gecko/js/src/prmjtime.cpp

1029 lines
33 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* PR time code.
*/
#ifdef SOLARIS
#define _REENTRANT 1
#endif
#include <string.h>
#include <time.h>
#define __STDC_LIMIT_MACROS
#include "jsstdint.h"
#include "jstypes.h"
#include "jsutil.h"
#include "jsprf.h"
#include "jslock.h"
#include "prmjtime.h"
#define PRMJ_DO_MILLISECONDS 1
#ifdef XP_OS2
#include <sys/timeb.h>
#endif
#ifdef XP_WIN
#include <windef.h>
#include <winbase.h>
#include <math.h> /* for fabs */
#include <mmsystem.h> /* for timeBegin/EndPeriod */
/* VC++ 8.0 or later, and not WINCE */
#if _MSC_VER >= 1400 && !defined(WINCE)
#define NS_HAVE_INVALID_PARAMETER_HANDLER 1
#endif
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
#include <stdlib.h> /* for _set_invalid_parameter_handler */
#include <crtdbg.h> /* for _CrtSetReportMode */
#endif
#ifdef JS_THREADSAFE
#include <prinit.h>
#endif
#endif
#if defined(XP_UNIX) || defined(XP_BEOS)
#ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
extern int gettimeofday(struct timeval *tv);
#endif
#include <sys/time.h>
#endif /* XP_UNIX */
#define PRMJ_YEAR_DAYS 365L
#define PRMJ_FOUR_YEARS_DAYS (4 * PRMJ_YEAR_DAYS + 1)
#define PRMJ_CENTURY_DAYS (25 * PRMJ_FOUR_YEARS_DAYS - 1)
#define PRMJ_FOUR_CENTURIES_DAYS (4 * PRMJ_CENTURY_DAYS + 1)
#define PRMJ_HOUR_SECONDS 3600L
#define PRMJ_DAY_SECONDS (24L * PRMJ_HOUR_SECONDS)
#define PRMJ_YEAR_SECONDS (PRMJ_DAY_SECONDS * PRMJ_YEAR_DAYS)
#define PRMJ_MAX_UNIX_TIMET 2145859200L /*time_t value equiv. to 12/31/2037 */
/* function prototypes */
static void PRMJ_basetime(JSInt64 tsecs, PRMJTime *prtm);
/*
* get the difference in seconds between this time zone and UTC (GMT)
*/
JSInt32
PRMJ_LocalGMTDifference()
{
struct tm ltime;
#if defined(XP_WIN) && !defined(WINCE)
/* Windows does not follow POSIX. Updates to the
* TZ environment variable are not reflected
* immediately on that platform as they are
* on UNIX systems without this call.
*/
_tzset();
#endif
/* get the difference between this time zone and GMT */
memset((char *)&ltime,0,sizeof(ltime));
ltime.tm_mday = 2;
ltime.tm_year = 70;
return (JSInt32)mktime(&ltime) - (24L * 3600L);
}
/* Constants for GMT offset from 1970 */
#define G1970GMTMICROHI 0x00dcdcad /* micro secs to 1970 hi */
#define G1970GMTMICROLOW 0x8b3fa000 /* micro secs to 1970 low */
#define G2037GMTMICROHI 0x00e45fab /* micro secs to 2037 high */
#define G2037GMTMICROLOW 0x7a238000 /* micro secs to 2037 low */
/* Convert from base time to extended time */
static JSInt64
PRMJ_ToExtendedTime(JSInt32 base_time)
{
JSInt64 exttime;
JSInt64 g1970GMTMicroSeconds;
JSInt64 low;
JSInt32 diff;
JSInt64 tmp;
JSInt64 tmp1;
diff = PRMJ_LocalGMTDifference();
JSLL_UI2L(tmp, PRMJ_USEC_PER_SEC);
JSLL_I2L(tmp1,diff);
JSLL_MUL(tmp,tmp,tmp1);
JSLL_UI2L(g1970GMTMicroSeconds,G1970GMTMICROHI);
JSLL_UI2L(low,G1970GMTMICROLOW);
JSLL_SHL(g1970GMTMicroSeconds,g1970GMTMicroSeconds,16);
