gecko/gfx/layers/composite/ContentHost.cpp
Boris Chiou c900095227 Bug 975346 - Part 1: General functions for Effects. r=dglastonbury
1. Support GenEffectChain() for LayerComposite.
   Each layer can use this API to gen the
   EffectChain (only primary effect now)
2. Support GenEffect() for CompositableHost.
3. Move AutoLock to compositeHost.
2014-06-22 19:06:00 +02:00

704 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/ContentHost.h"
#include "LayersLogging.h" // for AppendToString
#include "gfx2DGlue.h" // for ContentForFormat
#include "mozilla/gfx/Point.h" // for IntSize
#include "mozilla/Assertions.h" // for MOZ_ASSERT, etc
#include "mozilla/gfx/BaseRect.h" // for BaseRect
#include "mozilla/layers/Compositor.h" // for Compositor
#include "mozilla/layers/Effects.h" // for TexturedEffect, Effect, etc
#include "mozilla/layers/LayersMessages.h" // for ThebesBufferData
#include "nsAString.h"
#include "nsPrintfCString.h" // for nsPrintfCString
#include "nsString.h" // for nsAutoCString
#include "mozilla/layers/TextureHostOGL.h" // for TextureHostOGL
namespace mozilla {
namespace gfx {
class Matrix4x4;
}
using namespace gfx;
namespace layers {
ContentHostBase::ContentHostBase(const TextureInfo& aTextureInfo)
: ContentHost(aTextureInfo)
, mPaintWillResample(false)
, mInitialised(false)
{}
ContentHostBase::~ContentHostBase()
{
}
void
ContentHostBase::Composite(EffectChain& aEffectChain,
float aOpacity,
const gfx::Matrix4x4& aTransform,
const Filter& aFilter,
const Rect& aClipRect,
const nsIntRegion* aVisibleRegion,
TiledLayerProperties* aLayerProperties)
{
NS_ASSERTION(aVisibleRegion, "Requires a visible region");
AutoLockCompositableHost lock(this);
if (lock.Failed()) {
return;
}
RefPtr<NewTextureSource> source = GetTextureSource();
RefPtr<NewTextureSource> sourceOnWhite = GetTextureSourceOnWhite();
if (!source) {
return;
}
RefPtr<TexturedEffect> effect = GenEffect(aFilter);
if (!effect) {
return;
}
aEffectChain.mPrimaryEffect = effect;
nsIntRegion tmpRegion;
const nsIntRegion* renderRegion;
if (PaintWillResample()) {
// If we're resampling, then the texture image will contain exactly the
// entire visible region's bounds, and we should draw it all in one quad
// to avoid unexpected aliasing.
tmpRegion = aVisibleRegion->GetBounds();
renderRegion = &tmpRegion;
} else {
renderRegion = aVisibleRegion;
}
nsIntRegion region(*renderRegion);
nsIntPoint origin = GetOriginOffset();
// translate into TexImage space, buffer origin might not be at texture (0,0)
region.MoveBy(-origin);
// Figure out the intersecting draw region
gfx::IntSize texSize = source->GetSize();
nsIntRect textureRect = nsIntRect(0, 0, texSize.width, texSize.height);
textureRect.MoveBy(region.GetBounds().TopLeft());
nsIntRegion subregion;
subregion.And(region, textureRect);
if (subregion.IsEmpty()) {
// Region is empty, nothing to draw
return;
}
nsIntRegion screenRects;
nsIntRegion regionRects;
// Collect texture/screen coordinates for drawing
nsIntRegionRectIterator iter(subregion);
while (const nsIntRect* iterRect = iter.Next()) {
nsIntRect regionRect = *iterRect;
nsIntRect screenRect = regionRect;
screenRect.MoveBy(origin);
screenRects.Or(screenRects, screenRect);
regionRects.Or(regionRects, regionRect);
}
BigImageIterator* bigImgIter = source->AsBigImageIterator();
BigImageIterator* iterOnWhite = nullptr;
if (bigImgIter) {
bigImgIter->BeginBigImageIteration();
}
if (sourceOnWhite) {
iterOnWhite = sourceOnWhite->AsBigImageIterator();
MOZ_ASSERT(!bigImgIter || bigImgIter->GetTileCount() == iterOnWhite->GetTileCount(),
"Tile count mismatch on component alpha texture");
if (iterOnWhite) {
iterOnWhite->BeginBigImageIteration();
}
}
bool usingTiles = (bigImgIter && bigImgIter->GetTileCount() > 1);
do {
if (iterOnWhite) {
MOZ_ASSERT(iterOnWhite->GetTileRect() == bigImgIter->GetTileRect(),
"component alpha textures should be the same size.");
}
nsIntRect texRect = bigImgIter ? bigImgIter->GetTileRect()
: nsIntRect(0, 0,
texSize.width,
texSize.height);
// Draw texture. If we're using tiles, we do repeating manually, as texture
// repeat would cause each individual tile to repeat instead of the
// compound texture as a whole. This involves drawing at most 4 sections,
// 2 for each axis that has texture repeat.
