gecko/content/media/webaudio/DelayNode.cpp

303 lines
10 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DelayNode.h"
#include "mozilla/dom/DelayNodeBinding.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "AudioDestinationNode.h"
#include "WebAudioUtils.h"
namespace mozilla {
namespace dom {
NS_IMPL_CYCLE_COLLECTION_INHERITED_1(DelayNode, AudioNode,
mDelay)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(DelayNode)
NS_INTERFACE_MAP_END_INHERITING(AudioNode)
NS_IMPL_ADDREF_INHERITED(DelayNode, AudioNode)
NS_IMPL_RELEASE_INHERITED(DelayNode, AudioNode)
class DelayNodeEngine : public AudioNodeEngine
{
class PlayingRefChanged : public nsRunnable
{
public:
enum ChangeType { ADDREF, RELEASE };
PlayingRefChanged(AudioNodeStream* aStream, ChangeType aChange)
: mStream(aStream)
, mChange(aChange)
{
}
NS_IMETHOD Run()
{
nsRefPtr<DelayNode> node;
{
// No need to keep holding the lock for the whole duration of this
// function, since we're holding a strong reference to it, so if
// we can obtain the reference, we will hold the node alive in
// this function.
MutexAutoLock lock(mStream->Engine()->NodeMutex());
node = static_cast<DelayNode*>(mStream->Engine()->Node());
}
if (node) {
if (mChange == ADDREF) {
node->mPlayingRef.Take(node);
} else if (mChange == RELEASE) {
node->mPlayingRef.Drop(node);
}
}
return NS_OK;
}
private:
nsRefPtr<AudioNodeStream> mStream;
ChangeType mChange;
};
public:
DelayNodeEngine(AudioNode* aNode, AudioDestinationNode* aDestination)
: AudioNodeEngine(aNode)
, mSource(nullptr)
, mDestination(static_cast<AudioNodeStream*> (aDestination->Stream()))
// Keep the default value in sync with the default value in DelayNode::DelayNode.
, mDelay(0.f)
, mMaxDelay(0.)
, mWriteIndex(0)
, mLeftOverData(INT32_MIN)
, mCurrentDelayTime(0.)
{
}
void SetSourceStream(AudioNodeStream* aSource)
{
mSource = aSource;
}
enum Parameters {
DELAY,
MAX_DELAY
};
void SetTimelineParameter(uint32_t aIndex, const AudioParamTimeline& aValue) MOZ_OVERRIDE
{
switch (aIndex) {
case DELAY:
MOZ_ASSERT(mSource && mDestination);
mDelay = aValue;
WebAudioUtils::ConvertAudioParamToTicks(mDelay, mSource, mDestination);
break;
default:
NS_ERROR("Bad DelayNodeEngine TimelineParameter");
}
}
void SetDoubleParameter(uint32_t aIndex, double aValue) MOZ_OVERRIDE
{
switch (aIndex) {
case MAX_DELAY: mMaxDelay = aValue; break;
default:
NS_ERROR("Bad DelayNodeEngine DoubleParameter");
}
}
bool EnsureBuffer(uint32_t aNumberOfChannels)
{
if (aNumberOfChannels == 0) {
return false;
}
if (mBuffer.Length() == 0) {
if (!mBuffer.SetLength(aNumberOfChannels)) {
return false;
}
const int32_t numFrames = NS_lround(mMaxDelay) * IdealAudioRate();
for (uint32_t channel = 0; channel < aNumberOfChannels; ++channel) {
if (!mBuffer[channel].SetLength(numFrames)) {
return false;
}
memset(mBuffer[channel].Elements(), 0, numFrames * sizeof(float));
}
} else if (mBuffer.Length() != aNumberOfChannels) {
// TODO: Handle changes in the channel count
return false;
}
return true;
}
virtual void ProduceAudioBlock(AudioNodeStream* aStream,
const AudioChunk& aInput,
AudioChunk* aOutput,
bool* aFinished)
{
MOZ_ASSERT(mSource == aStream, "Invalid source stream");
const bool firstTime = !!!mBuffer.Length();
const uint32_t numChannels = aInput.IsNull() ?
mBuffer.Length() :
aInput.mChannelData.Length();
bool playedBackAllLeftOvers = false;
if (!mBuffer.IsEmpty() &&
mLeftOverData == INT32_MIN &&
aStream->AllInputsFinished()) {
mLeftOverData = static_cast<int32_t>(mCurrentDelayTime * IdealAudioRate());
nsRefPtr<PlayingRefChanged> refchanged =
new PlayingRefChanged(aStream, PlayingRefChanged::ADDREF);
NS_DispatchToMainThread(refchanged);
} else if (mLeftOverData != INT32_MIN) {
mLeftOverData -= WEBAUDIO_BLOCK_SIZE;
if (mLeftOverData <= 0) {
mLeftOverData = INT32_MIN;
playedBackAllLeftOvers = true;
nsRefPtr<PlayingRefChanged> refchanged =
new PlayingRefChanged(aStream, PlayingRefChanged::RELEASE);
NS_DispatchToMainThread(refchanged);
}
}
if (!EnsureBuffer(numChannels)) {
aOutput->SetNull(0);
return;
}
AllocateAudioBlock(numChannels, aOutput);
double delayTime = 0;
float computedDelay[WEBAUDIO_BLOCK_SIZE];
// Use a smoothing range of 20ms
const double smoothingRate = WebAudioUtils::ComputeSmoothingRate(0.02, IdealAudioRate());
if (mDelay.HasSimpleValue()) {
delayTime = std::max(0.0, std::min(mMaxDelay, double(mDelay.GetValue())));
if (firstTime) {
// Initialize this only the first time to make sure that mCurrentDelayTime
// has a valid value when we try to change the delay time further below.
