gecko/js/src/nanojit/LIR.h
Edwin Smith 603d2206c9 whitespace hygiene
--HG--
extra : convert_revision : f96ca24c15235dba3282e3649356b6a7acf5d2e2
2010-05-19 20:54:10 -04:00

2150 lines
73 KiB
C++

/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- */
/* vi: set ts=4 sw=4 expandtab: (add to ~/.vimrc: set modeline modelines=5) */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is [Open Source Virtual Machine].
*
* The Initial Developer of the Original Code is
* Adobe System Incorporated.
* Portions created by the Initial Developer are Copyright (C) 2004-2007
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Adobe AS3 Team
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef __nanojit_LIR__
#define __nanojit_LIR__
namespace nanojit
{
enum LOpcode
#if defined(_MSC_VER) && _MSC_VER >= 1400
#pragma warning(disable:4480) // nonstandard extension used: specifying underlying type for enum
: unsigned
#endif
{
#define OP___(op, number, repKind, retType, isCse) \
LIR_##op = (number),
#include "LIRopcode.tbl"
LIR_sentinel,
#undef OP___
#ifdef NANOJIT_64BIT
# define PTR_SIZE(a,b) b
#else
# define PTR_SIZE(a,b) a
#endif
// Pointer-sized synonyms.
LIR_paramp = PTR_SIZE(LIR_parami, LIR_paramq),
LIR_retp = PTR_SIZE(LIR_reti, LIR_retq),
LIR_livep = PTR_SIZE(LIR_livei, LIR_liveq),
LIR_ldp = PTR_SIZE(LIR_ldi, LIR_ldq),
LIR_stp = PTR_SIZE(LIR_sti, LIR_stq),
LIR_callp = PTR_SIZE(LIR_calli, LIR_callq),
LIR_eqp = PTR_SIZE(LIR_eqi, LIR_eqq),
LIR_ltp = PTR_SIZE(LIR_lti, LIR_ltq),
LIR_gtp = PTR_SIZE(LIR_gti, LIR_gtq),
LIR_lep = PTR_SIZE(LIR_lei, LIR_leq),
LIR_gep = PTR_SIZE(LIR_gei, LIR_geq),
LIR_ltup = PTR_SIZE(LIR_ltui, LIR_ltuq),
LIR_gtup = PTR_SIZE(LIR_gtui, LIR_gtuq),
LIR_leup = PTR_SIZE(LIR_leui, LIR_leuq),
LIR_geup = PTR_SIZE(LIR_geui, LIR_geuq),
LIR_addp = PTR_SIZE(LIR_addi, LIR_addq),
LIR_andp = PTR_SIZE(LIR_andi, LIR_andq),
LIR_orp = PTR_SIZE(LIR_ori, LIR_orq),
LIR_xorp = PTR_SIZE(LIR_xori, LIR_xorq),
LIR_lshp = PTR_SIZE(LIR_lshi, LIR_lshq),
LIR_rshp = PTR_SIZE(LIR_rshi, LIR_rshq),
LIR_rshup = PTR_SIZE(LIR_rshui, LIR_rshuq),
LIR_cmovp = PTR_SIZE(LIR_cmovi, LIR_cmovq)
};
// 32-bit integer comparisons must be contiguous, as must 64-bit integer
// comparisons and 64-bit float comparisons.
NanoStaticAssert(LIR_eqi + 1 == LIR_lti &&
LIR_eqi + 2 == LIR_gti &&
LIR_eqi + 3 == LIR_lei &&
LIR_eqi + 4 == LIR_gei &&
LIR_eqi + 5 == LIR_ltui &&
LIR_eqi + 6 == LIR_gtui &&
LIR_eqi + 7 == LIR_leui &&
LIR_eqi + 8 == LIR_geui);
#ifdef NANOJIT_64BIT
NanoStaticAssert(LIR_eqq + 1 == LIR_ltq &&
LIR_eqq + 2 == LIR_gtq &&
LIR_eqq + 3 == LIR_leq &&
LIR_eqq + 4 == LIR_geq &&
LIR_eqq + 5 == LIR_ltuq &&
LIR_eqq + 6 == LIR_gtuq &&
LIR_eqq + 7 == LIR_leuq &&
LIR_eqq + 8 == LIR_geuq);
#endif
NanoStaticAssert(LIR_eqd + 1 == LIR_ltd &&
LIR_eqd + 2 == LIR_gtd &&
LIR_eqd + 3 == LIR_led &&
LIR_eqd + 4 == LIR_ged);
// Various opcodes must be changeable to their opposite with op^1
// (although we use invertXyz() when possible, ie. outside static
// assertions).
NanoStaticAssert((LIR_jt^1) == LIR_jf && (LIR_jf^1) == LIR_jt);
NanoStaticAssert((LIR_xt^1) == LIR_xf && (LIR_xf^1) == LIR_xt);
NanoStaticAssert((LIR_lti^1) == LIR_gti && (LIR_gti^1) == LIR_lti);
NanoStaticAssert((LIR_lei^1) == LIR_gei && (LIR_gei^1) == LIR_lei);
NanoStaticAssert((LIR_ltui^1) == LIR_gtui && (LIR_gtui^1) == LIR_ltui);
NanoStaticAssert((LIR_leui^1) == LIR_geui && (LIR_geui^1) == LIR_leui);
#ifdef NANOJIT_64BIT
NanoStaticAssert((LIR_ltq^1) == LIR_gtq && (LIR_gtq^1) == LIR_ltq);
NanoStaticAssert((LIR_leq^1) == LIR_geq && (LIR_geq^1) == LIR_leq);
NanoStaticAssert((LIR_ltuq^1) == LIR_gtuq && (LIR_gtuq^1) == LIR_ltuq);
NanoStaticAssert((LIR_leuq^1) == LIR_geuq && (LIR_geuq^1) == LIR_leuq);
#endif
NanoStaticAssert((LIR_ltd^1) == LIR_gtd && (LIR_gtd^1) == LIR_ltd);
NanoStaticAssert((LIR_led^1) == LIR_ged && (LIR_ged^1) == LIR_led);
struct GuardRecord;
struct SideExit;
enum AbiKind {
ABI_FASTCALL,
ABI_THISCALL,
ABI_STDCALL,
ABI_CDECL
};
// This is much the same as LTy, but we need to distinguish signed and
// unsigned 32-bit ints so that they will be extended to 64-bits correctly
// on 64-bit platforms.
//
// All values must fit into three bits. See CallInfo for details.
enum ArgType {
ARGTYPE_V = 0, // void
ARGTYPE_I = 1, // int32_t
ARGTYPE_UI = 2, // uint32_t
#ifdef NANOJIT_64BIT
ARGTYPE_Q = 3, // uint64_t
#endif
ARGTYPE_D = 4, // double
// aliases
ARGTYPE_P = PTR_SIZE(ARGTYPE_I, ARGTYPE_Q), // pointer
ARGTYPE_B = ARGTYPE_I // bool
};
// In _typesig, each entry is three bits.
static const int ARGTYPE_SHIFT = 3;
static const int ARGTYPE_MASK = 0x7;
enum IndirectCall {
CALL_INDIRECT = 0
};
//-----------------------------------------------------------------------
// Aliasing
// --------
// *Aliasing* occurs when a single memory location can be accessed through
// multiple names. For example, consider this code:
//
// ld a[0]
// sti b[0]
// ld a[0]
//
// In general, it's possible that a[0] and b[0] may refer to the same
// memory location. This means, for example, that you cannot safely
// perform CSE on the two loads. However, if you know that 'a' cannot be
// an alias of 'b' (ie. the two loads do not alias with the store) then
// you can safely perform CSE.
//
// Access regions
// --------------
// Doing alias analysis precisely is difficult. But it turns out that
// keeping track of aliasing at a very coarse level is enough to help with
// many optimisations. So we conceptually divide the memory that is
// accessible from LIR into a small number of "access regions". An access
// region may be non-contiguous. No two access regions can overlap. The
// union of all access regions covers all memory accessible from LIR.
//
// In general a (static) load or store may be executed more than once, and
// thus may access multiple regions; however, in practice almost all
// loads and stores will obviously access only a single region. A
// function called from LIR may load and/or store multiple access regions
// (even if executed only once).
//
// If two loads/stores/calls are known to not access the same region(s),
// then they do not alias.
//
// The access regions used are as follows:
//
// - READONLY: all memory that is read-only, ie. never stored to.
// A load from a READONLY region will never alias with any stores.
//
// - STACK: the stack. Stack loads/stores can usually be easily
// identified because they use SP as the base pointer.
//
// - RSTACK: the return stack. Return stack loads/stores can usually be
// easily identified because they use RP as the base pointer.
//
// - OTHER: all other regions of memory.