for (int y = 0; y < (usingTiles ? 2 : 1); y++) {
for (int x = 0; x < (usingTiles ? 2 : 1); x++) {
nsIntRect currentTileRect(texRect);
currentTileRect.MoveBy(x * texSize.width, y * texSize.height);
nsIntRegionRectIterator screenIter(screenRects);
nsIntRegionRectIterator regionIter(regionRects);
const nsIntRect* screenRect;
const nsIntRect* regionRect;
while ((screenRect = screenIter.Next()) &&
(regionRect = regionIter.Next())) {
nsIntRect tileScreenRect(*screenRect);
nsIntRect tileRegionRect(*regionRect);
// When we're using tiles, find the intersection between the tile
// rect and this region rect. Tiling is then handled by the
// outer for-loops and modifying the tile rect.
if (usingTiles) {
tileScreenRect.MoveBy(-origin);
tileScreenRect = tileScreenRect.Intersect(currentTileRect);
tileScreenRect.MoveBy(origin);
if (tileScreenRect.IsEmpty())
continue;
tileRegionRect = regionRect->Intersect(currentTileRect);
tileRegionRect.MoveBy(-currentTileRect.TopLeft());
}
gfx::Rect rect(tileScreenRect.x, tileScreenRect.y,
tileScreenRect.width, tileScreenRect.height);
effect->mTextureCoords = Rect(Float(tileRegionRect.x) / texRect.width,
Float(tileRegionRect.y) / texRect.height,
Float(tileRegionRect.width) / texRect.width,
Float(tileRegionRect.height) / texRect.height);
GetCompositor()->DrawQuad(rect, aClipRect, aEffectChain, aOpacity, aTransform);
if (usingTiles) {
DiagnosticFlags diagnostics = DiagnosticFlags::CONTENT | DiagnosticFlags::BIGIMAGE;
if (iterOnWhite) {
diagnostics |= DiagnosticFlags::COMPONENT_ALPHA;
}
GetCompositor()->DrawDiagnostics(diagnostics, rect, aClipRect,
aTransform, mFlashCounter);
}
}
}
}
if (iterOnWhite) {
iterOnWhite->NextTile();
}
} while (usingTiles && bigImgIter->NextTile());
if (bigImgIter) {
bigImgIter->EndBigImageIteration();
}
if (iterOnWhite) {
iterOnWhite->EndBigImageIteration();
}
DiagnosticFlags diagnostics = DiagnosticFlags::CONTENT;
if (iterOnWhite) {
diagnostics |= DiagnosticFlags::COMPONENT_ALPHA;
}
GetCompositor()->DrawDiagnostics(diagnostics, *aVisibleRegion, aClipRect,
aTransform, mFlashCounter);
}
TemporaryRef<TexturedEffect>
ContentHostBase::GenEffect(const gfx::Filter& aFilter)
{
RefPtr<NewTextureSource> source = GetTextureSource();
RefPtr<NewTextureSource> sourceOnWhite = GetTextureSourceOnWhite();
if (!source) {
return nullptr;
}
return CreateTexturedEffect(source, sourceOnWhite, aFilter, true);
}
void
ContentHostTexture::UseTextureHost(TextureHost* aTexture)
{
ContentHostBase::UseTextureHost(aTexture);
mTextureHost = aTexture;
mTextureHostOnWhite = nullptr;
}
void
ContentHostTexture::UseComponentAlphaTextures(TextureHost* aTextureOnBlack,
TextureHost* aTextureOnWhite)
{
ContentHostBase::UseComponentAlphaTextures(aTextureOnBlack, aTextureOnWhite);
mTextureHost = aTextureOnBlack;
mTextureHostOnWhite = aTextureOnWhite;
}
void
ContentHostTexture::SetCompositor(Compositor* aCompositor)
{
ContentHostBase::SetCompositor(aCompositor);
if (mTextureHost) {
mTextureHost->SetCompositor(aCompositor);
}
if (mTextureHostOnWhite) {
mTextureHostOnWhite->SetCompositor(aCompositor);
}
}
#ifdef MOZ_DUMP_PAINTING
void
ContentHostTexture::Dump(std::stringstream& aStream,
const char* aPrefix,
bool aDumpHtml)
{
if (!aDumpHtml) {
return;
}
aStream << "<ul>";
if (mTextureHost) {
aStream << aPrefix;
aStream << "<li> <a href=";