mCurrentDelayTime = delayTime;
}
} else {
// Compute the delay values for the duration of the input AudioChunk
TrackTicks tick = aStream->GetCurrentPosition();
for (size_t counter = 0; counter < WEBAUDIO_BLOCK_SIZE; ++counter) {
computedDelay[counter] = std::max(0.0, std::min(mMaxDelay,
double(mDelay.GetValueAtTime<TrackTicks>(tick + counter))));
}
}
for (uint32_t channel = 0; channel < numChannels; ++channel) {
double currentDelayTime = mCurrentDelayTime;
uint32_t writeIndex = mWriteIndex;
float* buffer = mBuffer[channel].Elements();
const uint32_t bufferLength = mBuffer[channel].Length();
const float* input = static_cast<const float*>(aInput.mChannelData.SafeElementAt(channel));
float* output = static_cast<float*>(const_cast<void*>(aOutput->mChannelData[channel]));
for (uint32_t i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
if (mDelay.HasSimpleValue()) {
// If the simple value has changed, smoothly approach it
currentDelayTime += (delayTime - currentDelayTime) * smoothingRate;
} else {
currentDelayTime = computedDelay[i];
}
// Write the input sample to the correct location in our buffer
if (input) {
buffer[writeIndex] = input[i] * aInput.mVolume;
}
// Now, determine the correct read position. We adjust the read position to be
// from currentDelayTime seconds in the past. We also interpolate the two input
// frames in case the read position does not match an integer index.
double readPosition = writeIndex + bufferLength -
(currentDelayTime * IdealAudioRate());
if (readPosition >= bufferLength) {
readPosition -= bufferLength;
}
MOZ_ASSERT(readPosition >= 0.0, "Why are we reading before the beginning of the buffer?");
// Here is a the reason why readIndex1 and readIndex will never be out
// of bounds. The maximum value for bufferLength is 180 * 48000 (see
// AudioContext::CreateDelay). The maximum value for mCurrentDelay is
// 180.0, so initially readPosition cannot be more than bufferLength +
// a fraction less than 1. Then we take care of that case by
// subtracting bufferLength from it if needed. So, if
// |bufferLength-readPosition<1.0|, readIndex1 will end up being zero.
// If |1.0<=bufferLength-readPosition<2.0|, readIndex1 will be
// bufferLength-1 and readIndex2 will be 0.
int readIndex1 = int(readPosition);
int readIndex2 = (readIndex1 + 1) % bufferLength;
double interpolationFactor = readPosition - readIndex1;
output[i] = (1.0 - interpolationFactor) * buffer[readIndex1] +
interpolationFactor * buffer[readIndex2];
writeIndex = (writeIndex + 1) % bufferLength;
}
// Remember currentDelayTime and writeIndex for the next ProduceAudioBlock
// call when processing the last channel.
if (channel == numChannels - 1) {
mCurrentDelayTime = currentDelayTime;
mWriteIndex = writeIndex;
}
}
if (playedBackAllLeftOvers) {
// Delete our buffered data once we no longer need it
mBuffer.Clear();
}
}
AudioNodeStream* mSource;
AudioNodeStream* mDestination;
AudioParamTimeline mDelay;
// Maximum delay time in seconds
double mMaxDelay;
// Circular buffer for capturing delayed samples.
AutoFallibleTArray<FallibleTArray<float>, 2> mBuffer;
// Write index for the buffer, to write the frames to the correct index of the buffer
// given the current delay.
uint32_t mWriteIndex;
// How much data we have in our buffer which needs to be flushed out when our inputs
// finish.
int32_t mLeftOverData;
// Current delay time, in seconds
double mCurrentDelayTime;
};
DelayNode::DelayNode(AudioContext* aContext, double aMaxDelay)
: AudioNode(aContext,
2,
ChannelCountMode::Max,
ChannelInterpretation::Speakers)
, mDelay(new AudioParam(this, SendDelayToStream, 0.0f))
{
DelayNodeEngine* engine = new DelayNodeEngine(this, aContext->Destination());
mStream = aContext->Graph()->CreateAudioNodeStream(engine, MediaStreamGraph::INTERNAL_STREAM);
engine->SetSourceStream(static_cast<AudioNodeStream*> (mStream.get()));
AudioNodeStream* ns = static_cast<AudioNodeStream*>(mStream.get());
ns->SetDoubleParameter(DelayNodeEngine::MAX_DELAY, aMaxDelay);
}
JSObject*
DelayNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aScope)
{
return DelayNodeBinding::Wrap(aCx, aScope, this);
}
void
DelayNode::SendDelayToStream(AudioNode* aNode)
{
DelayNode* This = static_cast<DelayNode*>(aNode);
SendTimelineParameterToStream(This, DelayNodeEngine::DELAY, *This->mDelay);
}
}
}