//
// It makes sense to add new access regions when doing so will help with
// one or more optimisations.
//
// One subtlety is that the meanings of the access region markings only
// apply to the LIR fragment that they are in. For example, if a memory
// location M is read-only in a particular LIR fragment, all loads
// involving M in that fragment can be safely marked READONLY, even if M
// is modified elsewhere. This is safe because the a LIR fragment is the
// unit of analysis in which the markings are used. In other words alias
// region markings are only used for intra-fragment optimisations.
//
// Access region sets and instruction markings
// -------------------------------------------
// The LIR generator must mark each load/store with an "access region
// set", which is a set of one or more access regions. This indicates
// which parts of LIR-accessible memory the load/store may touch.
//
// The LIR generator must also mark each function called from LIR with an
// access region set for memory stored to by the function. (We could also
// have a marking for memory loads, but there's no need at the moment.)
// These markings apply to the function itself, not the call site (ie.
// they're not context-sensitive).
//
// These load/store/call markings MUST BE ACCURATE -- if they are wrong
// then invalid optimisations might occur that change the meaning of the
// code. However, they can safely be imprecise (ie. conservative), in the
// following ways:
//
// - A load that accesses a READONLY region can be safely marked instead
// as loading from OTHER. In other words, it's safe to underestimate
// the size of the READONLY region. (This would also apply to the load
// set of a function, if we recorded that.)
//
// - A load/store can safely be marked as accessing regions that it
// doesn't, so long as the regions it does access are also included (one
// exception: marking a store with READONLY is nonsense and will cause
// assertions).
//
// In other words, a load/store can be marked with an access region set
// that is a superset of its actual access region set. Taking this to
// its logical conclusion, any load can be safely marked with LOAD_ANY and
// any store can be safely marked with with STORE_ANY (and the latter is
// true for the store set of a function.)
//
// Such imprecision is safe but may reduce optimisation opportunities.
//
// Optimisations that use access region info
// -----------------------------------------
// Currently only CseFilter uses this, and only for determining whether
// loads can be CSE'd. Note that CseFilter treats loads that are marked
// with a single access region precisely, but all loads marked with
// multiple access regions get lumped together. So if you can't mark a
// load with a single access region, you might as well use ACC_LOAD_ANY.
//-----------------------------------------------------------------------
// An access region set is represented as a bitset. Nb: this restricts us
// to at most eight alias regions for the moment.
typedef uint8_t AccSet;
// The access regions. Note that because of the bitset representation
// these constants are also valid (singleton) AccSet values. If you add
// new ones please update ACC_ALL_STORABLE and formatAccSet() and
// CseFilter.
//
static const AccSet ACC_READONLY = 1 << 0; // 0000_0001b
static const AccSet ACC_STACK = 1 << 1; // 0000_0010b
static const AccSet ACC_RSTACK = 1 << 2; // 0000_0100b
static const AccSet ACC_OTHER = 1 << 3; // 0000_1000b
// Some common (non-singleton) access region sets. ACC_NONE does not make
// sense for loads or stores (which must access at least one region), it
// only makes sense for calls.
//
// A convention that's worth using: use ACC_LOAD_ANY/ACC_STORE_ANY for
// cases that you're unsure about or haven't considered carefully. Use
// ACC_ALL/ACC_ALL_STORABLE for cases that you have considered carefully.
// That way it's easy to tell which ones have been considered and which
// haven't.
static const AccSet ACC_NONE = 0x0;
static const AccSet ACC_ALL_STORABLE = ACC_STACK | ACC_RSTACK | ACC_OTHER;
static const AccSet ACC_ALL = ACC_READONLY | ACC_ALL_STORABLE;
static const AccSet ACC_LOAD_ANY = ACC_ALL; // synonym
static const AccSet ACC_STORE_ANY = ACC_ALL_STORABLE; // synonym
struct CallInfo
{
private:
public:
uintptr_t _address;
uint32_t _typesig:27; // 9 3-bit fields indicating arg type, by ARGTYPE above (including ret type): a1 a2 a3 a4 a5 ret
AbiKind _abi:3;
uint8_t _isPure:1; // _isPure=1 means no side-effects, result only depends on args
AccSet _storeAccSet; // access regions stored by the function
verbose_only ( const char* _name; )
uint32_t count_args() const;
uint32_t count_int32_args() const;
// Nb: uses right-to-left order, eg. sizes[0] is the size of the right-most arg.
uint32_t getArgTypes(ArgType* types) const;
inline ArgType returnType() const {
return ArgType(_typesig & ARGTYPE_MASK);
}
inline bool isIndirect() const {
return _address < 256;
}
};
/*
* Record for extra data used to compile switches as jump tables.
*/
struct SwitchInfo
{
NIns** table; // Jump table; a jump address is NIns*
uint32_t count; // Number of table entries
// Index value at last execution of the switch. The index value
// is the offset into the jump table. Thus it is computed as
// (switch expression) - (lowest case value).
uint32_t index;
};
// Array holding the 'isCse' field from LIRopcode.tbl.
extern const int8_t isCses[]; // cannot be uint8_t, some values are negative
inline bool isCseOpcode(LOpcode op) {
NanoAssert(isCses[op] != -1); // see LIRopcode.tbl to understand this
return isCses[op] == 1;
}
inline bool isLiveOpcode(LOpcode op) {
return
#if defined NANOJIT_64BIT
op == LIR_liveq ||
#endif
op == LIR_livei || op == LIR_lived;
}
inline bool isRetOpcode(LOpcode op) {
return
#if defined NANOJIT_64BIT
op == LIR_retq ||
#endif
op == LIR_reti || op == LIR_retd;
}
inline bool isCmovOpcode(LOpcode op) {
return
#if defined NANOJIT_64BIT
op == LIR_cmovq ||
#endif
op == LIR_cmovi;
}
inline bool isCmpIOpcode(LOpcode op) {
return LIR_eqi <= op && op <= LIR_geui;
}
inline bool isCmpSIOpcode(LOpcode op) {
return LIR_eqi <= op && op <= LIR_gei;
}
inline bool isCmpUIOpcode(LOpcode op) {
return LIR_eqi == op || (LIR_ltui <= op && op <= LIR_geui);
}
#ifdef NANOJIT_64BIT
inline bool isCmpQOpcode(LOpcode op) {
return LIR_eqq <= op && op <= LIR_geuq;
}
inline bool isCmpSQOpcode(LOpcode op) {
return LIR_eqq <= op && op <= LIR_geq;
}
inline bool isCmpUQOpcode(LOpcode op) {
return LIR_eqq == op || (LIR_ltuq <= op && op <= LIR_geuq);
}
#endif
inline bool isCmpDOpcode(LOpcode op) {
return LIR_eqd <= op && op <= LIR_ged;
}
inline LOpcode invertCondJmpOpcode(LOpcode op) {
NanoAssert(op == LIR_jt || op == LIR_jf);
return LOpcode(op ^ 1);
}
inline LOpcode invertCondGuardOpcode(LOpcode op) {
NanoAssert(op == LIR_xt || op == LIR_xf);
return LOpcode(op ^ 1);
}
inline LOpcode invertCmpIOpcode(LOpcode op) {
NanoAssert(isCmpIOpcode(op));
return LOpcode(op ^ 1);
}
#ifdef NANOJIT_64BIT
inline LOpcode invertCmpQOpcode(LOpcode op) {
NanoAssert(isCmpQOpcode(op));
return LOpcode(op ^ 1);
}
#endif
inline LOpcode invertCmpDOpcode(LOpcode op) {
NanoAssert(isCmpDOpcode(op));
return LOpcode(op ^ 1);
}
inline LOpcode getCallOpcode(const CallInfo* ci) {
LOpcode op = LIR_callp;
switch (ci->returnType()) {
case ARGTYPE_V: op = LIR_callp; break;
case ARGTYPE_I:
case ARGTYPE_UI: op = LIR_calli; break;
case ARGTYPE_D: op = LIR_calld; break;
#ifdef NANOJIT_64BIT
case ARGTYPE_Q: op = LIR_callq; break;
#endif
default: NanoAssert(0); break;
}
return op;
}
LOpcode arithOpcodeD2I(LOpcode op);
#ifdef NANOJIT_64BIT
LOpcode cmpOpcodeI2Q(LOpcode op);
#endif
LOpcode cmpOpcodeD2I(LOpcode op);
LOpcode cmpOpcodeD2UI(LOpcode op);
// Array holding the 'repKind' field from LIRopcode.tbl.
extern const uint8_t repKinds[];
enum LTy {
LTy_V, // void: no value/no type
LTy_I, // int: 32-bit integer
#ifdef NANOJIT_64BIT
LTy_Q, // quad: 64-bit integer
#endif
LTy_D, // double: 64-bit float
LTy_P = PTR_SIZE(LTy_I, LTy_Q) // word-sized integer
};
// Array holding the 'retType' field from LIRopcode.tbl.
extern const LTy retTypes[];
inline RegisterMask rmask(Register r)
{
return RegisterMask(1) << r;
}
//-----------------------------------------------------------------------
// Low-level instructions. This is a bit complicated, because we have a
// variable-width representation to minimise space usage.
