{
JSTracer* trc = static_cast<JSTracer*>(aClosure);
// Act like it's a one-element sequence to leverage all that infrastructure.
SequenceTracer<T>::TraceSequence(trc, aValue, aValue + 1);
return PL_DHASH_NEXT;
}
template<typename T>
void TraceMozMap(JSTracer* trc, MozMap<T>& map)
{
map.EnumerateValues(TraceMozMapValue<T>, trc);
}
// sequence<MozMap>
template<typename T>
class SequenceTracer<MozMap<T>, false, false, false>
{
explicit SequenceTracer() MOZ_DELETE; // Should never be instantiated
public:
static void TraceSequence(JSTracer* trc, MozMap<T>* seqp, MozMap<T>* end) {
for (; seqp != end; ++seqp) {
seqp->EnumerateValues(TraceMozMapValue<T>, trc);
}
}
};
template<typename T>
void DoTraceSequence(JSTracer* trc, FallibleTArray<T>& seq)
{
SequenceTracer<T>::TraceSequence(trc, seq.Elements(),
seq.Elements() + seq.Length());
}
template<typename T>
void DoTraceSequence(JSTracer* trc, InfallibleTArray<T>& seq)
{
SequenceTracer<T>::TraceSequence(trc, seq.Elements(),
seq.Elements() + seq.Length());
}
// Rooter class for sequences; this is what we mostly use in the codegen
template<typename T>
class MOZ_STACK_CLASS SequenceRooter : private JS::CustomAutoRooter
{
public:
SequenceRooter(JSContext *aCx, FallibleTArray<T>* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mFallibleArray(aSequence),
mSequenceType(eFallibleArray)
{
}
SequenceRooter(JSContext *aCx, InfallibleTArray<T>* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mInfallibleArray(aSequence),
mSequenceType(eInfallibleArray)
{
}
SequenceRooter(JSContext *aCx, Nullable<nsTArray<T> >* aSequence
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mNullableArray(aSequence),
mSequenceType(eNullableArray)
{
}
private:
enum SequenceType {
eInfallibleArray,
eFallibleArray,
eNullableArray
};
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
if (mSequenceType == eFallibleArray) {
DoTraceSequence(trc, *mFallibleArray);
} else if (mSequenceType == eInfallibleArray) {
DoTraceSequence(trc, *mInfallibleArray);
} else {
MOZ_ASSERT(mSequenceType == eNullableArray);
if (!mNullableArray->IsNull()) {
DoTraceSequence(trc, mNullableArray->Value());
}
}
}
union {
InfallibleTArray<T>* mInfallibleArray;
FallibleTArray<T>* mFallibleArray;
Nullable<nsTArray<T> >* mNullableArray;
};
SequenceType mSequenceType;
};
// Rooter class for MozMap; this is what we mostly use in the codegen.
