gecko/content/media/webaudio/ScriptProcessorNode.cpp
Boris Zbarsky 56f44fdf10 Bug 991742 part 6. Remove the "aScope" argument of binding Wrap() methods. r=bholley
This patch was mostly generated with this command:

find . -name "*.h" -o -name "*.cpp" | xargs sed -e 's/Binding::Wrap(aCx, aScope, this/Binding::Wrap(aCx, this/' -e 's/Binding_workers::Wrap(aCx, aScope, this/Binding_workers::Wrap(aCx, this/' -e 's/Binding::Wrap(cx, scope, this/Binding::Wrap(cx, this/' -i ""

plus a few manual fixes to dom/bindings/Codegen.py, js/xpconnect/src/event_impl_gen.py, and a few C++ files that were not caught in the search-and-replace above.
2014-04-08 18:27:17 -04:00

462 lines
15 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ScriptProcessorNode.h"
#include "mozilla/dom/ScriptProcessorNodeBinding.h"
#include "AudioBuffer.h"
#include "AudioDestinationNode.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "AudioProcessingEvent.h"
#include "WebAudioUtils.h"
#include "nsCxPusher.h"
#include "mozilla/Mutex.h"
#include "mozilla/PodOperations.h"
#include <deque>
namespace mozilla {
namespace dom {
// The maximum latency, in seconds, that we can live with before dropping
// buffers.
static const float MAX_LATENCY_S = 0.5;
NS_IMPL_ISUPPORTS_INHERITED0(ScriptProcessorNode, AudioNode)
// This class manages a queue of output buffers shared between
// the main thread and the Media Stream Graph thread.
class SharedBuffers
{
private:
class OutputQueue
{
public:
explicit OutputQueue(const char* aName)
: mMutex(aName)
{}
Mutex& Lock() { return mMutex; }
size_t ReadyToConsume() const
{
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!NS_IsMainThread());
return mBufferList.size();
}
// Produce one buffer
AudioChunk& Produce()
{
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(NS_IsMainThread());
mBufferList.push_back(AudioChunk());
return mBufferList.back();
}
// Consumes one buffer.
AudioChunk Consume()
{
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!NS_IsMainThread());
MOZ_ASSERT(ReadyToConsume() > 0);
AudioChunk front = mBufferList.front();
mBufferList.pop_front();
return front;
}
// Empties the buffer queue.
void Clear()
{
mMutex.AssertCurrentThreadOwns();
mBufferList.clear();
}
private:
typedef std::deque<AudioChunk> BufferList;
// Synchronizes access to mBufferList. Note that it's the responsibility
// of the callers to perform the required locking, and we assert that every
// time we access mBufferList.
Mutex mMutex;
// The list representing the queue.
BufferList mBufferList;
};
public:
SharedBuffers(float aSampleRate)
: mOutputQueue("SharedBuffers::outputQueue")
, mDelaySoFar(TRACK_TICKS_MAX)
, mSampleRate(aSampleRate)
, mLatency(0.0)
, mDroppingBuffers(false)
{
}
// main thread
void FinishProducingOutputBuffer(ThreadSharedFloatArrayBufferList* aBuffer,
uint32_t aBufferSize)
{
MOZ_ASSERT(NS_IsMainThread());
TimeStamp now = TimeStamp::Now();
if (mLastEventTime.IsNull()) {
mLastEventTime = now;
} else {
// When the main thread is blocked, and all the event are processed in a
// burst after the main thread unblocks, the |(now - mLastEventTime)|
// interval will be very short. |latency - bufferDuration| will be
// negative, effectively moving back mLatency to a smaller and smaller
// value, until it crosses zero, at which point we stop dropping buffers
// and resume normal operation. This does not work if at the same time,
// the MSG thread was also slowed down, so if the latency on the MSG
// thread is normal, and we are still dropping buffers, and mLatency is
// still more than twice the duration of a buffer, we reset it and stop
// dropping buffers.