//
// - Instruction size is always an integral multiple of word size.
//
// - Every instruction has at least one word, holding the opcode and the
// reservation info ("SharedFields"). That word is in class LIns.
//
// - Beyond that, most instructions have 1, 2 or 3 extra words. These
// extra words are in classes LInsOp1, LInsOp2, etc (collectively called
// "LInsXYZ" in what follows). Each LInsXYZ class also contains an LIns,
// accessible by the 'ins' member, which holds the LIns data.
//
// - LIR is written forward, but read backwards. When reading backwards,
// in order to find the opcode, it must be in a predictable place in the
// LInsXYZ isn't affected by instruction width. Therefore, the LIns
// word (which contains the opcode) is always the *last* word in an
// instruction.
//
// - Each instruction is created by casting pre-allocated bytes from a
// LirBuffer to the LInsXYZ type. Therefore there are no constructors
// for LIns or LInsXYZ.
//
// - The standard handle for an instruction is a LIns*. This actually
// points to the LIns word, ie. to the final word in the instruction.
// This is a bit odd, but it allows the instruction's opcode to be
// easily accessed. Once you've looked at the opcode and know what kind
// of instruction it is, if you want to access any of the other words,
// you need to use toLInsXYZ(), which takes the LIns* and gives you an
// LInsXYZ*, ie. the pointer to the actual start of the instruction's
// bytes. From there you can access the instruction-specific extra
// words.
//
// - However, from outside class LIns, LInsXYZ isn't visible, nor is
// toLInsXYZ() -- from outside LIns, all LIR instructions are handled
// via LIns pointers and get/set methods are used for all LIns/LInsXYZ
// accesses. In fact, all data members in LInsXYZ are private and can
// only be accessed by LIns, which is a friend class. The only thing
// anyone outside LIns can do with a LInsXYZ is call getLIns().
//
// - An example Op2 instruction and the likely pointers to it (each line
// represents a word, and pointers to a line point to the start of the
// word on that line):
//
// [ oprnd_2 <-- LInsOp2* insOp2 == toLInsOp2(ins)
// oprnd_1
// opcode + resv ] <-- LIns* ins
//
// - LIR_skip instructions are used to link code chunks. If the first
// instruction on a chunk isn't a LIR_start, it will be a skip, and the
// skip's operand will point to the last LIns on the preceding chunk.
// LInsSk has the same layout as LInsOp1, but we represent it as a
// different class because there are some places where we treat
// skips specially and so having it separate seems like a good idea.
//
// - Various things about the size and layout of LIns and LInsXYZ are
// statically checked in staticSanityCheck(). In particular, this is
// worthwhile because there's nothing that guarantees that all the
// LInsXYZ classes have a size that is a multiple of word size (but in
// practice all sane compilers use a layout that results in this). We
// also check that every LInsXYZ is word-aligned in
// LirBuffer::makeRoom(); this seems sensible to avoid potential
// slowdowns due to misalignment. It relies on chunks themselves being
// word-aligned, which is extremely likely.
//
// - There is an enum, LInsRepKind, with one member for each of the
// LInsXYZ kinds. Each opcode is categorised with its LInsRepKind value
// in LIRopcode.tbl, and this is used in various places.
//-----------------------------------------------------------------------
enum LInsRepKind {
// LRK_XYZ corresponds to class LInsXYZ.
LRK_Op0,
LRK_Op1,
LRK_Op2,
LRK_Op3,
LRK_Ld,
LRK_St,
LRK_Sk,
LRK_C,
LRK_P,
LRK_I,
LRK_QorD,
LRK_Jtbl,
LRK_None // this one is used for unused opcode numbers
};
class LInsOp0;
class LInsOp1;
class LInsOp2;
class LInsOp3;
class LInsLd;
class LInsSt;
class LInsSk;
class LInsC;
class LInsP;
class LInsI;
class LInsQorD;
class LInsJtbl;
class LIns
{
private:
// SharedFields: fields shared by all LIns kinds.
//
// The .inReg, .reg, .inAr and .arIndex fields form a "reservation"
// that is used temporarily during assembly to record information
// relating to register allocation. See class RegAlloc for more
// details. Note: all combinations of .inReg/.inAr are possible, ie.
// 0/0, 0/1, 1/0, 1/1.
//
// The .isResultLive field is only used for instructions that return
// results. It indicates if the result is live. It's set (if
// appropriate) and used only during the codegen pass.
//
struct SharedFields {
uint32_t inReg:1; // if 1, 'reg' is active
Register reg:7;
uint32_t inAr:1; // if 1, 'arIndex' is active
uint32_t isResultLive:1; // if 1, the instruction's result is live
uint32_t arIndex:14; // index into stack frame; displ is -4*arIndex
LOpcode opcode:8; // instruction's opcode
};
union {
SharedFields sharedFields;
// Force sizeof(LIns)==8 and 8-byte alignment on 64-bit machines.
// This is necessary because sizeof(SharedFields)==4 and we want all
// instances of LIns to be pointer-aligned.
void* wholeWord;
};
inline void initSharedFields(LOpcode opcode)
{
// We must zero .inReg, .inAR and .isResultLive, but zeroing the
// whole word is easier. Then we set the opcode.
wholeWord = 0;
sharedFields.opcode = opcode;
}
// LIns-to-LInsXYZ converters.
inline LInsOp0* toLInsOp0() const;
inline LInsOp1* toLInsOp1() const;
inline LInsOp2* toLInsOp2() const;
inline LInsOp3* toLInsOp3() const;
inline LInsLd* toLInsLd() const;
inline LInsSt* toLInsSt() const;
inline LInsSk* toLInsSk() const;
inline LInsC* toLInsC() const;
inline LInsP* toLInsP() const;
inline LInsI* toLInsI() const;
inline LInsQorD* toLInsQorD() const;
inline LInsJtbl*toLInsJtbl()const;
void staticSanityCheck();
public:
// LIns initializers.
inline void initLInsOp0(LOpcode opcode);
inline void initLInsOp1(LOpcode opcode, LIns* oprnd1);
inline void initLInsOp2(LOpcode opcode, LIns* oprnd1, LIns* oprnd2);
inline void initLInsOp3(LOpcode opcode, LIns* oprnd1, LIns* oprnd2, LIns* oprnd3);
inline void initLInsLd(LOpcode opcode, LIns* val, int32_t d, AccSet accSet);
inline void initLInsSt(LOpcode opcode, LIns* val, LIns* base, int32_t d, AccSet accSet);
inline void initLInsSk(LIns* prevLIns);
// Nb: args[] must be allocated and initialised before being passed in;
// initLInsC() just copies the pointer into the LInsC.
inline void initLInsC(LOpcode opcode, LIns** args, const CallInfo* ci);
inline void initLInsP(int32_t arg, int32_t kind);
inline void initLInsI(LOpcode opcode, int32_t immI);
inline void initLInsQorD(LOpcode opcode, uint64_t immQorD);
inline void initLInsJtbl(LIns* index, uint32_t size, LIns** table);
LOpcode opcode() const { return sharedFields.opcode; }
// Generally, void instructions (statements) are always live and
// non-void instructions (expressions) are live if used by another
// live instruction. But there are some trickier cases.
bool isLive() const {
return isV() ||
sharedFields.isResultLive ||
(isCall() && !callInfo()->_isPure) || // impure calls are always live
isop(LIR_paramp); // LIR_paramp is always live
}
void setResultLive() {
NanoAssert(!isV());
sharedFields.isResultLive = 1;
}
// XXX: old reservation manipulating functions. See bug 538924.
// Replacement strategy:
// - deprecated_markAsClear() --> clearReg() and/or clearArIndex()
// - deprecated_hasKnownReg() --> isInReg()
// - deprecated_getReg() --> getReg() after checking isInReg()
//
void deprecated_markAsClear() {
sharedFields.inReg = 0;
sharedFields.inAr = 0;
}
bool deprecated_hasKnownReg() {
NanoAssert(isExtant());
return isInReg();
}
Register deprecated_getReg() {
NanoAssert(isExtant());
return ( isInReg() ? sharedFields.reg : deprecated_UnknownReg );
}
uint32_t deprecated_getArIndex() {
NanoAssert(isExtant());
return ( isInAr() ? sharedFields.arIndex : 0 );
}
// Reservation manipulation.