template<typename T>
class MOZ_STACK_CLASS MozMapRooter : private JS::CustomAutoRooter
{
public:
MozMapRooter(JSContext *aCx, MozMap<T>* aMozMap
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mMozMap(aMozMap),
mMozMapType(eMozMap)
{
}
MozMapRooter(JSContext *aCx, Nullable<MozMap<T>>* aMozMap
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: JS::CustomAutoRooter(aCx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT),
mNullableMozMap(aMozMap),
mMozMapType(eNullableMozMap)
{
}
private:
enum MozMapType {
eMozMap,
eNullableMozMap
};
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
if (mMozMapType == eMozMap) {
TraceMozMap(trc, *mMozMap);
} else {
MOZ_ASSERT(mMozMapType == eNullableMozMap);
if (!mNullableMozMap->IsNull()) {
TraceMozMap(trc, mNullableMozMap->Value());
}
}
}
union {
MozMap<T>* mMozMap;
Nullable<MozMap<T>>* mNullableMozMap;
};
MozMapType mMozMapType;
};
template<typename T>
class MOZ_STACK_CLASS RootedUnion : public T,
private JS::CustomAutoRooter
{
public:
RootedUnion(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) :
T(),
JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT)
{
}
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
this->TraceUnion(trc);
}
};
template<typename T>
class MOZ_STACK_CLASS NullableRootedUnion : public Nullable<T>,
private JS::CustomAutoRooter
{
public:
NullableRootedUnion(JSContext* cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM) :
Nullable<T>(),
JS::CustomAutoRooter(cx MOZ_GUARD_OBJECT_NOTIFIER_PARAM_TO_PARENT)
{
}
virtual void trace(JSTracer *trc) MOZ_OVERRIDE
{
if (!this->IsNull()) {
this->Value().TraceUnion(trc);
}
}
};
inline bool
IdEquals(jsid id, const char* string)
{
return JSID_IS_STRING(id) &&
JS_FlatStringEqualsAscii(JSID_TO_FLAT_STRING(id), string);
}
inline bool
AddStringToIDVector(JSContext* cx, JS::AutoIdVector& vector, const char* name)
{
return vector.growBy(1) &&
InternJSString(cx, *(vector[vector.length() - 1]).address(), name);
}
// Implementation of the bits that XrayWrapper needs
/**
* This resolves indexed or named properties of obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveOwnProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
JS::Handle<jsid> id,
JS::MutableHandle<JSPropertyDescriptor> desc);
/**
* This resolves operations, attributes and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
*/
bool
XrayResolveNativeProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
JS::Handle<jsid> id, JS::MutableHandle<JSPropertyDescriptor> desc);
/**
* Define a property on obj through an Xray wrapper.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* defined will be set to true if a property was set as a result of this call.
*/
bool
XrayDefineProperty(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj, JS::Handle<jsid> id,
JS::MutableHandle<JSPropertyDescriptor> desc, bool* defined);
/**
* This enumerates indexed or named properties of obj and operations, attributes
* and constants of the interfaces for obj.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* flags are JSITER_* flags.
*/
bool
XrayEnumerateProperties(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj,
unsigned flags, JS::AutoIdVector& props);
extern NativePropertyHooks sWorkerNativePropertyHooks;
// We use one constructor JSNative to represent all DOM interface objects (so
// we can easily detect when we need to wrap them in an Xray wrapper). We store
// the real JSNative in the mNative member of a JSNativeHolder in the
// CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT slot of the JSFunction object for a
// specific interface object. We also store the NativeProperties in the
// JSNativeHolder.
// Note that some interface objects are not yet a JSFunction but a normal
// JSObject with a DOMJSClass, those do not use these slots.
enum {
CONSTRUCTOR_NATIVE_HOLDER_RESERVED_SLOT = 0
};
bool
Constructor(JSContext* cx, unsigned argc, JS::Value* vp);
inline bool
UseDOMXray(JSObject* obj)
{
const js::Class* clasp = js::GetObjectClass(obj);
return IsDOMClass(clasp) ||
JS_IsNativeFunction(obj, Constructor) ||
IsDOMIfaceAndProtoClass(clasp);
}
#ifdef DEBUG
inline bool
HasConstructor(JSObject* obj)
{
return JS_IsNativeFunction(obj, Constructor) ||
js::GetObjectClass(obj)->construct;
}
#endif
// Transfer reference in ptr to smartPtr.
template<class T>
inline void
Take(nsRefPtr<T>& smartPtr, T* ptr)
{
smartPtr = dont_AddRef(ptr);
}
// Transfer ownership of ptr to smartPtr.
template<class T>
inline void
Take(nsAutoPtr<T>& smartPtr, T* ptr)
{
smartPtr = ptr;
}
inline void
MustInheritFromNonRefcountedDOMObject(NonRefcountedDOMObject*)
{
}
/**
* This creates a JSString containing the value that the toString function for
* obj should create according to the WebIDL specification, ignoring any
* modifications by script. The value is prefixed with pre and postfixed with
* post, unless this is called for an object that has a stringifier. It is
* specifically for use by Xray code.
*
* wrapper is the Xray JS object.
* obj is the target object of the Xray, a binding's instance object or a
* interface or interface prototype object.