DumpTextureHost(aStream, mTextureHost);
aStream << "> Front buffer </a></li> ";
}
if (mTextureHostOnWhite) {
aStream << aPrefix;
aStream << "<li> <a href=";
DumpTextureHost(aStream, mTextureHostOnWhite);
aStream << "> Front buffer on white </a> </li> ";
}
aStream << "</ul>";
}
#endif
static inline void
AddWrappedRegion(const nsIntRegion& aInput, nsIntRegion& aOutput,
const nsIntSize& aSize, const nsIntPoint& aShift)
{
nsIntRegion tempRegion;
tempRegion.And(nsIntRect(aShift, aSize), aInput);
tempRegion.MoveBy(-aShift);
aOutput.Or(aOutput, tempRegion);
}
bool
ContentHostSingleBuffered::UpdateThebes(const ThebesBufferData& aData,
const nsIntRegion& aUpdated,
const nsIntRegion& aOldValidRegionBack,
nsIntRegion* aUpdatedRegionBack)
{
aUpdatedRegionBack->SetEmpty();
if (!mTextureHost) {
mInitialised = false;
return true; // FIXME should we return false? Returning true for now
} // to preserve existing behavior of NOT causing IPC errors.
// updated is in screen coordinates. Convert it to buffer coordinates.
nsIntRegion destRegion(aUpdated);
destRegion.MoveBy(-aData.rect().TopLeft());
if (!aData.rect().Contains(aUpdated.GetBounds()) ||
aData.rotation().x > aData.rect().width ||
aData.rotation().y > aData.rect().height) {
NS_ERROR("Invalid update data");
return false;
}
// destRegion is now in logical coordinates relative to the buffer, but we
// need to account for rotation. We do that by moving the region to the
// rotation offset and then wrapping any pixels that extend off the
// bottom/right edges.
// Shift to the rotation point
destRegion.MoveBy(aData.rotation());
nsIntSize bufferSize = aData.rect().Size();
// Select only the pixels that are still within the buffer.
nsIntRegion finalRegion;
finalRegion.And(nsIntRect(nsIntPoint(), bufferSize), destRegion);
// For each of the overlap areas (right, bottom-right, bottom), select those
// pixels and wrap them around to the opposite edge of the buffer rect.
AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(aData.rect().width, 0));
AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(aData.rect().width, aData.rect().height));
AddWrappedRegion(destRegion, finalRegion, bufferSize, nsIntPoint(0, aData.rect().height));
MOZ_ASSERT(nsIntRect(0, 0, aData.rect().width, aData.rect().height).Contains(finalRegion.GetBounds()));
mTextureHost->Updated(&finalRegion);
if (mTextureHostOnWhite) {
mTextureHostOnWhite->Updated(&finalRegion);
}
mInitialised = true;
mBufferRect = aData.rect();
mBufferRotation = aData.rotation();
return true;
}
bool
ContentHostDoubleBuffered::UpdateThebes(const ThebesBufferData& aData,
const nsIntRegion& aUpdated,
const nsIntRegion& aOldValidRegionBack,
nsIntRegion* aUpdatedRegionBack)
{
if (!mTextureHost) {
mInitialised = false;
*aUpdatedRegionBack = aUpdated;
return true;
}
// We don't need to calculate an update region because we assume that if we
// are using double buffering then we have render-to-texture and thus no
// upload to do.
mTextureHost->Updated();
if (mTextureHostOnWhite) {
mTextureHostOnWhite->Updated();
}
mInitialised = true;
mBufferRect = aData.rect();
mBufferRotation = aData.rotation();
*aUpdatedRegionBack = aUpdated;
// Save the current valid region of our front buffer, because if
// we're double buffering, it's going to be the valid region for the
// next back buffer sent back to the renderer.