//
// "Extant" mean "in existence, still existing, surviving". In other
// words, has the value been computed explicitly (not folded into
// something else) and is it still available (in a register or spill
// slot) for use?
bool isExtant() {
return isInReg() || isInAr();
}
bool isInReg() {
return sharedFields.inReg;
}
bool isInRegMask(RegisterMask allow) {
return isInReg() && (rmask(getReg()) & allow);
}
Register getReg() {
NanoAssert(isInReg());
return sharedFields.reg;
}
void setReg(Register r) {
sharedFields.inReg = 1;
sharedFields.reg = r;
}
void clearReg() {
sharedFields.inReg = 0;
}
bool isInAr() {
return sharedFields.inAr;
}
uint32_t getArIndex() {
NanoAssert(isInAr());
return sharedFields.arIndex;
}
void setArIndex(uint32_t arIndex) {
sharedFields.inAr = 1;
sharedFields.arIndex = arIndex;
}
void clearArIndex() {
sharedFields.inAr = 0;
}
// For various instruction kinds.
inline LIns* oprnd1() const;
inline LIns* oprnd2() const;
inline LIns* oprnd3() const;
// For branches.
inline LIns* getTarget() const;
inline void setTarget(LIns* label);
// For guards.
inline GuardRecord* record() const;
// For loads/stores.
inline int32_t disp() const;
inline AccSet accSet() const;
// For LInsSk.
inline LIns* prevLIns() const;
// For LInsP.
inline uint8_t paramArg() const;
inline uint8_t paramKind() const;
// For LInsI.
inline int32_t immI() const;
// For LInsQorD.
#ifdef NANOJIT_64BIT
inline int32_t immQlo() const;
inline uint64_t immQ() const;
#endif
inline int32_t immDlo() const;
inline int32_t immDhi() const;
inline double immD() const;
inline uint64_t immDasQ() const;
// For LIR_allocp.
inline int32_t size() const;
inline void setSize(int32_t nbytes);
// For LInsC.
inline LIns* arg(uint32_t i) const; // right-to-left-order: arg(0) is rightmost
inline uint32_t argc() const;
inline LIns* callArgN(uint32_t n) const;
inline const CallInfo* callInfo() const;
// For LIR_jtbl
inline uint32_t getTableSize() const;
inline LIns* getTarget(uint32_t index) const;
inline void setTarget(uint32_t index, LIns* label) const;
// isLInsXYZ() returns true if the instruction has the LInsXYZ form.
// Note that there is some overlap with other predicates, eg.
// isStore()==isLInsSt(), isCall()==isLInsC(), but that's ok; these
// ones are used mostly to check that opcodes are appropriate for
// instruction layouts, the others are used for non-debugging
// purposes.
bool isLInsOp0() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op0 == repKinds[opcode()];
}
bool isLInsOp1() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op1 == repKinds[opcode()];
}
bool isLInsOp2() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op2 == repKinds[opcode()];
}
bool isLInsOp3() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Op3 == repKinds[opcode()];
}
bool isLInsLd() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Ld == repKinds[opcode()];
}
bool isLInsSt() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_St == repKinds[opcode()];
}
bool isLInsSk() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Sk == repKinds[opcode()];
}
bool isLInsC() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_C == repKinds[opcode()];
}
bool isLInsP() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_P == repKinds[opcode()];
}
bool isLInsI() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_I == repKinds[opcode()];
}
bool isLInsQorD() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_QorD == repKinds[opcode()];
}
bool isLInsJtbl() const {
NanoAssert(LRK_None != repKinds[opcode()]);
return LRK_Jtbl == repKinds[opcode()];
}
// LIns predicates.
bool isop(LOpcode o) const {
return opcode() == o;
}
bool isRet() const {
return isRetOpcode(opcode());
}
bool isCmp() const {
LOpcode op = opcode();
return isCmpIOpcode(op) ||
#if defined NANOJIT_64BIT
isCmpQOpcode(op) ||
#endif
isCmpDOpcode(op);
}
bool isCall() const {
return isop(LIR_calli) ||
#if defined NANOJIT_64BIT
isop(LIR_callq) ||
#endif
isop(LIR_calld);
}
bool isCmov() const {
return isCmovOpcode(opcode());
}
bool isStore() const {
return isLInsSt();
}
bool isLoad() const {
return isLInsLd();
}
bool isGuard() const {
return isop(LIR_x) || isop(LIR_xf) || isop(LIR_xt) ||
isop(LIR_xbarrier) || isop(LIR_xtbl) ||
isop(LIR_addxovi) || isop(LIR_subxovi) || isop(LIR_mulxovi);
}
// True if the instruction is a 32-bit integer immediate.
bool isImmI() const {
return isop(LIR_immi);
}
// True if the instruction is a 32-bit integer immediate and
// has the value 'val' when treated as a 32-bit signed integer.
bool isImmI(int32_t val) const {
return isImmI() && immI()==val;
}
#ifdef NANOJIT_64BIT
// True if the instruction is a 64-bit integer immediate.
bool isImmQ() const {
return isop(LIR_immq);
}
#endif
// True if the instruction is a pointer-sized integer immediate.
bool isImmP() const
{
#ifdef NANOJIT_64BIT
return isImmQ();
#else
return isImmI();
#endif
}
// True if the instruction is a 64-bit float immediate.
bool isImmD() const {
return isop(LIR_immd);
}
// True if the instruction is a 64-bit integer or float immediate.
bool isImmQorD() const {
return
#ifdef NANOJIT_64BIT
isImmQ() ||
#endif
isImmD();
}
// True if the instruction an any type of immediate.
bool isImmAny() const {
return isImmI() || isImmQorD();
}
bool isBranch() const {
return isop(LIR_jt) || isop(LIR_jf) || isop(LIR_j) || isop(LIR_jtbl);
}
LTy retType() const {
return retTypes[opcode()];
}
bool isV() const {
return retType() == LTy_V;
}
bool isI() const {
return retType() == LTy_I;
}
#ifdef NANOJIT_64BIT
bool isQ() const {
return retType() == LTy_Q;
}
#endif
bool isD() const {
return retType() == LTy_D;
}
bool isQorD() const {
return
#ifdef NANOJIT_64BIT
isQ() ||
#endif
isD();
}
bool isP() const {
#ifdef NANOJIT_64BIT
return isQ();
#else
return isI();
#endif
}
inline void* immP() const
{
#ifdef NANOJIT_64BIT
return (void*)immQ();
#else
return (void*)immI();
#endif
}
};
typedef LIns* LInsp;
typedef SeqBuilder<LIns*> InsList;
typedef SeqBuilder<char*> StringList;
// 0-operand form. Used for LIR_start and LIR_label.
class LInsOp0
{
private:
friend class LIns;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// 1-operand form. Used for LIR_reti, unary arithmetic/logic ops, etc.
class LInsOp1
{
private:
friend class LIns;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// 2-operand form. Used for guards, branches, comparisons, binary
// arithmetic/logic ops, etc.
class LInsOp2
{
private:
friend class LIns;
LIns* oprnd_2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// 3-operand form. Used for conditional moves and xov guards.
class LInsOp3
{
private:
friend class LIns;
LIns* oprnd_3;
LIns* oprnd_2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for all loads.
class LInsLd
{
private:
friend class LIns;
// Nb: the LIR writer pipeline handles things if a displacement
// exceeds 16 bits. This is rare, but does happen occasionally. We
// could go to 24 bits but then it would happen so rarely that the
// handler code would be difficult to test and thus untrustworthy.
int16_t disp;
AccSet accSet;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for all stores.
class LInsSt
{
private:
friend class LIns;
int16_t disp;
AccSet accSet;
LIns* oprnd_2;
LIns* oprnd_1;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_skip.
class LInsSk
{
private:
friend class LIns;
LIns* prevLIns;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for all variants of LIR_call.
class LInsC
{
private:
friend class LIns;
// Arguments in reverse order, just like insCall() (ie. args[0] holds
// the rightmost arg). The array should be allocated by the same
// allocator as the LIR buffers, because it has the same lifetime.
LIns** args;
const CallInfo* ci;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_paramp.
class LInsP
{
private:
friend class LIns;
uintptr_t arg:8;
uintptr_t kind:8;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_immi and LIR_allocp.
class LInsI
{
private:
friend class LIns;
int32_t immI;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_immq and LIR_immd.
class LInsQorD
{
private:
friend class LIns;
int32_t immQorDlo;
int32_t immQorDhi;
LIns ins;
public:
LIns* getLIns() { return &ins; };
};
// Used for LIR_jtbl. 'oprnd_1' must be a uint32_t index in
// the range 0 <= index < size; no range check is performed.