* pre is a string that should be prefixed to the value.
* post is a string that should be prefixed to the value.
* v contains the JSString for the value if the function returns true.
*/
bool
NativeToString(JSContext* cx, JS::Handle<JSObject*> wrapper,
JS::Handle<JSObject*> obj, const char* pre,
const char* post,
JS::MutableHandle<JS::Value> v);
HAS_MEMBER(JSBindingFinalized)
template<class T, bool hasCallback=HasJSBindingFinalizedMember<T>::Value>
struct JSBindingFinalized
{
static void Finalized(T* self)
{
}
};
template<class T>
struct JSBindingFinalized<T, true>
{
static void Finalized(T* self)
{
self->JSBindingFinalized();
}
};
// Helpers for creating a const version of a type.
template<typename T>
const T& Constify(T& arg)
{
return arg;
}
// Helper for turning (Owning)NonNull<T> into T&
template<typename T>
T& NonNullHelper(T& aArg)
{
return aArg;
}
template<typename T>
T& NonNullHelper(NonNull<T>& aArg)
{
return aArg;
}
template<typename T>
const T& NonNullHelper(const NonNull<T>& aArg)
{
return aArg;
}
template<typename T>
T& NonNullHelper(OwningNonNull<T>& aArg)
{
return aArg;
}
template<typename T>
const T& NonNullHelper(const OwningNonNull<T>& aArg)
{
return aArg;
}
inline
void NonNullHelper(NonNull<binding_detail::FakeString>& aArg)
{
// This overload is here to make sure that we never end up applying
// NonNullHelper to a NonNull<binding_detail::FakeString>. If we
// try to, it should fail to compile, since presumably the caller will try to
// use our nonexistent return value.
}
inline
void NonNullHelper(const NonNull<binding_detail::FakeString>& aArg)
{
// This overload is here to make sure that we never end up applying
// NonNullHelper to a NonNull<binding_detail::FakeString>. If we
// try to, it should fail to compile, since presumably the caller will try to
// use our nonexistent return value.
}
inline
void NonNullHelper(binding_detail::FakeString& aArg)
{
// This overload is here to make sure that we never end up applying
// NonNullHelper to a FakeString before we've constified it. If we
// try to, it should fail to compile, since presumably the caller will try to
// use our nonexistent return value.
}
MOZ_ALWAYS_INLINE
const nsAString& NonNullHelper(const binding_detail::FakeString& aArg)
{
return aArg;
}
// Reparent the wrapper of aObj to whatever its native now thinks its
// parent should be.
nsresult
ReparentWrapper(JSContext* aCx, JS::Handle<JSObject*> aObj);
/**
* Used to implement the hasInstance hook of an interface object.
*
* instance should not be a security wrapper.
*/
bool
InterfaceHasInstance(JSContext* cx, JS::Handle<JSObject*> obj,
JS::Handle<JSObject*> instance,
bool* bp);
bool
InterfaceHasInstance(JSContext* cx, JS::Handle<JSObject*> obj, JS::MutableHandle<JS::Value> vp,
bool* bp);
bool
InterfaceHasInstance(JSContext* cx, int prototypeID, int depth,
JS::Handle<JSObject*> instance,
bool* bp);
// Helper for lenient getters/setters to report to console. If this
// returns false, we couldn't even get a global.
bool
ReportLenientThisUnwrappingFailure(JSContext* cx, JSObject* obj);
inline JSObject*
GetUnforgeableHolder(JSObject* aGlobal, prototypes::ID aId)
{
ProtoAndIfaceCache& protoAndIfaceCache = *GetProtoAndIfaceCache(aGlobal);
JSObject* interfaceProto = protoAndIfaceCache.EntrySlotMustExist(aId);
return &js::GetReservedSlot(interfaceProto,
DOM_INTERFACE_PROTO_SLOTS_BASE).toObject();
}
// Given a JSObject* that represents the chrome side of a JS-implemented WebIDL
// interface, get the nsPIDOMWindow corresponding to the content side, if any.