//
// NB: we rely here on the fact that mValidRegion is initialized to
// empty, and that the first time Swap() is called we don't have a
// valid front buffer that we're going to return to content.
mValidRegionForNextBackBuffer = aOldValidRegionBack;
return true;
}
ContentHostIncremental::ContentHostIncremental(const TextureInfo& aTextureInfo)
: ContentHostBase(aTextureInfo)
, mDeAllocator(nullptr)
, mLocked(false)
{
}
ContentHostIncremental::~ContentHostIncremental()
{
}
bool
ContentHostIncremental::CreatedIncrementalTexture(ISurfaceAllocator* aAllocator,
const TextureInfo& aTextureInfo,
const nsIntRect& aBufferRect)
{
mUpdateList.AppendElement(new TextureCreationRequest(aTextureInfo,
aBufferRect));
mDeAllocator = aAllocator;
FlushUpdateQueue();
return true;
}
void
ContentHostIncremental::UpdateIncremental(TextureIdentifier aTextureId,
SurfaceDescriptor& aSurface,
const nsIntRegion& aUpdated,
const nsIntRect& aBufferRect,
const nsIntPoint& aBufferRotation)
{
mUpdateList.AppendElement(new TextureUpdateRequest(mDeAllocator,
aTextureId,
aSurface,
aUpdated,
aBufferRect,
aBufferRotation));
FlushUpdateQueue();
}
void
ContentHostIncremental::FlushUpdateQueue()
{
// If we're not compositing for some reason (the window being minimized
// is one example), then we never process these updates and it can consume
// huge amounts of memory. Instead we forcibly process the updates (during the
// transaction) if the list gets too long.
static const uint32_t kMaxUpdateCount = 6;
if (mUpdateList.Length() >= kMaxUpdateCount) {
ProcessTextureUpdates();
}
}
void
ContentHostIncremental::ProcessTextureUpdates()
{
for (uint32_t i = 0; i < mUpdateList.Length(); i++) {
mUpdateList[i]->Execute(this);
}
mUpdateList.Clear();
}
NewTextureSource*
ContentHostIncremental::GetTextureSource()
{
MOZ_ASSERT(mLocked);
return mSource;
}
NewTextureSource*
ContentHostIncremental::GetTextureSourceOnWhite()
{
MOZ_ASSERT(mLocked);
return mSourceOnWhite;
}
void
ContentHostIncremental::TextureCreationRequest::Execute(ContentHostIncremental* aHost)
{
Compositor* compositor = aHost->GetCompositor();
MOZ_ASSERT(compositor);
RefPtr<DataTextureSource> temp =
compositor->CreateDataTextureSource(mTextureInfo.mTextureFlags);
MOZ_ASSERT(temp->AsSourceOGL() &&
temp->AsSourceOGL()->AsTextureImageTextureSource());
RefPtr<TextureImageTextureSourceOGL> newSource =
temp->AsSourceOGL()->AsTextureImageTextureSource();
RefPtr<TextureImageTextureSourceOGL> newSourceOnWhite;
if (mTextureInfo.mTextureFlags & TextureFlags::COMPONENT_ALPHA) {
temp =
compositor->CreateDataTextureSource(mTextureInfo.mTextureFlags);
MOZ_ASSERT(temp->AsSourceOGL() &&
temp->AsSourceOGL()->AsTextureImageTextureSource());
newSourceOnWhite = temp->AsSourceOGL()->AsTextureImageTextureSource();
}
if (mTextureInfo.mDeprecatedTextureHostFlags & DeprecatedTextureHostFlags::COPY_PREVIOUS) {
MOZ_ASSERT(aHost->mSource);
MOZ_ASSERT(aHost->mSource->IsValid());
nsIntRect bufferRect = aHost->mBufferRect;
nsIntPoint bufferRotation = aHost->mBufferRotation;
nsIntRect overlap;
// The buffer looks like:
// ______
// |1 |2 | Where the center point is offset by mBufferRotation from the top-left corner.
// |___|__|
// |3 |4 |
// |___|__|
//
// This is drawn to the screen as:
// ______
// |4 |3 | Where the center point is { width - mBufferRotation.x, height - mBufferRotation.y } from
// |___|__| from the top left corner - rotationPoint.