// 'table' is an array of labels.
class LInsJtbl
{
private:
friend class LIns;
uint32_t size; // number of entries in table
LIns** table; // pointer to table[size] with same lifetime as this LInsJtbl
LIns* oprnd_1; // uint32_t index expression
LIns ins;
public:
LIns* getLIns() { return &ins; }
};
// Used only as a placeholder for OP___ macros for unused opcodes in
// LIRopcode.tbl.
class LInsNone
{
};
LInsOp0* LIns::toLInsOp0() const { return (LInsOp0* )(uintptr_t(this+1) - sizeof(LInsOp0 )); }
LInsOp1* LIns::toLInsOp1() const { return (LInsOp1* )(uintptr_t(this+1) - sizeof(LInsOp1 )); }
LInsOp2* LIns::toLInsOp2() const { return (LInsOp2* )(uintptr_t(this+1) - sizeof(LInsOp2 )); }
LInsOp3* LIns::toLInsOp3() const { return (LInsOp3* )(uintptr_t(this+1) - sizeof(LInsOp3 )); }
LInsLd* LIns::toLInsLd() const { return (LInsLd* )(uintptr_t(this+1) - sizeof(LInsLd )); }
LInsSt* LIns::toLInsSt() const { return (LInsSt* )(uintptr_t(this+1) - sizeof(LInsSt )); }
LInsSk* LIns::toLInsSk() const { return (LInsSk* )(uintptr_t(this+1) - sizeof(LInsSk )); }
LInsC* LIns::toLInsC() const { return (LInsC* )(uintptr_t(this+1) - sizeof(LInsC )); }
LInsP* LIns::toLInsP() const { return (LInsP* )(uintptr_t(this+1) - sizeof(LInsP )); }
LInsI* LIns::toLInsI() const { return (LInsI* )(uintptr_t(this+1) - sizeof(LInsI )); }
LInsQorD* LIns::toLInsQorD() const { return (LInsQorD*)(uintptr_t(this+1) - sizeof(LInsQorD)); }
LInsJtbl* LIns::toLInsJtbl() const { return (LInsJtbl*)(uintptr_t(this+1) - sizeof(LInsJtbl)); }
void LIns::initLInsOp0(LOpcode opcode) {
initSharedFields(opcode);
NanoAssert(isLInsOp0());
}
void LIns::initLInsOp1(LOpcode opcode, LIns* oprnd1) {
initSharedFields(opcode);
toLInsOp1()->oprnd_1 = oprnd1;
NanoAssert(isLInsOp1());
}
void LIns::initLInsOp2(LOpcode opcode, LIns* oprnd1, LIns* oprnd2) {
initSharedFields(opcode);
toLInsOp2()->oprnd_1 = oprnd1;
toLInsOp2()->oprnd_2 = oprnd2;
NanoAssert(isLInsOp2());
}
void LIns::initLInsOp3(LOpcode opcode, LIns* oprnd1, LIns* oprnd2, LIns* oprnd3) {
initSharedFields(opcode);
toLInsOp3()->oprnd_1 = oprnd1;
toLInsOp3()->oprnd_2 = oprnd2;
toLInsOp3()->oprnd_3 = oprnd3;
NanoAssert(isLInsOp3());
}
void LIns::initLInsLd(LOpcode opcode, LIns* val, int32_t d, AccSet accSet) {
initSharedFields(opcode);
toLInsLd()->oprnd_1 = val;
NanoAssert(d == int16_t(d));
toLInsLd()->disp = int16_t(d);
toLInsLd()->accSet = accSet;
NanoAssert(isLInsLd());
}
void LIns::initLInsSt(LOpcode opcode, LIns* val, LIns* base, int32_t d, AccSet accSet) {
initSharedFields(opcode);
toLInsSt()->oprnd_1 = val;
toLInsSt()->oprnd_2 = base;
NanoAssert(d == int16_t(d));
toLInsSt()->disp = int16_t(d);
toLInsSt()->accSet = accSet;
NanoAssert(isLInsSt());
}
void LIns::initLInsSk(LIns* prevLIns) {
initSharedFields(LIR_skip);
toLInsSk()->prevLIns = prevLIns;
NanoAssert(isLInsSk());
}
void LIns::initLInsC(LOpcode opcode, LIns** args, const CallInfo* ci) {
initSharedFields(opcode);
toLInsC()->args = args;
toLInsC()->ci = ci;
NanoAssert(isLInsC());
}
void LIns::initLInsP(int32_t arg, int32_t kind) {
initSharedFields(LIR_paramp);
NanoAssert(isU8(arg) && isU8(kind));
toLInsP()->arg = arg;
toLInsP()->kind = kind;
NanoAssert(isLInsP());
}
void LIns::initLInsI(LOpcode opcode, int32_t immI) {
initSharedFields(opcode);
toLInsI()->immI = immI;
NanoAssert(isLInsI());
}
void LIns::initLInsQorD(LOpcode opcode, uint64_t immQorD) {
initSharedFields(opcode);
toLInsQorD()->immQorDlo = int32_t(immQorD);
toLInsQorD()->immQorDhi = int32_t(immQorD >> 32);
NanoAssert(isLInsQorD());
}
void LIns::initLInsJtbl(LIns* index, uint32_t size, LIns** table) {
initSharedFields(LIR_jtbl);
toLInsJtbl()->oprnd_1 = index;
toLInsJtbl()->table = table;
toLInsJtbl()->size = size;
NanoAssert(isLInsJtbl());
}
LIns* LIns::oprnd1() const {
NanoAssert(isLInsOp1() || isLInsOp2() || isLInsOp3() || isLInsLd() || isLInsSt() || isLInsJtbl());
return toLInsOp2()->oprnd_1;
}
LIns* LIns::oprnd2() const {
NanoAssert(isLInsOp2() || isLInsOp3() || isLInsSt());
return toLInsOp2()->oprnd_2;
}
LIns* LIns::oprnd3() const {
NanoAssert(isLInsOp3());
return toLInsOp3()->oprnd_3;
}
LIns* LIns::getTarget() const {
NanoAssert(isBranch() && !isop(LIR_jtbl));
return oprnd2();
}
void LIns::setTarget(LIns* label) {
NanoAssert(label && label->isop(LIR_label));
NanoAssert(isBranch() && !isop(LIR_jtbl));
toLInsOp2()->oprnd_2 = label;
}
LIns* LIns::getTarget(uint32_t index) const {
NanoAssert(isop(LIR_jtbl));
NanoAssert(index < toLInsJtbl()->size);
return toLInsJtbl()->table[index];
}
void LIns::setTarget(uint32_t index, LIns* label) const {
NanoAssert(label && label->isop(LIR_label));
NanoAssert(isop(LIR_jtbl));
NanoAssert(index < toLInsJtbl()->size);
toLInsJtbl()->table[index] = label;
}
GuardRecord *LIns::record() const {
NanoAssert(isGuard());
switch (opcode()) {
case LIR_x:
case LIR_xt:
case LIR_xf:
case LIR_xtbl:
case LIR_xbarrier:
return (GuardRecord*)oprnd2();
case LIR_addxovi:
case LIR_subxovi:
case LIR_mulxovi:
return (GuardRecord*)oprnd3();
default:
NanoAssert(0);
return NULL;
}
}
int32_t LIns::disp() const {
if (isLInsSt()) {
return toLInsSt()->disp;
} else {
NanoAssert(isLInsLd());
return toLInsLd()->disp;
}
}
AccSet LIns::accSet() const {
if (isLInsSt()) {
return toLInsSt()->accSet;
} else {
NanoAssert(isLInsLd());
return toLInsLd()->accSet;
}
}
LIns* LIns::prevLIns() const {
NanoAssert(isLInsSk());
return toLInsSk()->prevLIns;
}
inline uint8_t LIns::paramArg() const { NanoAssert(isop(LIR_paramp)); return toLInsP()->arg; }
inline uint8_t LIns::paramKind() const { NanoAssert(isop(LIR_paramp)); return toLInsP()->kind; }
inline int32_t LIns::immI() const { NanoAssert(isImmI()); return toLInsI()->immI; }
#ifdef NANOJIT_64BIT
inline int32_t LIns::immQlo() const { NanoAssert(isImmQ()); return toLInsQorD()->immQorDlo; }
uint64_t LIns::immQ() const {
NanoAssert(isImmQ());
return (uint64_t(toLInsQorD()->immQorDhi) << 32) | uint32_t(toLInsQorD()->immQorDlo);
}
#endif
inline int32_t LIns::immDlo() const { NanoAssert(isImmD()); return toLInsQorD()->immQorDlo; }
inline int32_t LIns::immDhi() const { NanoAssert(isImmD()); return toLInsQorD()->immQorDhi; }
double LIns::immD() const {
NanoAssert(isImmD());
union {
double f;
uint64_t q;
} u;
u.q = immDasQ();
return u.f;
}
uint64_t LIns::immDasQ() const {
NanoAssert(isImmD());
return (uint64_t(toLInsQorD()->immQorDhi) << 32) | uint32_t(toLInsQorD()->immQorDlo);
}
int32_t LIns::size() const {
NanoAssert(isop(LIR_allocp));
return toLInsI()->immI << 2;
}
void LIns::setSize(int32_t nbytes) {
NanoAssert(isop(LIR_allocp));
NanoAssert(nbytes > 0);
toLInsI()->immI = (nbytes+3)>>2; // # of required 32bit words
}
// Index args in reverse order, i.e. arg(0) returns the rightmost arg.