JSLL_SHL(g1970GMTMicroSeconds,g1970GMTMicroSeconds,16);
JSLL_ADD(g1970GMTMicroSeconds,g1970GMTMicroSeconds,low);
JSLL_I2L(exttime,base_time);
JSLL_ADD(exttime,exttime,g1970GMTMicroSeconds);
JSLL_SUB(exttime,exttime,tmp);
return exttime;
}
#ifdef HAVE_SYSTEMTIMETOFILETIME
static const JSInt64 win2un = JSLL_INIT(0x19DB1DE, 0xD53E8000);
#define FILETIME2INT64(ft) (((JSInt64)ft.dwHighDateTime) << 32LL | (JSInt64)ft.dwLowDateTime)
#endif
#if defined(HAVE_GETSYSTEMTIMEASFILETIME) || defined(HAVE_SYSTEMTIMETOFILETIME)
#if defined(HAVE_GETSYSTEMTIMEASFILETIME)
inline void
LowResTime(LPFILETIME lpft)
{
GetSystemTimeAsFileTime(lpft);
}
#elif defined(HAVE_SYSTEMTIMETOFILETIME)
inline void
LowResTime(LPFILETIME lpft)
{
GetCurrentFT(lpft);
}
#else
#error "No implementation of PRMJ_Now was selected."
#endif
typedef struct CalibrationData {
long double freq; /* The performance counter frequency */
long double offset; /* The low res 'epoch' */
long double timer_offset; /* The high res 'epoch' */
/* The last high res time that we returned since recalibrating */
JSInt64 last;
JSBool calibrated;
#ifdef JS_THREADSAFE
CRITICAL_SECTION data_lock;
CRITICAL_SECTION calibration_lock;
#endif
#ifdef WINCE
JSInt64 granularity;
#endif
} CalibrationData;
static CalibrationData calibration = { 0 };
static void
NowCalibrate()
{
FILETIME ft, ftStart;
LARGE_INTEGER liFreq, now;
if (calibration.freq == 0.0) {
if(!QueryPerformanceFrequency(&liFreq)) {
/* High-performance timer is unavailable */
calibration.freq = -1.0;
} else {
calibration.freq = (long double) liFreq.QuadPart;
}
}
if (calibration.freq > 0.0) {
JSInt64 calibrationDelta = 0;
/* By wrapping a timeBegin/EndPeriod pair of calls around this loop,
the loop seems to take much less time (1 ms vs 15ms) on Vista. */
timeBeginPeriod(1);
LowResTime(&ftStart);
do {
LowResTime(&ft);
} while (memcmp(&ftStart,&ft, sizeof(ft)) == 0);
timeEndPeriod(1);
#ifdef WINCE
calibration.granularity = (FILETIME2INT64(ft) -
FILETIME2INT64(ftStart))/10;
#endif
/*
calibrationDelta = (FILETIME2INT64(ft) - FILETIME2INT64(ftStart))/10;
fprintf(stderr, "Calibration delta was %I64d us\n", calibrationDelta);
*/
QueryPerformanceCounter(&now);
calibration.offset = (long double) FILETIME2INT64(ft);
calibration.timer_offset = (long double) now.QuadPart;
/* The windows epoch is around 1600. The unix epoch is around
1970. win2un is the difference (in windows time units which
are 10 times more highres than the JS time unit) */
calibration.offset -= win2un;
calibration.offset *= 0.1;
calibration.last = 0;
calibration.calibrated = JS_TRUE;
}
}
#define CALIBRATIONLOCK_SPINCOUNT 0
#define DATALOCK_SPINCOUNT 4096
#define LASTLOCK_SPINCOUNT 4096
#ifdef JS_THREADSAFE
static PRStatus
NowInit(void)
{
memset(&calibration, 0, sizeof(calibration));
NowCalibrate();
#ifdef WINCE
InitializeCriticalSection(&calibration.calibration_lock);
InitializeCriticalSection(&calibration.data_lock);
#else