// A false return means an exception was thrown.
bool
GetWindowForJSImplementedObject(JSContext* cx, JS::Handle<JSObject*> obj,
nsPIDOMWindow** window);
void
ConstructJSImplementation(JSContext* aCx, const char* aContractId,
nsPIDOMWindow* aWindow,
JS::MutableHandle<JSObject*> aObject,
ErrorResult& aRv);
already_AddRefed<nsPIDOMWindow>
ConstructJSImplementation(JSContext* aCx, const char* aContractId,
const GlobalObject& aGlobal,
JS::MutableHandle<JSObject*> aObject,
ErrorResult& aRv);
/**
* Convert an nsCString to jsval, returning true on success.
* These functions are intended for ByteString implementations.
* As such, the string is not UTF-8 encoded. Any UTF8 strings passed to these
* methods will be mangled.
*/
bool NonVoidByteStringToJsval(JSContext *cx, const nsACString &str,
JS::MutableHandle<JS::Value> rval);
inline bool ByteStringToJsval(JSContext *cx, const nsACString &str,
JS::MutableHandle<JS::Value> rval)
{
if (str.IsVoid()) {
rval.setNull();
return true;
}
return NonVoidByteStringToJsval(cx, str, rval);
}
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct PreserveWrapperHelper
{
static void PreserveWrapper(T* aObject)
{
aObject->PreserveWrapper(aObject, NS_CYCLE_COLLECTION_PARTICIPANT(T));
}
};
template<class T>
struct PreserveWrapperHelper<T, true>
{
static void PreserveWrapper(T* aObject)
{
aObject->PreserveWrapper(reinterpret_cast<nsISupports*>(aObject));
}
};
template<class T>
void PreserveWrapper(T* aObject)
{
PreserveWrapperHelper<T>::PreserveWrapper(aObject);
}
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
struct CastingAssertions
{
static bool ToSupportsIsCorrect(T*)
{
return true;
}
static bool ToSupportsIsOnPrimaryInheritanceChain(T*, nsWrapperCache*)
{
return true;
}
};
template<class T>
struct CastingAssertions<T, true>
{
static bool ToSupportsIsCorrect(T* aObject)
{
return ToSupports(aObject) == reinterpret_cast<nsISupports*>(aObject);
}
static bool ToSupportsIsOnPrimaryInheritanceChain(T* aObject,
nsWrapperCache* aCache)
{
return reinterpret_cast<void*>(aObject) != aCache;
}
};
template<class T>
bool
ToSupportsIsCorrect(T* aObject)
{
return CastingAssertions<T>::ToSupportsIsCorrect(aObject);
}
template<class T>
bool
ToSupportsIsOnPrimaryInheritanceChain(T* aObject, nsWrapperCache* aCache)
{
return CastingAssertions<T>::ToSupportsIsOnPrimaryInheritanceChain(aObject,
aCache);
}
template<class T, template <typename> class SmartPtr,
bool isISupports=IsBaseOf<nsISupports, T>::value>
class DeferredFinalizer
{
typedef nsTArray<SmartPtr<T> > SmartPtrArray;
static void*
AppendDeferredFinalizePointer(void* aData, void* aObject)
{
SmartPtrArray* pointers = static_cast<SmartPtrArray*>(aData);
if (!pointers) {
pointers = new SmartPtrArray();
}
T* self = static_cast<T*>(aObject);
SmartPtr<T>* defer = pointers->AppendElement();
Take(*defer, self);
return pointers;
}
static bool
DeferredFinalize(uint32_t aSlice, void* aData)
{
MOZ_ASSERT(aSlice > 0, "nonsensical/useless call with aSlice == 0");
SmartPtrArray* pointers = static_cast<SmartPtrArray*>(aData);
uint32_t oldLen = pointers->Length();
if (oldLen < aSlice) {
aSlice = oldLen;
}
uint32_t newLen = oldLen - aSlice;
pointers->RemoveElementsAt(newLen, aSlice);
if (newLen == 0) {
delete pointers;
return true;
}
return false;
}
public:
static void
AddForDeferredFinalization(T* aObject)
{
cyclecollector::DeferredFinalize(AppendDeferredFinalizePointer,
DeferredFinalize, aObject);
}
};
template<class T, template <typename> class SmartPtr>
class DeferredFinalizer<T, SmartPtr, true>
{
public:
static void
AddForDeferredFinalization(T* aObject)
{
cyclecollector::DeferredFinalize(reinterpret_cast<nsISupports*>(aObject));
}
};
template<class T, template <typename> class SmartPtr>
static void
AddForDeferredFinalization(T* aObject)
{
DeferredFinalizer<T, SmartPtr>::AddForDeferredFinalization(aObject);
}
// This returns T's CC participant if it participates in CC or null if it
// doesn't. This also returns null for classes that don't inherit from
// nsISupports (QI should be used to get the participant for those).