// Nb: this must be kept in sync with insCall().
LIns* LIns::arg(uint32_t i) const
{
NanoAssert(isCall());
NanoAssert(i < callInfo()->count_args());
return toLInsC()->args[i]; // args[] is in right-to-left order as well
}
uint32_t LIns::argc() const {
return callInfo()->count_args();
}
LIns* LIns::callArgN(uint32_t n) const
{
return arg(argc()-n-1);
}
const CallInfo* LIns::callInfo() const
{
NanoAssert(isCall());
return toLInsC()->ci;
}
uint32_t LIns::getTableSize() const
{
NanoAssert(isLInsJtbl());
return toLInsJtbl()->size;
}
class LirWriter
{
public:
LirWriter *out;
LirWriter(LirWriter* out)
: out(out) {}
virtual ~LirWriter() {}
virtual LInsp ins0(LOpcode v) {
return out->ins0(v);
}
virtual LInsp ins1(LOpcode v, LIns* a) {
return out->ins1(v, a);
}
virtual LInsp ins2(LOpcode v, LIns* a, LIns* b) {
return out->ins2(v, a, b);
}
virtual LInsp ins3(LOpcode v, LIns* a, LIns* b, LIns* c) {
return out->ins3(v, a, b, c);
}
virtual LInsp insGuard(LOpcode v, LIns *c, GuardRecord *gr) {
return out->insGuard(v, c, gr);
}
virtual LInsp insGuardXov(LOpcode v, LIns *a, LIns* b, GuardRecord *gr) {
return out->insGuardXov(v, a, b, gr);
}
virtual LInsp insBranch(LOpcode v, LInsp condition, LInsp to) {
return out->insBranch(v, condition, to);
}
// arg: 0=first, 1=second, ...
// kind: 0=arg 1=saved-reg
virtual LInsp insParam(int32_t arg, int32_t kind) {
return out->insParam(arg, kind);
}
virtual LInsp insImmI(int32_t imm) {
return out->insImmI(imm);
}
#ifdef NANOJIT_64BIT
virtual LInsp insImmQ(uint64_t imm) {
return out->insImmQ(imm);
}
#endif
virtual LInsp insImmD(double d) {
return out->insImmD(d);
}
virtual LInsp insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet) {
return out->insLoad(op, base, d, accSet);
}
virtual LInsp insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet) {
return out->insStore(op, value, base, d, accSet);
}
// args[] is in reverse order, ie. args[0] holds the rightmost arg.
virtual LInsp insCall(const CallInfo *call, LInsp args[]) {
return out->insCall(call, args);
}
virtual LInsp insAlloc(int32_t size) {
NanoAssert(size != 0);
return out->insAlloc(size);
}
virtual LInsp insJtbl(LIns* index, uint32_t size) {
return out->insJtbl(index, size);
}
// convenience functions
// Inserts a conditional to execute and branches to execute if
// the condition is true and false respectively.
LIns* insChoose(LIns* cond, LIns* iftrue, LIns* iffalse, bool use_cmov);
// Inserts an integer comparison to 0
LIns* insEqI_0(LIns* oprnd1) {
return ins2ImmI(LIR_eqi, oprnd1, 0);
}
// Inserts a pointer comparison to 0
LIns* insEqP_0(LIns* oprnd1) {
return ins2(LIR_eqp, oprnd1, insImmWord(0));
}
// Inserts a binary operation where the second operand is an
// integer immediate.
LIns* ins2ImmI(LOpcode v, LIns* oprnd1, int32_t imm) {
return ins2(v, oprnd1, insImmI(imm));
}
LIns* insImmP(const void *ptr) {
#ifdef NANOJIT_64BIT
return insImmQ((uint64_t)ptr);
#else
return insImmI((int32_t)ptr);
#endif
}
LIns* insImmWord(intptr_t value) {
#ifdef NANOJIT_64BIT
return insImmQ(value);
#else
return insImmI(value);
#endif
}
// Sign-extend integers to native integers. On 32-bit this is a no-op.
LIns* insI2P(LIns* intIns) {
#ifdef NANOJIT_64BIT
return ins1(LIR_i2q, intIns);
#else
return intIns;
#endif
}
// Zero-extend integers to native integers. On 32-bit this is a no-op.
LIns* insUI2P(LIns* uintIns) {
#ifdef NANOJIT_64BIT
return ins1(LIR_ui2uq, uintIns);
#else
return uintIns;
#endif
}
// Chooses LIR_sti, LIR_stq or LIR_std according to the type of 'value'.
LIns* insStore(LIns* value, LIns* base, int32_t d, AccSet accSet);
};
#ifdef NJ_VERBOSE
extern const char* lirNames[];
// Maps address ranges to meaningful names.
class AddrNameMap
{
Allocator& allocator;
class Entry
{
public:
Entry(int) : name(0), size(0), align(0) {}
Entry(char *n, size_t s, size_t a) : name(n), size(s), align(a) {}
char* name;
size_t size:29, align:3;
};
TreeMap<const void*, Entry*> names; // maps code regions to names
public:
AddrNameMap(Allocator& allocator);
void addAddrRange(const void *p, size_t size, size_t align, const char *name);
void lookupAddr(void *p, char*& name, int32_t& offset);
};
// Maps LIR instructions to meaningful names.
class LirNameMap
{
private:
Allocator& alloc;
template <class Key>
class CountMap: public HashMap<Key, int> {
public:
CountMap(Allocator& alloc) : HashMap<Key, int>(alloc) {}
int add(Key k) {
int c = 1;
if (containsKey(k)) {
c = 1+get(k);
}
put(k,c);
return c;
}
};
CountMap<int> lircounts;
CountMap<const CallInfo *> funccounts;
CountMap<const char *> namecounts;
void addNameWithSuffix(LInsp i, const char *s, int suffix, bool ignoreOneSuffix);
class Entry
{
public:
Entry(int) : name(0) {}
Entry(char* n) : name(n) {}
char* name;
};
HashMap<LInsp, Entry*> names;
public:
LirNameMap(Allocator& alloc)
: alloc(alloc),
lircounts(alloc),
funccounts(alloc),
namecounts(alloc),
names(alloc)
{}
void addName(LInsp ins, const char *s); // gives 'ins' a special name
const char* createName(LInsp ins); // gives 'ins' a generic name
const char* lookupName(LInsp ins);
};
// We use big buffers for cases where we need to fit a whole instruction,
// and smaller buffers for all the others. These should easily be long
// enough, but for safety the formatXyz() functions check and won't exceed
// those limits.