float latency = (now - mLastEventTime).ToSeconds();
float bufferDuration = aBufferSize / mSampleRate;
mLatency += latency - bufferDuration;
mLastEventTime = now;
if (mLatency > MAX_LATENCY_S ||
(mDroppingBuffers && mLatency > 0.0 &&
fabs(latency - bufferDuration) < bufferDuration)) {
mDroppingBuffers = true;
return;
} else {
if (mDroppingBuffers) {
mLatency = 0;
}
mDroppingBuffers = false;
}
}
MutexAutoLock lock(mOutputQueue.Lock());
for (uint32_t offset = 0; offset < aBufferSize; offset += WEBAUDIO_BLOCK_SIZE) {
AudioChunk& chunk = mOutputQueue.Produce();
if (aBuffer) {
chunk.mDuration = WEBAUDIO_BLOCK_SIZE;
chunk.mBuffer = aBuffer;
chunk.mChannelData.SetLength(aBuffer->GetChannels());
for (uint32_t i = 0; i < aBuffer->GetChannels(); ++i) {
chunk.mChannelData[i] = aBuffer->GetData(i) + offset;
}
chunk.mVolume = 1.0f;
chunk.mBufferFormat = AUDIO_FORMAT_FLOAT32;
} else {
chunk.SetNull(WEBAUDIO_BLOCK_SIZE);
}
}
}
// graph thread
AudioChunk GetOutputBuffer()
{
MOZ_ASSERT(!NS_IsMainThread());
AudioChunk buffer;
{
MutexAutoLock lock(mOutputQueue.Lock());
if (mOutputQueue.ReadyToConsume() > 0) {
if (mDelaySoFar == TRACK_TICKS_MAX) {
mDelaySoFar = 0;
}
buffer = mOutputQueue.Consume();
} else {
// If we're out of buffers to consume, just output silence
buffer.SetNull(WEBAUDIO_BLOCK_SIZE);
if (mDelaySoFar != TRACK_TICKS_MAX) {
// Remember the delay that we just hit
mDelaySoFar += WEBAUDIO_BLOCK_SIZE;
}
}
}
return buffer;
}
TrackTicks DelaySoFar() const
{
MOZ_ASSERT(!NS_IsMainThread());
return mDelaySoFar == TRACK_TICKS_MAX ? 0 : mDelaySoFar;
}
void Reset()
{
MOZ_ASSERT(!NS_IsMainThread());
mDelaySoFar = TRACK_TICKS_MAX;
mLatency = 0.0f;
{
MutexAutoLock lock(mOutputQueue.Lock());
mOutputQueue.Clear();
}
mLastEventTime = TimeStamp();
}
private:
OutputQueue mOutputQueue;
// How much delay we've seen so far. This measures the amount of delay
// caused by the main thread lagging behind in producing output buffers.
// TRACK_TICKS_MAX means that we have not received our first buffer yet.
TrackTicks mDelaySoFar;
// The samplerate of the context.
float mSampleRate;
// This is the latency caused by the buffering. If this grows too high, we
// will drop buffers until it is acceptable.
float mLatency;
// This is the time at which we last produced a buffer, to detect if the main
// thread has been blocked.
TimeStamp mLastEventTime;
// True if we should be dropping buffers.
bool mDroppingBuffers;
};
class ScriptProcessorNodeEngine : public AudioNodeEngine
{
public:
typedef nsAutoTArray<nsAutoArrayPtr<float>, 2> InputChannels;
ScriptProcessorNodeEngine(ScriptProcessorNode* aNode,
AudioDestinationNode* aDestination,
uint32_t aBufferSize,
uint32_t aNumberOfInputChannels)
: AudioNodeEngine(aNode)
, mSharedBuffers(aNode->GetSharedBuffers())
, mSource(nullptr)
, mDestination(static_cast<AudioNodeStream*> (aDestination->Stream()))
, mBufferSize(aBufferSize)
, mInputWriteIndex(0)
, mSeenNonSilenceInput(false)
{
mInputChannels.SetLength(aNumberOfInputChannels);
AllocateInputBlock();
}
void SetSourceStream(AudioNodeStream* aSource)
{
mSource = aSource;
}
virtual void ProcessBlock(AudioNodeStream* aStream,
const AudioChunk& aInput,
AudioChunk* aOutput,
bool* aFinished) MOZ_OVERRIDE
{
MutexAutoLock lock(NodeMutex());
// If our node is dead, just output silence.