template<class T, bool isISupports=IsBaseOf<nsISupports, T>::value>
class GetCCParticipant
{
// Helper for GetCCParticipant for classes that participate in CC.
template<class U>
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
GetHelper(int, typename U::NS_CYCLE_COLLECTION_INNERCLASS* dummy=nullptr)
{
return T::NS_CYCLE_COLLECTION_INNERCLASS::GetParticipant();
}
// Helper for GetCCParticipant for classes that don't participate in CC.
template<class U>
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
GetHelper(double)
{
return nullptr;
}
public:
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
Get()
{
// Passing int() here will try to call the GetHelper that takes an int as
// its firt argument. If T doesn't participate in CC then substitution for
// the second argument (with a default value) will fail and because of
// SFINAE the next best match (the variant taking a double) will be called.
return GetHelper<T>(int());
}
};
template<class T>
class GetCCParticipant<T, true>
{
public:
static MOZ_CONSTEXPR nsCycleCollectionParticipant*
Get()
{
return nullptr;
}
};
/*
* Helper function for testing whether the given object comes from a
* privileged app.
*/
bool
IsInPrivilegedApp(JSContext* aCx, JSObject* aObj);
/*
* Helper function for testing whether the given object comes from a
* certified app.
*/
bool
IsInCertifiedApp(JSContext* aCx, JSObject* aObj);
void
FinalizeGlobal(JSFreeOp* aFop, JSObject* aObj);
bool
ResolveGlobal(JSContext* aCx, JS::Handle<JSObject*> aObj,
JS::Handle<jsid> aId, JS::MutableHandle<JSObject*> aObjp);
bool
EnumerateGlobal(JSContext* aCx, JS::Handle<JSObject*> aObj);
template <class T>
struct CreateGlobalOptions
{
static MOZ_CONSTEXPR_VAR ProtoAndIfaceCache::Kind ProtoAndIfaceCacheKind =
ProtoAndIfaceCache::NonWindowLike;
// Intl API is broken and makes JS_InitStandardClasses fail intermittently,
// see bug 934889.