class InsBuf {
public:
static const size_t len = 1000;
char buf[len];
};
class RefBuf {
public:
static const size_t len = 200;
char buf[len];
};
class LInsPrinter
{
private:
Allocator& alloc;
char *formatImmI(RefBuf* buf, int32_t c);
char *formatImmQ(RefBuf* buf, uint64_t c);
char *formatImmD(RefBuf* buf, double c);
void formatGuard(InsBuf* buf, LInsp ins);
void formatGuardXov(InsBuf* buf, LInsp ins);
public:
LInsPrinter(Allocator& alloc)
: alloc(alloc)
{
addrNameMap = new (alloc) AddrNameMap(alloc);
lirNameMap = new (alloc) LirNameMap(alloc);
}
char *formatAddr(RefBuf* buf, void* p);
char *formatRef(RefBuf* buf, LInsp ref, bool showImmValue = true);
char *formatIns(InsBuf* buf, LInsp ins);
char *formatAccSet(RefBuf* buf, AccSet accSet);
AddrNameMap* addrNameMap;
LirNameMap* lirNameMap;
};
class VerboseWriter : public LirWriter
{
InsList code;
LInsPrinter* printer;
LogControl* logc;
const char* const prefix;
bool const always_flush;
public:
VerboseWriter(Allocator& alloc, LirWriter *out, LInsPrinter* printer, LogControl* logc,
const char* prefix = "", bool always_flush = false)
: LirWriter(out), code(alloc), printer(printer), logc(logc), prefix(prefix), always_flush(always_flush)
{}
LInsp add(LInsp i) {
if (i) {
code.add(i);
if (always_flush)
flush();
}
return i;
}
LInsp add_flush(LInsp i) {
if ((i = add(i)) != 0)
flush();
return i;
}
void flush()
{
if (!code.isEmpty()) {
InsBuf b;
int32_t count = 0;
for (Seq<LIns*>* p = code.get(); p != NULL; p = p->tail) {
logc->printf("%s %s\n", prefix, printer->formatIns(&b, p->head));
count++;
}
code.clear();
if (count > 1)
logc->printf("\n");
}
}
LIns* insGuard(LOpcode op, LInsp cond, GuardRecord *gr) {
return add_flush(out->insGuard(op,cond,gr));
}
LIns* insGuardXov(LOpcode op, LInsp a, LInsp b, GuardRecord *gr) {
return add_flush(out->insGuardXov(op,a,b,gr));
}
LIns* insBranch(LOpcode v, LInsp condition, LInsp to) {
return add_flush(out->insBranch(v, condition, to));
}
LIns* insJtbl(LIns* index, uint32_t size) {
return add_flush(out->insJtbl(index, size));
}
LIns* ins0(LOpcode v) {
if (v == LIR_label || v == LIR_start) {
flush();
}
return add(out->ins0(v));
}
LIns* ins1(LOpcode v, LInsp a) {
return isRetOpcode(v) ? add_flush(out->ins1(v, a)) : add(out->ins1(v, a));
}
LIns* ins2(LOpcode v, LInsp a, LInsp b) {
return add(out->ins2(v, a, b));
}
LIns* ins3(LOpcode v, LInsp a, LInsp b, LInsp c) {
return add(out->ins3(v, a, b, c));
}
LIns* insCall(const CallInfo *call, LInsp args[]) {
return add_flush(out->insCall(call, args));
}
LIns* insParam(int32_t i, int32_t kind) {
return add(out->insParam(i, kind));
}
LIns* insLoad(LOpcode v, LInsp base, int32_t disp, AccSet accSet) {
return add(out->insLoad(v, base, disp, accSet));
}
LIns* insStore(LOpcode op, LInsp v, LInsp b, int32_t d, AccSet accSet) {
return add(out->insStore(op, v, b, d, accSet));
}
LIns* insAlloc(int32_t size) {
return add(out->insAlloc(size));
}
LIns* insImmI(int32_t imm) {
return add(out->insImmI(imm));
}
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t imm) {
return add(out->insImmQ(imm));
}
#endif
LIns* insImmD(double d) {
return add(out->insImmD(d));
}
};
#endif
class ExprFilter: public LirWriter
{
public:
ExprFilter(LirWriter *out) : LirWriter(out) {}
LIns* ins1(LOpcode v, LIns* a);
LIns* ins2(LOpcode v, LIns* a, LIns* b);
LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c);
LIns* insGuard(LOpcode, LIns *cond, GuardRecord *);
LIns* insGuardXov(LOpcode, LIns* a, LIns* b, GuardRecord *);
LIns* insBranch(LOpcode, LIns *cond, LIns *target);
LIns* insLoad(LOpcode op, LInsp base, int32_t off, AccSet accSet);
};
class CseFilter: public LirWriter
{
enum LInsHashKind {
// We divide instruction kinds into groups. LIns0 isn't present
// because we don't need to record any 0-ary instructions.
LInsImmI = 0,
LInsImmQ = 1, // only occurs on 64-bit platforms
LInsImmD = 2,
LIns1 = 3,
LIns2 = 4,
LIns3 = 5,
LInsCall = 6,
// Loads are special. We group them by access region: one table for
// each region, and then a catch-all table for any loads marked with
// multiple regions. This arrangement makes the removal of
// invalidated loads fast -- eg. we can invalidate all STACK loads by
// just clearing the LInsLoadStack table. The disadvantage is that
// loads marked with multiple regions must be invalidated
// conservatively, eg. if any intervening stores occur. But loads
// marked with multiple regions should be rare.
LInsLoadReadOnly = 7,
LInsLoadStack = 8,
LInsLoadRStack = 9,
LInsLoadOther = 10,
LInsLoadMultiple = 11,
LInsFirst = 0,
LInsLast = 11,
// Need a value after "last" to outsmart compilers that insist last+1 is impossible.
LInsInvalid = 12
};
#define nextKind(kind) LInsHashKind(kind+1)
// There is one list for each instruction kind. This lets us size the
// lists appropriately (some instructions are more common than others).
// It also lets us have kind-specific find/add/grow functions, which
// are faster than generic versions.
//
// Nb: Size must be a power of 2.
// Don't start too small, or we'll waste time growing and rehashing.
// Don't start too large, will waste memory.
//
LInsp* m_list[LInsLast + 1];
uint32_t m_cap[LInsLast + 1];
uint32_t m_used[LInsLast + 1];
typedef uint32_t (CseFilter::*find_t)(LInsp);
find_t m_find[LInsLast + 1];
AccSet storesSinceLastLoad; // regions stored to since the last load
Allocator& alloc;
static uint32_t hash8(uint32_t hash, const uint8_t data);
static uint32_t hash32(uint32_t hash, const uint32_t data);
static uint32_t hashptr(uint32_t hash, const void* data);
static uint32_t hashfinish(uint32_t hash);
static uint32_t hashImmI(int32_t);
static uint32_t hashImmQorD(uint64_t); // not NANOJIT_64BIT-only -- used by findImmD()
static uint32_t hash1(LOpcode op, LInsp);
static uint32_t hash2(LOpcode op, LInsp, LInsp);
static uint32_t hash3(LOpcode op, LInsp, LInsp, LInsp);
static uint32_t hashLoad(LOpcode op, LInsp, int32_t, AccSet);
static uint32_t hashCall(const CallInfo *call, uint32_t argc, LInsp args[]);
// These versions are used before an LIns has been created.
LInsp findImmI(int32_t a, uint32_t &k);
#ifdef NANOJIT_64BIT
LInsp findImmQ(uint64_t a, uint32_t &k);
#endif
LInsp findImmD(uint64_t d, uint32_t &k);
LInsp find1(LOpcode v, LInsp a, uint32_t &k);
LInsp find2(LOpcode v, LInsp a, LInsp b, uint32_t &k);
LInsp find3(LOpcode v, LInsp a, LInsp b, LInsp c, uint32_t &k);
LInsp findLoad(LOpcode v, LInsp a, int32_t b, AccSet accSet, LInsHashKind kind,
uint32_t &k);
LInsp findCall(const CallInfo *call, uint32_t argc, LInsp args[], uint32_t &k);
// These versions are used after an LIns has been created; they are
// used for rehashing after growing. They just call onto the
// multi-arg versions above.
uint32_t findImmI(LInsp ins);
#ifdef NANOJIT_64BIT
uint32_t findImmQ(LInsp ins);
#endif
uint32_t findImmD(LInsp ins);
uint32_t find1(LInsp ins);
uint32_t find2(LInsp ins);
uint32_t find3(LInsp ins);
uint32_t findCall(LInsp ins);
uint32_t findLoadReadOnly(LInsp ins);
uint32_t findLoadStack(LInsp ins);
uint32_t findLoadRStack(LInsp ins);
uint32_t findLoadOther(LInsp ins);
uint32_t findLoadMultiple(LInsp ins);
void grow(LInsHashKind kind);
// 'k' is the index found by findXYZ().