InitializeCriticalSectionAndSpinCount(&calibration.calibration_lock, CALIBRATIONLOCK_SPINCOUNT);
InitializeCriticalSectionAndSpinCount(&calibration.data_lock, DATALOCK_SPINCOUNT);
#endif
return PR_SUCCESS;
}
void
PRMJ_NowShutdown()
{
DeleteCriticalSection(&calibration.calibration_lock);
DeleteCriticalSection(&calibration.data_lock);
}
#define MUTEX_LOCK(m) EnterCriticalSection(m)
#define MUTEX_TRYLOCK(m) TryEnterCriticalSection(m)
#define MUTEX_UNLOCK(m) LeaveCriticalSection(m)
#ifdef WINCE
#define MUTEX_SETSPINCOUNT(m, c)
#else
#define MUTEX_SETSPINCOUNT(m, c) SetCriticalSectionSpinCount((m),(c))
#endif
static PRCallOnceType calibrationOnce = { 0 };
#else
#define MUTEX_LOCK(m)
#define MUTEX_TRYLOCK(m) 1
#define MUTEX_UNLOCK(m)
#define MUTEX_SETSPINCOUNT(m, c)
#endif
#endif /* HAVE_GETSYSTEMTIMEASFILETIME */
#if defined(XP_OS2)
JSInt64
PRMJ_Now(void)
{
JSInt64 s, us, ms2us, s2us;
struct timeb b;
ftime(&b);
JSLL_UI2L(ms2us, PRMJ_USEC_PER_MSEC);
JSLL_UI2L(s2us, PRMJ_USEC_PER_SEC);
JSLL_UI2L(s, b.time);
JSLL_UI2L(us, b.millitm);
JSLL_MUL(us, us, ms2us);
JSLL_MUL(s, s, s2us);
JSLL_ADD(s, s, us);
return s;
}
#elif defined(XP_UNIX) || defined(XP_BEOS)
JSInt64
PRMJ_Now(void)
{
struct timeval tv;
JSInt64 s, us, s2us;
#ifdef _SVID_GETTOD /* Defined only on Solaris, see Solaris <sys/types.h> */
gettimeofday(&tv);
#else
gettimeofday(&tv, 0);
#endif /* _SVID_GETTOD */
JSLL_UI2L(s2us, PRMJ_USEC_PER_SEC);
JSLL_UI2L(s, tv.tv_sec);
JSLL_UI2L(us, tv.tv_usec);
JSLL_MUL(s, s, s2us);
JSLL_ADD(s, s, us);
return s;
}
#else
/*
Win32 python-esque pseudo code
Please see bug 363258 for why the win32 timing code is so complex.
calibration mutex : Win32CriticalSection(spincount=0)
data mutex : Win32CriticalSection(spincount=4096)
def NowInit():
init mutexes
PRMJ_NowCalibration()
def NowCalibration():
expensive up-to-15ms call
def PRMJ_Now():
returnedTime = 0
needCalibration = False
cachedOffset = 0.0
calibrated = False
PR_CallOnce(PRMJ_NowInit)
do
if not global.calibrated or needCalibration:
acquire calibration mutex
acquire data mutex
// Only recalibrate if someone didn't already
if cachedOffset == calibration.offset:
// Have all waiting threads immediately wait
set data mutex spin count = 0
PRMJ_NowCalibrate()
calibrated = 1
set data mutex spin count = default
release data mutex
release calibration mutex
calculate lowres time
if highres timer available:
acquire data mutex
calculate highres time
cachedOffset = calibration.offset
highres time = calibration.last = max(highres time, calibration.last)
release data mutex
get kernel tick interval
if abs(highres - lowres) < kernel tick:
returnedTime = highres time
needCalibration = False
else:
if calibrated:
returnedTime = lowres
needCalibration = False
else:
needCalibration = True
else:
returnedTime = lowres
while needCalibration
*/
// We parameterize the delay count just so that shell builds can
// set it to 0 in order to get high-resolution benchmarking.