// |2 |1 |
// |___|__|
//
// The basic idea below is to take all quadrant rectangles from the src and transform them into rectangles
// in the destination. Unfortunately, it seems it is overly complex and could perhaps be simplified.
nsIntRect srcBufferSpaceBottomRight(bufferRotation.x, bufferRotation.y, bufferRect.width - bufferRotation.x, bufferRect.height - bufferRotation.y);
nsIntRect srcBufferSpaceTopRight(bufferRotation.x, 0, bufferRect.width - bufferRotation.x, bufferRotation.y);
nsIntRect srcBufferSpaceTopLeft(0, 0, bufferRotation.x, bufferRotation.y);
nsIntRect srcBufferSpaceBottomLeft(0, bufferRotation.y, bufferRotation.x, bufferRect.height - bufferRotation.y);
overlap.IntersectRect(bufferRect, mBufferRect);
nsIntRect srcRect(overlap), dstRect(overlap);
srcRect.MoveBy(- bufferRect.TopLeft() + bufferRotation);
nsIntRect srcRectDrawTopRight(srcRect);
nsIntRect srcRectDrawTopLeft(srcRect);
nsIntRect srcRectDrawBottomLeft(srcRect);
// transform into the different quadrants
srcRectDrawTopRight .MoveBy(-nsIntPoint(0, bufferRect.height));
srcRectDrawTopLeft .MoveBy(-nsIntPoint(bufferRect.width, bufferRect.height));
srcRectDrawBottomLeft.MoveBy(-nsIntPoint(bufferRect.width, 0));
// Intersect with the quadrant
srcRect = srcRect .Intersect(srcBufferSpaceBottomRight);
srcRectDrawTopRight = srcRectDrawTopRight .Intersect(srcBufferSpaceTopRight);
srcRectDrawTopLeft = srcRectDrawTopLeft .Intersect(srcBufferSpaceTopLeft);
srcRectDrawBottomLeft = srcRectDrawBottomLeft.Intersect(srcBufferSpaceBottomLeft);
dstRect = srcRect;
nsIntRect dstRectDrawTopRight(srcRectDrawTopRight);
nsIntRect dstRectDrawTopLeft(srcRectDrawTopLeft);
nsIntRect dstRectDrawBottomLeft(srcRectDrawBottomLeft);
// transform back to src buffer space
dstRect .MoveBy(-bufferRotation);
dstRectDrawTopRight .MoveBy(-bufferRotation + nsIntPoint(0, bufferRect.height));
dstRectDrawTopLeft .MoveBy(-bufferRotation + nsIntPoint(bufferRect.width, bufferRect.height));
dstRectDrawBottomLeft.MoveBy(-bufferRotation + nsIntPoint(bufferRect.width, 0));
// transform back to draw coordinates
dstRect .MoveBy(bufferRect.TopLeft());
dstRectDrawTopRight .MoveBy(bufferRect.TopLeft());
dstRectDrawTopLeft .MoveBy(bufferRect.TopLeft());
dstRectDrawBottomLeft.MoveBy(bufferRect.TopLeft());
// transform to destBuffer space
dstRect .MoveBy(-mBufferRect.TopLeft());
dstRectDrawTopRight .MoveBy(-mBufferRect.TopLeft());
dstRectDrawTopLeft .MoveBy(-mBufferRect.TopLeft());
dstRectDrawBottomLeft.MoveBy(-mBufferRect.TopLeft());
newSource->EnsureBuffer(mBufferRect.Size(),
ContentForFormat(aHost->mSource->GetFormat()));
aHost->mSource->CopyTo(srcRect, newSource, dstRect);
if (bufferRotation != nsIntPoint(0, 0)) {
// Draw the remaining quadrants. We call BlitTextureImage 3 extra
// times instead of doing a single draw call because supporting that
// with a tiled source is quite tricky.