if (!Node()) {
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
return;
}
// This node is not connected to anything. Per spec, we don't fire the
// onaudioprocess event. We also want to clear out the input and output
// buffer queue, and output a null buffer.
if (!(aStream->ConsumerCount() ||
aStream->AsProcessedStream()->InputPortCount())) {
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
mSharedBuffers->Reset();
mSeenNonSilenceInput = false;
mInputWriteIndex = 0;
return;
}
// First, record our input buffer
for (uint32_t i = 0; i < mInputChannels.Length(); ++i) {
if (aInput.IsNull()) {
PodZero(mInputChannels[i] + mInputWriteIndex,
aInput.GetDuration());
} else {
mSeenNonSilenceInput = true;
MOZ_ASSERT(aInput.GetDuration() == WEBAUDIO_BLOCK_SIZE, "sanity check");
MOZ_ASSERT(aInput.mChannelData.Length() == mInputChannels.Length());
AudioBlockCopyChannelWithScale(static_cast<const float*>(aInput.mChannelData[i]),
aInput.mVolume,
mInputChannels[i] + mInputWriteIndex);
}
}
mInputWriteIndex += aInput.GetDuration();
// Now, see if we have data to output
// Note that we need to do this before sending the buffer to the main
// thread so that our delay time is updated.
*aOutput = mSharedBuffers->GetOutputBuffer();
if (mInputWriteIndex >= mBufferSize) {
SendBuffersToMainThread(aStream);
mInputWriteIndex -= mBufferSize;
mSeenNonSilenceInput = false;
AllocateInputBlock();
}
}
private:
void AllocateInputBlock()
{
for (unsigned i = 0; i < mInputChannels.Length(); ++i) {
if (!mInputChannels[i]) {
mInputChannels[i] = new float[mBufferSize];
}
}
}
void SendBuffersToMainThread(AudioNodeStream* aStream)
{
MOZ_ASSERT(!NS_IsMainThread());
// we now have a full input buffer ready to be sent to the main thread.
TrackTicks playbackTick = mSource->GetCurrentPosition();
// Add the duration of the current sample
playbackTick += WEBAUDIO_BLOCK_SIZE;
// Add the delay caused by the main thread
playbackTick += mSharedBuffers->DelaySoFar();
// Compute the playback time in the coordinate system of the destination
// FIXME: bug 970773
double playbackTime =
mSource->DestinationTimeFromTicks(mDestination, playbackTick);
class Command : public nsRunnable
{
public:
Command(AudioNodeStream* aStream,
InputChannels& aInputChannels,
double aPlaybackTime,
bool aNullInput)
: mStream(aStream)
, mPlaybackTime(aPlaybackTime)
, mNullInput(aNullInput)
{
mInputChannels.SetLength(aInputChannels.Length());
if (!aNullInput) {
for (uint32_t i = 0; i < mInputChannels.Length(); ++i) {
mInputChannels[i] = aInputChannels[i].forget();
}
}
}
NS_IMETHODIMP Run()
{
// If it's not safe to run scripts right now, schedule this to run later
if (!nsContentUtils::IsSafeToRunScript()) {
nsContentUtils::AddScriptRunner(this);
return NS_OK;
}
nsRefPtr<ScriptProcessorNode> node;
{
// No need to keep holding the lock for the whole duration of this
// function, since we're holding a strong reference to it, so if
// we can obtain the reference, we will hold the node alive in
// this function.