// 10 seems to be the number of calls to load with a blank homepage.
int CALIBRATION_DELAY_COUNT = 10;
JSInt64
PRMJ_Now(void)
{
static int nCalls = 0;
long double lowresTime, highresTimerValue;
FILETIME ft;
LARGE_INTEGER now;
JSBool calibrated = JS_FALSE;
JSBool needsCalibration = JS_FALSE;
JSInt64 returnedTime;
long double cachedOffset = 0.0;
/* To avoid regressing startup time (where high resolution is likely
not needed), give the old behavior for the first few calls.
This does not appear to be needed on Vista as the timeBegin/timeEndPeriod
calls seem to immediately take effect. */
int thiscall = JS_ATOMIC_INCREMENT(&nCalls);
if (thiscall <= CALIBRATION_DELAY_COUNT) {
LowResTime(&ft);
return (FILETIME2INT64(ft)-win2un)/10L;
}
/* For non threadsafe platforms, NowInit is not necessary */
#ifdef JS_THREADSAFE
PR_CallOnce(&calibrationOnce, NowInit);
#endif
do {
if (!calibration.calibrated || needsCalibration) {
MUTEX_LOCK(&calibration.calibration_lock);
MUTEX_LOCK(&calibration.data_lock);
/* Recalibrate only if no one else did before us */
if(calibration.offset == cachedOffset) {
/* Since calibration can take a while, make any other
threads immediately wait */
MUTEX_SETSPINCOUNT(&calibration.data_lock, 0);
NowCalibrate();
calibrated = JS_TRUE;
/* Restore spin count */
MUTEX_SETSPINCOUNT(&calibration.data_lock, DATALOCK_SPINCOUNT);
}
MUTEX_UNLOCK(&calibration.data_lock);
MUTEX_UNLOCK(&calibration.calibration_lock);
}
/* Calculate a low resolution time */
LowResTime(&ft);
lowresTime = 0.1*(long double)(FILETIME2INT64(ft) - win2un);
if (calibration.freq > 0.0) {
long double highresTime, diff;
DWORD timeAdjustment, timeIncrement;
BOOL timeAdjustmentDisabled;
/* Default to 15.625 ms if the syscall fails */
long double skewThreshold = 15625.25;
/* Grab high resolution time */
QueryPerformanceCounter(&now);
highresTimerValue = (long double)now.QuadPart;
MUTEX_LOCK(&calibration.data_lock);
highresTime = calibration.offset + PRMJ_USEC_PER_SEC*
(highresTimerValue-calibration.timer_offset)/calibration.freq;
cachedOffset = calibration.offset;
/* On some dual processor/core systems, we might get an earlier time
so we cache the last time that we returned */
calibration.last = JS_MAX(calibration.last,(JSInt64)highresTime);
returnedTime = calibration.last;
MUTEX_UNLOCK(&calibration.data_lock);
#ifdef WINCE
/* Get an estimate of clock ticks per second from our own test */
skewThreshold = calibration.granularity;
#else
/* Rather than assume the NT kernel ticks every 15.6ms, ask it */
if (GetSystemTimeAdjustment(&timeAdjustment,
&timeIncrement,
&timeAdjustmentDisabled)) {
if (timeAdjustmentDisabled) {
/* timeAdjustment is in units of 100ns */
skewThreshold = timeAdjustment/10.0;
} else {
/* timeIncrement is in units of 100ns */
skewThreshold = timeIncrement/10.0;
}
}
#endif
/* Check for clock skew */
diff = lowresTime - highresTime;
/* For some reason that I have not determined, the skew can be
up to twice a kernel tick. This does not seem to happen by
itself, but I have only seen it triggered by another program
doing some kind of file I/O. The symptoms are a negative diff
followed by an equally large positive diff. */
if (fabs(diff) > 2*skewThreshold) {
/*fprintf(stderr,"Clock skew detected (diff = %f)!\n", diff);*/
if (calibrated) {
/* If we already calibrated once this instance, and the
clock is still skewed, then either the processor(s) are
wildly changing clockspeed or the system is so busy that
we get switched out for long periods of time. In either
case, it would be infeasible to make use of high
resolution results for anything, so let's resort to old
behavior for this call. It's possible that in the