static MOZ_CONSTEXPR_VAR bool ForceInitStandardClassesToFalse = true;
static void TraceGlobal(JSTracer* aTrc, JSObject* aObj)
{
mozilla::dom::TraceProtoAndIfaceCache(aTrc, aObj);
}
static bool PostCreateGlobal(JSContext* aCx, JS::Handle<JSObject*> aGlobal)
{
MOZ_ALWAYS_TRUE(TryPreserveWrapper(aGlobal));
return true;
}
};
template <>
struct CreateGlobalOptions<nsGlobalWindow>
{
static MOZ_CONSTEXPR_VAR ProtoAndIfaceCache::Kind ProtoAndIfaceCacheKind =
ProtoAndIfaceCache::WindowLike;
static MOZ_CONSTEXPR_VAR bool ForceInitStandardClassesToFalse = false;
static void TraceGlobal(JSTracer* aTrc, JSObject* aObj);
static bool PostCreateGlobal(JSContext* aCx, JS::Handle<JSObject*> aGlobal);
};
template <class T, ProtoGetter GetProto>
bool
CreateGlobal(JSContext* aCx, T* aNative, nsWrapperCache* aCache,
const JSClass* aClass, JS::CompartmentOptions& aOptions,
JSPrincipals* aPrincipal, bool aInitStandardClasses,
JS::MutableHandle<JSObject*> aGlobal)
{
aOptions.setTrace(CreateGlobalOptions<T>::TraceGlobal);
aGlobal.set(JS_NewGlobalObject(aCx, aClass, aPrincipal,
JS::DontFireOnNewGlobalHook, aOptions));
if (!aGlobal) {
NS_WARNING("Failed to create global");
return false;
}
JSAutoCompartment ac(aCx, aGlobal);
{
js::SetReservedSlot(aGlobal, DOM_OBJECT_SLOT, PRIVATE_TO_JSVAL(aNative));
NS_ADDREF(aNative);
aCache->SetIsDOMBinding();
aCache->SetWrapper(aGlobal);
dom::AllocateProtoAndIfaceCache(aGlobal,
CreateGlobalOptions<T>::ProtoAndIfaceCacheKind);
if (!CreateGlobalOptions<T>::PostCreateGlobal(aCx, aGlobal)) {
return false;
}
}
if (aInitStandardClasses &&
!CreateGlobalOptions<T>::ForceInitStandardClassesToFalse &&
!JS_InitStandardClasses(aCx, aGlobal)) {
NS_WARNING("Failed to init standard classes");
return false;
}
JS::Handle<JSObject*> proto = GetProto(aCx, aGlobal);
if (!proto || !JS_SplicePrototype(aCx, aGlobal, proto)) {
NS_WARNING("Failed to set proto");
return false;
}
return true;
}
/*
* Holds a jsid that is initialized to an interned string, with conversion to
* Handle<jsid>.
*/
class InternedStringId
{
jsid id;
public:
InternedStringId() : id(JSID_VOID) {}
bool init(JSContext *cx, const char *string) {
JSString* str = JS_InternString(cx, string);
if (!str)
return false;
id = INTERNED_STRING_TO_JSID(cx, str);
return true;
}
operator const jsid& () {
return id;
}
operator JS::Handle<jsid> () {
/* This is safe because we have interned the string. */
return JS::Handle<jsid>::fromMarkedLocation(&id);
}
};
bool
GenericBindingGetter(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GenericBindingSetter(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GenericBindingMethod(JSContext* cx, unsigned argc, JS::Value* vp);
bool
GenericPromiseReturningBindingMethod(JSContext* cx, unsigned argc, JS::Value* vp);
bool
StaticMethodPromiseWrapper(JSContext* cx, unsigned argc, JS::Value* vp);
// ConvertExceptionToPromise should only be called when we have an error
// condition (e.g. returned false from a JSAPI method). Note that there may be
// no exception on cx, in which case this is an uncatchable failure that will
// simply be propagated. Otherwise this method will attempt to convert the
// exception to a Promise rejected with the exception that it will store in
// rval.
//
// promiseScope should be the scope in which the Promise should be created.
bool
ConvertExceptionToPromise(JSContext* cx,
JSObject* promiseScope,
JS::MutableHandle<JS::Value> rval);
// While we wait for the outcome of spec discussions on whether properties for
// DOM global objects live on the object or the prototype, we supply this one
// place to switch the behaviour, so we can easily turn this off on branches.
inline bool
GlobalPropertiesAreOwn()
{
return true;
}
#ifdef DEBUG
void
AssertReturnTypeMatchesJitinfo(const JSJitInfo* aJitinfo,
JS::Handle<JS::Value> aValue);
#endif
// Returns true if aObj's global has any of the permissions named in aPermissions
// set to nsIPermissionManager::ALLOW_ACTION. aPermissions must be null-terminated.
bool
CheckPermissions(JSContext* aCx, JSObject* aObj, const char* const aPermissions[]);
} // namespace dom
} // namespace mozilla
#endif /* mozilla_dom_BindingUtils_h__ */