void add(LInsHashKind kind, LInsp ins, uint32_t k);
void clear(); // clears all tables
void clear(LInsHashKind); // clears one table
public:
CseFilter(LirWriter *out, Allocator&);
LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t q);
#endif
LIns* insImmD(double d);
LIns* ins0(LOpcode v);
LIns* ins1(LOpcode v, LInsp);
LIns* ins2(LOpcode v, LInsp, LInsp);
LIns* ins3(LOpcode v, LInsp, LInsp, LInsp);
LIns* insLoad(LOpcode op, LInsp base, int32_t d, AccSet accSet);
LIns* insStore(LOpcode op, LInsp value, LInsp base, int32_t d, AccSet accSet);
LIns* insCall(const CallInfo *call, LInsp args[]);
LIns* insGuard(LOpcode op, LInsp cond, GuardRecord *gr);
LIns* insGuardXov(LOpcode op, LInsp a, LInsp b, GuardRecord *gr);
};
class LirBuffer
{
public:
LirBuffer(Allocator& alloc);
void clear();
uintptr_t makeRoom(size_t szB); // make room for an instruction
debug_only (void validate() const;)
verbose_only(LInsPrinter* printer;)
int32_t insCount();
size_t byteCount();
// stats
struct
{
uint32_t lir; // # instructions
}
_stats;
AbiKind abi;
LInsp state,param1,sp,rp;
LInsp savedRegs[NumSavedRegs];
protected:
friend class LirBufWriter;
/** Each chunk is just a raw area of LIns instances, with no header
and no more than 8-byte alignment. The chunk size is somewhat arbitrary. */
static const size_t CHUNK_SZB = 8000;
/** Get CHUNK_SZB more memory for LIR instructions. */
void chunkAlloc();
void moveToNewChunk(uintptr_t addrOfLastLInsOnCurrentChunk);
Allocator& _allocator;
uintptr_t _unused; // next unused instruction slot in the current LIR chunk
uintptr_t _limit; // one past the last usable byte of the current LIR chunk
size_t _bytesAllocated;
};
class LirBufWriter : public LirWriter
{
LirBuffer* _buf; // underlying buffer housing the instructions
const Config& _config;
public:
LirBufWriter(LirBuffer* buf, const Config& config)
: LirWriter(0), _buf(buf), _config(config) {
}
// LirWriter interface
LInsp insLoad(LOpcode op, LInsp base, int32_t disp, AccSet accSet);
LInsp insStore(LOpcode op, LInsp o1, LInsp o2, int32_t disp, AccSet accSet);
LInsp ins0(LOpcode op);
LInsp ins1(LOpcode op, LInsp o1);
LInsp ins2(LOpcode op, LInsp o1, LInsp o2);
LInsp ins3(LOpcode op, LInsp o1, LInsp o2, LInsp o3);
LInsp insParam(int32_t i, int32_t kind);
LInsp insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
LInsp insImmQ(uint64_t imm);
#endif
LInsp insImmD(double d);
LInsp insCall(const CallInfo *call, LInsp args[]);
LInsp insGuard(LOpcode op, LInsp cond, GuardRecord *gr);
LInsp insGuardXov(LOpcode op, LInsp a, LInsp b, GuardRecord *gr);
LInsp insBranch(LOpcode v, LInsp condition, LInsp to);
LInsp insAlloc(int32_t size);
LInsp insJtbl(LIns* index, uint32_t size);
};
class LirFilter
{
public:
LirFilter *in;
LirFilter(LirFilter *in) : in(in) {}
virtual ~LirFilter(){}
// It's crucial that once this reaches the LIR_start at the beginning
// of the buffer, that it just keeps returning that LIR_start LIns on
// any subsequent calls.
virtual LInsp read() {
return in->read();
}
virtual LInsp finalIns() {
return in->finalIns();
}
};
// concrete
class LirReader : public LirFilter
{
LInsp _ins; // next instruction to be read; invariant: is never a skip
LInsp _finalIns; // final instruction in the stream; ie. the first one to be read
public:
LirReader(LInsp ins) : LirFilter(0), _ins(ins), _finalIns(ins)
{
// The last instruction for a fragment shouldn't be a skip.
// (Actually, if the last *inserted* instruction exactly fills up
// a chunk, a new chunk will be created, and thus the last *written*
// instruction will be a skip -- the one needed for the
// cross-chunk link. But the last *inserted* instruction is what
// is recorded and used to initialise each LirReader, and that is
// what is seen here, and therefore this assertion holds.)
NanoAssert(ins && !ins->isop(LIR_skip));
}
virtual ~LirReader() {}
// Returns next instruction and advances to the prior instruction.
// Invariant: never returns a skip.
LInsp read();
LInsp finalIns() {
return _finalIns;
}
};
verbose_only(void live(LirFilter* in, Allocator& alloc, Fragment* frag, LogControl*);)
// WARNING: StackFilter assumes that all stack entries are eight bytes.
// Some of its optimisations aren't valid if that isn't true. See
// StackFilter::read() for more details.
class StackFilter: public LirFilter
{
LInsp sp;
BitSet stk;
int top;
int getTop(LInsp br);
public:
StackFilter(LirFilter *in, Allocator& alloc, LInsp sp);
LInsp read();
};
struct SoftFloatOps
{
const CallInfo* opmap[LIR_sentinel];
SoftFloatOps();
};
extern const SoftFloatOps softFloatOps;
// Replaces fpu ops with function calls, for platforms lacking float
// hardware (eg. some ARM machines).
class SoftFloatFilter: public LirWriter
{
public:
static const CallInfo* opmap[LIR_sentinel];
SoftFloatFilter(LirWriter *out);
LIns *split(LIns *a);
LIns *split(const CallInfo *call, LInsp args[]);
LIns *callD1(const CallInfo *call, LIns *a);
LIns *callD2(const CallInfo *call, LIns *a, LIns *b);
LIns *cmpD(const CallInfo *call, LIns *a, LIns *b);
LIns *ins1(LOpcode op, LIns *a);
LIns *ins2(LOpcode op, LIns *a, LIns *b);
LIns *insCall(const CallInfo *ci, LInsp args[]);
};
#ifdef DEBUG
// This class does thorough checking of LIR. It checks *implicit* LIR
// instructions, ie. LIR instructions specified via arguments -- to
// methods like insLoad() -- that have not yet been converted into
// *explicit* LIns objects in a LirBuffer. The reason for this is that if
// we wait until the LIR instructions are explicit, they will have gone
// through the entire writer pipeline and been optimised. By checking
// implicit LIR instructions we can check the LIR code at the start of the
// writer pipeline, exactly as it is generated by the compiler front-end.
//
// A general note about the errors produced by this class: for
// TraceMonkey, they won't include special names for instructions that
// have them unless TMFLAGS is specified.
class ValidateWriter : public LirWriter
{
private:
LInsPrinter* printer;
const char* whereInPipeline;
const char* type2string(LTy type);
void typeCheckArgs(LOpcode op, int nArgs, LTy formals[], LIns* args[]);
void errorStructureShouldBe(LOpcode op, const char* argDesc, int argN, LIns* arg,
const char* shouldBeDesc);
void errorAccSet(const char* what, AccSet accSet, const char* shouldDesc);
void checkLInsHasOpcode(LOpcode op, int argN, LIns* ins, LOpcode op2);
void checkLInsIsACondOrConst(LOpcode op, int argN, LIns* ins);
void checkLInsIsNull(LOpcode op, int argN, LIns* ins);
void checkAccSet(LOpcode op, LInsp base, AccSet accSet, AccSet maxAccSet);
LInsp sp, rp;
public:
ValidateWriter(LirWriter* out, LInsPrinter* printer, const char* where);
void setSp(LInsp ins) { sp = ins; }
void setRp(LInsp ins) { rp = ins; }
LIns* insLoad(LOpcode op, LIns* base, int32_t d, AccSet accSet);
LIns* insStore(LOpcode op, LIns* value, LIns* base, int32_t d, AccSet accSet);
LIns* ins0(LOpcode v);
LIns* ins1(LOpcode v, LIns* a);
LIns* ins2(LOpcode v, LIns* a, LIns* b);
LIns* ins3(LOpcode v, LIns* a, LIns* b, LIns* c);
LIns* insParam(int32_t arg, int32_t kind);
LIns* insImmI(int32_t imm);
#ifdef NANOJIT_64BIT
LIns* insImmQ(uint64_t imm);
#endif
LIns* insImmD(double d);
LIns* insCall(const CallInfo *call, LIns* args[]);
LIns* insGuard(LOpcode v, LIns *c, GuardRecord *gr);
LIns* insGuardXov(LOpcode v, LIns* a, LIns* b, GuardRecord* gr);
LIns* insBranch(LOpcode v, LIns* condition, LIns* to);
LIns* insAlloc(int32_t size);
LIns* insJtbl(LIns* index, uint32_t size);
};
// This just checks things that aren't possible to check in
// ValidateWriter, eg. whether all branch targets are set and are labels.
class ValidateReader: public LirFilter {
public:
ValidateReader(LirFilter* in);
LIns* read();
};
#endif
#ifdef NJ_VERBOSE
/* A listing filter for LIR, going through backwards. It merely
passes its input to its output, but notes it down too. When
finish() is called, prints out what went through. Is intended to be
used to print arbitrary intermediate transformation stages of
LIR. */
class ReverseLister : public LirFilter
{
Allocator& _alloc;
LInsPrinter* _printer;
const char* _title;
StringList _strs;
LogControl* _logc;
LIns* _prevIns;
public:
ReverseLister(LirFilter* in, Allocator& alloc,
LInsPrinter* printer, LogControl* logc, const char* title)
: LirFilter(in)
, _alloc(alloc)
, _printer(printer)
, _title(title)
, _strs(alloc)
, _logc(logc)
, _prevIns(NULL)
{ }
void finish();
LInsp read();
};
#endif
}
#endif // __nanojit_LIR__