future, the user will want the high resolution timer, so
we don't disable it entirely. */
returnedTime = (JSInt64)lowresTime;
needsCalibration = JS_FALSE;
} else {
/* It is possible that when we recalibrate, we will return a
value less than what we have returned before; this is
unavoidable. We cannot tell the different between a
faulty QueryPerformanceCounter implementation and user
changes to the operating system time. Since we must
respect user changes to the operating system time, we
cannot maintain the invariant that Date.now() never
decreases; the old implementation has this behavior as
well. */
needsCalibration = JS_TRUE;
}
} else {
/* No detectable clock skew */
returnedTime = (JSInt64)highresTime;
needsCalibration = JS_FALSE;
}
} else {
/* No high resolution timer is available, so fall back */
returnedTime = (JSInt64)lowresTime;
}
} while (needsCalibration);
return returnedTime;
}
#endif
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
static void
PRMJ_InvalidParameterHandler(const wchar_t *expression,
const wchar_t *function,
const wchar_t *file,
unsigned int line,
uintptr_t pReserved)
{
/* empty */
}
#endif
/* Format a time value into a buffer. Same semantics as strftime() */
size_t
PRMJ_FormatTime(char *buf, int buflen, const char *fmt, PRMJTime *prtm)
{
size_t result = 0;
#if defined(XP_UNIX) || defined(XP_WIN) || defined(XP_OS2) || defined(XP_BEOS)
struct tm a;
int fake_tm_year = 0;
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
_invalid_parameter_handler oldHandler;
int oldReportMode;
#endif
/* Zero out the tm struct. Linux, SunOS 4 struct tm has extra members int
* tm_gmtoff, char *tm_zone; when tm_zone is garbage, strftime gets
* confused and dumps core. NSPR20 prtime.c attempts to fill these in by
* calling mktime on the partially filled struct, but this doesn't seem to
* work as well; the result string has "can't get timezone" for ECMA-valid
* years. Might still make sense to use this, but find the range of years
* for which valid tz information exists, and map (per ECMA hint) from the
* given year into that range.
* N.B. This hasn't been tested with anything that actually _uses_
* tm_gmtoff; zero might be the wrong thing to set it to if you really need
* to format a time. This fix is for jsdate.c, which only uses
* JS_FormatTime to get a string representing the time zone. */
memset(&a, 0, sizeof(struct tm));
a.tm_sec = prtm->tm_sec;
a.tm_min = prtm->tm_min;
a.tm_hour = prtm->tm_hour;
a.tm_mday = prtm->tm_mday;
a.tm_mon = prtm->tm_mon;
a.tm_wday = prtm->tm_wday;
#if defined(HAVE_LOCALTIME_R) && defined(HAVE_TM_ZONE_TM_GMTOFF)
{
struct tm td;
time_t bogus = 0;
localtime_r(&bogus, &td);
a.tm_gmtoff = td.tm_gmtoff;
a.tm_zone = td.tm_zone;
}
#endif
/*
* Years before 1900 and after 9999 cause strftime() to abort on Windows.
* To avoid that we replace it with FAKE_YEAR_BASE + year % 100 and then
* replace matching substrings in the strftime() result with the real year.
* Note that FAKE_YEAR_BASE should be a multiple of 100 to make 2-digit
* year formats (%y) work correctly (since we won't find the fake year
* in that case).
* e.g. new Date(1873, 0).toLocaleFormat('%Y %y') => "1873 73"
* See bug 327869.
*/
#define FAKE_YEAR_BASE 9900
if (prtm->tm_year < 1900 || prtm->tm_year > 9999) {
fake_tm_year = FAKE_YEAR_BASE + prtm->tm_year % 100;
a.tm_year = fake_tm_year - 1900;
}
else {
a.tm_year = prtm->tm_year - 1900;
}
a.tm_yday = prtm->tm_yday;
a.tm_isdst = prtm->tm_isdst;
/*
* Even with the above, SunOS 4 seems to detonate if tm_zone and tm_gmtoff
* are null. This doesn't quite work, though - the timezone is off by
* tzoff + dst. (And mktime seems to return -1 for the exact dst
* changeover time.)