if (!srcRectDrawTopRight.IsEmpty())
aHost->mSource->CopyTo(srcRectDrawTopRight,
newSource, dstRectDrawTopRight);
if (!srcRectDrawTopLeft.IsEmpty())
aHost->mSource->CopyTo(srcRectDrawTopLeft,
newSource, dstRectDrawTopLeft);
if (!srcRectDrawBottomLeft.IsEmpty())
aHost->mSource->CopyTo(srcRectDrawBottomLeft,
newSource, dstRectDrawBottomLeft);
}
if (newSourceOnWhite) {
newSourceOnWhite->EnsureBuffer(mBufferRect.Size(),
ContentForFormat(aHost->mSourceOnWhite->GetFormat()));
aHost->mSourceOnWhite->CopyTo(srcRect, newSourceOnWhite, dstRect);
if (bufferRotation != nsIntPoint(0, 0)) {
// draw the remaining quadrants
if (!srcRectDrawTopRight.IsEmpty())
aHost->mSourceOnWhite->CopyTo(srcRectDrawTopRight,
newSourceOnWhite, dstRectDrawTopRight);
if (!srcRectDrawTopLeft.IsEmpty())
aHost->mSourceOnWhite->CopyTo(srcRectDrawTopLeft,
newSourceOnWhite, dstRectDrawTopLeft);
if (!srcRectDrawBottomLeft.IsEmpty())
aHost->mSourceOnWhite->CopyTo(srcRectDrawBottomLeft,
newSourceOnWhite, dstRectDrawBottomLeft);
}
}
}
aHost->mSource = newSource;
aHost->mSourceOnWhite = newSourceOnWhite;
aHost->mBufferRect = mBufferRect;
aHost->mBufferRotation = nsIntPoint();
}
nsIntRect
ContentHostIncremental::TextureUpdateRequest::GetQuadrantRectangle(XSide aXSide,
YSide aYSide) const
{
// quadrantTranslation is the amount we translate the top-left
// of the quadrant by to get coordinates relative to the layer
nsIntPoint quadrantTranslation = -mBufferRotation;
quadrantTranslation.x += aXSide == LEFT ? mBufferRect.width : 0;
quadrantTranslation.y += aYSide == TOP ? mBufferRect.height : 0;
return mBufferRect + quadrantTranslation;
}
void
ContentHostIncremental::TextureUpdateRequest::Execute(ContentHostIncremental* aHost)
{
nsIntRect drawBounds = mUpdated.GetBounds();
aHost->mBufferRect = mBufferRect;
aHost->mBufferRotation = mBufferRotation;
// Figure out which quadrant to draw in
int32_t xBoundary = mBufferRect.XMost() - mBufferRotation.x;
int32_t yBoundary = mBufferRect.YMost() - mBufferRotation.y;
XSide sideX = drawBounds.XMost() <= xBoundary ? RIGHT : LEFT;
YSide sideY = drawBounds.YMost() <= yBoundary ? BOTTOM : TOP;
nsIntRect quadrantRect = GetQuadrantRectangle(sideX, sideY);
NS_ASSERTION(quadrantRect.Contains(drawBounds), "Messed up quadrants");
mUpdated.MoveBy(-nsIntPoint(quadrantRect.x, quadrantRect.y));
IntPoint offset = ToIntPoint(-mUpdated.GetBounds().TopLeft());
RefPtr<DataSourceSurface> surf = GetSurfaceForDescriptor(mDescriptor);
if (mTextureId == TextureIdentifier::Front) {
aHost->mSource->Update(surf, &mUpdated, &offset);
} else {
aHost->mSourceOnWhite->Update(surf, &mUpdated, &offset);
}
}
void
ContentHostIncremental::PrintInfo(std::stringstream& aStream, const char* aPrefix)
{
aStream << aPrefix;
aStream << nsPrintfCString("ContentHostIncremental (0x%p)", this).get();
if (PaintWillResample()) {
aStream << " [paint-will-resample]";
}
}
void
ContentHostTexture::PrintInfo(std::stringstream& aStream, const char* aPrefix)
{
aStream << aPrefix;
aStream << nsPrintfCString("ContentHost (0x%p)", this).get();
AppendToString(aStream, mBufferRect, " [buffer-rect=", "]");
AppendToString(aStream, mBufferRotation, " [buffer-rotation=", "]");
if (PaintWillResample()) {
aStream << " [paint-will-resample]";
}
if (mTextureHost) {
nsAutoCString pfx(aPrefix);
pfx += " ";
aStream << "\n";
mTextureHost->PrintInfo(aStream, pfx.get());
}
}
LayerRenderState
ContentHostTexture::GetRenderState()
{
if (!mTextureHost) {
return LayerRenderState();
}
LayerRenderState result = mTextureHost->GetRenderState();
if (mBufferRotation != nsIntPoint()) {
result.mFlags |= LayerRenderStateFlags::BUFFER_ROTATION;
}
result.SetOffset(GetOriginOffset());
return result;
}
#ifdef MOZ_DUMP_PAINTING
TemporaryRef<gfx::DataSourceSurface>
ContentHostTexture::GetAsSurface()
{
if (!mTextureHost) {
return nullptr;
}
return mTextureHost->GetAsSurface();
}
#endif
} // namespace
} // namespace