MutexAutoLock lock(mStream->Engine()->NodeMutex());
node = static_cast<ScriptProcessorNode*>(mStream->Engine()->Node());
}
if (!node || !node->Context()) {
return NS_OK;
}
AutoPushJSContext cx(node->Context()->GetJSContext());
if (cx) {
// Create the input buffer
nsRefPtr<AudioBuffer> inputBuffer;
if (!mNullInput) {
inputBuffer = new AudioBuffer(node->Context(),
node->BufferSize(),
node->Context()->SampleRate());
if (!inputBuffer->InitializeBuffers(mInputChannels.Length(), cx)) {
return NS_OK;
}
// Put the channel data inside it
for (uint32_t i = 0; i < mInputChannels.Length(); ++i) {
inputBuffer->SetRawChannelContents(cx, i, mInputChannels[i]);
}
}
// Ask content to produce data in the output buffer
// Note that we always avoid creating the output buffer here, and we try to
// avoid creating the input buffer as well. The AudioProcessingEvent class
// knows how to lazily create them if needed once the script tries to access
// them. Otherwise, we may be able to get away without creating them!
nsRefPtr<AudioProcessingEvent> event = new AudioProcessingEvent(node, nullptr, nullptr);
event->InitEvent(inputBuffer,
mInputChannels.Length(),
mPlaybackTime);
node->DispatchTrustedEvent(event);
// Steal the output buffers
nsRefPtr<ThreadSharedFloatArrayBufferList> output;
if (event->HasOutputBuffer()) {
output = event->OutputBuffer()->GetThreadSharedChannelsForRate(cx);
}
// Append it to our output buffer queue
node->GetSharedBuffers()->FinishProducingOutputBuffer(output, node->BufferSize());
}
return NS_OK;
}
private:
nsRefPtr<AudioNodeStream> mStream;
InputChannels mInputChannels;
double mPlaybackTime;
bool mNullInput;
};
NS_DispatchToMainThread(new Command(aStream, mInputChannels,
playbackTime,
!mSeenNonSilenceInput));
}
friend class ScriptProcessorNode;
SharedBuffers* mSharedBuffers;
AudioNodeStream* mSource;
AudioNodeStream* mDestination;
InputChannels mInputChannels;
const uint32_t mBufferSize;
// The write index into the current input buffer
uint32_t mInputWriteIndex;
bool mSeenNonSilenceInput;
};
ScriptProcessorNode::ScriptProcessorNode(AudioContext* aContext,
uint32_t aBufferSize,
uint32_t aNumberOfInputChannels,
uint32_t aNumberOfOutputChannels)
: AudioNode(aContext,
aNumberOfInputChannels,
mozilla::dom::ChannelCountMode::Explicit,
mozilla::dom::ChannelInterpretation::Speakers)
, mSharedBuffers(new SharedBuffers(aContext->SampleRate()))
, mBufferSize(aBufferSize ?
aBufferSize : // respect what the web developer requested
4096) // choose our own buffer size -- 4KB for now
, mNumberOfOutputChannels(aNumberOfOutputChannels)
{
MOZ_ASSERT(BufferSize() % WEBAUDIO_BLOCK_SIZE == 0, "Invalid buffer size");
ScriptProcessorNodeEngine* engine =
new ScriptProcessorNodeEngine(this,
aContext->Destination(),
BufferSize(),
aNumberOfInputChannels);
mStream = aContext->Graph()->CreateAudioNodeStream(engine, MediaStreamGraph::INTERNAL_STREAM);
engine->SetSourceStream(static_cast<AudioNodeStream*> (mStream.get()));
}
ScriptProcessorNode::~ScriptProcessorNode()
{
}
JSObject*
ScriptProcessorNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aScope)
{
return ScriptProcessorNodeBinding::Wrap(aCx, this);
}
}
}