*/
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
oldHandler = _set_invalid_parameter_handler(PRMJ_InvalidParameterHandler);
oldReportMode = _CrtSetReportMode(_CRT_ASSERT, 0);
#endif
result = strftime(buf, buflen, fmt, &a);
#ifdef NS_HAVE_INVALID_PARAMETER_HANDLER
_set_invalid_parameter_handler(oldHandler);
_CrtSetReportMode(_CRT_ASSERT, oldReportMode);
#endif
if (fake_tm_year && result) {
char real_year[16];
char fake_year[16];
size_t real_year_len;
size_t fake_year_len;
char* p;
sprintf(real_year, "%d", prtm->tm_year);
real_year_len = strlen(real_year);
sprintf(fake_year, "%d", fake_tm_year);
fake_year_len = strlen(fake_year);
/* Replace the fake year in the result with the real year. */
for (p = buf; (p = strstr(p, fake_year)); p += real_year_len) {
size_t new_result = result + real_year_len - fake_year_len;
if ((int)new_result >= buflen) {
return 0;
}
memmove(p + real_year_len, p + fake_year_len, strlen(p + fake_year_len));
memcpy(p, real_year, real_year_len);
result = new_result;
*(buf + result) = '\0';
}
}
#endif
return result;
}
/* table for number of days in a month */
static int mtab[] = {
/* jan, feb,mar,apr,may,jun */
31,28,31,30,31,30,
/* july,aug,sep,oct,nov,dec */
31,31,30,31,30,31
};
/*
* basic time calculation functionality for localtime and gmtime
* setups up prtm argument with correct values based upon input number
* of seconds.
*/
static void
PRMJ_basetime(JSInt64 tsecs, PRMJTime *prtm)
{
/* convert tsecs back to year,month,day,hour,secs */
JSInt32 year = 0;
JSInt32 month = 0;
JSInt32 yday = 0;
JSInt32 mday = 0;
JSInt32 wday = 6; /* start on a Sunday */
JSInt32 days = 0;
JSInt32 seconds = 0;
JSInt32 minutes = 0;
JSInt32 hours = 0;
JSInt32 isleap = 0;
/* Temporaries used for various computations */
JSInt64 result;
JSInt64 result1;
JSInt64 result2;
JSInt64 base;
/* Some variables for intermediate result storage to make computing isleap
easier/faster */
JSInt32 fourCenturyBlocks;
JSInt32 centuriesLeft;
JSInt32 fourYearBlocksLeft;
JSInt32 yearsLeft;
/* Since leap years work by 400/100/4 year intervals, precompute the length
of those in seconds if they start at the beginning of year 1. */
JSInt64 fourYears;
JSInt64 century;
JSInt64 fourCenturies;
JSLL_UI2L(result, PRMJ_DAY_SECONDS);
JSLL_I2L(fourYears, PRMJ_FOUR_YEARS_DAYS);
JSLL_MUL(fourYears, fourYears, result);
JSLL_I2L(century, PRMJ_CENTURY_DAYS);
JSLL_MUL(century, century, result);
JSLL_I2L(fourCenturies, PRMJ_FOUR_CENTURIES_DAYS);
JSLL_MUL(fourCenturies, fourCenturies, result);
/* get the base time via UTC */
base = PRMJ_ToExtendedTime(0);
JSLL_UI2L(result, PRMJ_USEC_PER_SEC);
JSLL_DIV(base,base,result);
JSLL_ADD(tsecs,tsecs,base);
/* Compute our |year|, |isleap|, and part of |days|. When this part is
done, |year| should hold the year our date falls in (number of whole
years elapsed before our date), isleap should hold 1 if the year the
date falls in is a leap year and 0 otherwise. */
/* First do year 0; it's special and nonleap. */
JSLL_UI2L(result, PRMJ_YEAR_SECONDS);
if (!JSLL_CMP(tsecs,<,result)) {
days = PRMJ_YEAR_DAYS;
year = 1;
JSLL_SUB(tsecs, tsecs, result);
}
/* Now use those constants we computed above */
JSLL_UDIVMOD(&result1, &result2, tsecs, fourCenturies);
JSLL_L2I(fourCenturyBlocks, result1);
year += fourCenturyBlocks * 400;
days += fourCenturyBlocks * PRMJ_FOUR_CENTURIES_DAYS;
tsecs = result2;
JSLL_UDIVMOD(&result1, &result2, tsecs, century);
JSLL_L2I(centuriesLeft, result1);
year += centuriesLeft * 100;
days += centuriesLeft * PRMJ_CENTURY_DAYS;
tsecs = result2;
JSLL_UDIVMOD(&result1, &result2, tsecs, fourYears);
JSLL_L2I(fourYearBlocksLeft, result1);
year += fourYearBlocksLeft * 4;
days += fourYearBlocksLeft * PRMJ_FOUR_YEARS_DAYS;
tsecs = result2;
/* Recall that |result| holds PRMJ_YEAR_SECONDS */
JSLL_UDIVMOD(&result1, &result2, tsecs, result);
JSLL_L2I(yearsLeft, result1);
year += yearsLeft;
days += yearsLeft * PRMJ_YEAR_DAYS;
tsecs = result2;
/* now compute isleap. Note that we don't have to use %, since we've
already computed those remainders. Also note that they're all offset by
1 because of the 1 for year 0. */
isleap =
(yearsLeft == 3) && (fourYearBlocksLeft != 24 || centuriesLeft == 3);
JS_ASSERT(isleap ==
((year % 4 == 0) && (year % 100 != 0 || year % 400 == 0)));
JSLL_UI2L(result1,PRMJ_DAY_SECONDS);
JSLL_DIV(result,tsecs,result1);
JSLL_L2I(mday,result);
/* let's find the month */
while(((month == 1 && isleap) ?
(mday >= mtab[month] + 1) :
(mday >= mtab[month]))){
yday += mtab[month];
days += mtab[month];
mday -= mtab[month];
/* it's a Feb, check if this is a leap year */
if(month == 1 && isleap != 0){
yday++;
days++;
mday--;
}
month++;
}
/* now adjust tsecs */
JSLL_MUL(result,result,result1);
JSLL_SUB(tsecs,tsecs,result);
mday++; /* day of month always start with 1 */
days += mday;
wday = (days + wday) % 7;
yday += mday;
/* get the hours */
JSLL_UI2L(result1,PRMJ_HOUR_SECONDS);
JSLL_DIV(result,tsecs,result1);
JSLL_L2I(hours,result);
JSLL_MUL(result,result,result1);
JSLL_SUB(tsecs,tsecs,result);
/* get minutes */
JSLL_UI2L(result1,60);
JSLL_DIV(result,tsecs,result1);
JSLL_L2I(minutes,result);
JSLL_MUL(result,result,result1);
JSLL_SUB(tsecs,tsecs,result);
JSLL_L2I(seconds,tsecs);
prtm->tm_usec = 0L;
prtm->tm_sec = (JSInt8)seconds;
prtm->tm_min = (JSInt8)minutes;
prtm->tm_hour = (JSInt8)hours;
prtm->tm_mday = (JSInt8)mday;
prtm->tm_mon = (JSInt8)month;
prtm->tm_wday = (JSInt8)wday;
prtm->tm_year = (JSInt16)year;
prtm->tm_yday = (JSInt16)yday;
}
JSInt64
DSTOffsetCache::computeDSTOffsetMilliseconds(int64 localTimeSeconds)
{
JS_ASSERT(localTimeSeconds >= 0);
JS_ASSERT(localTimeSeconds <= MAX_UNIX_TIMET);
#if defined(XP_WIN) && !defined(WINCE)
/* Windows does not follow POSIX. Updates to the
* TZ environment variable are not reflected
* immediately on that platform as they are
* on UNIX systems without this call.
*/
_tzset();
#endif
time_t local = static_cast<time_t>(localTimeSeconds);
PRMJTime prtm;
struct tm tm;
PRMJ_basetime(localTimeSeconds, &prtm);
#ifndef HAVE_LOCALTIME_R
struct tm *ptm = localtime(&local);
if (!ptm)
return 0;
tm = *ptm;
#else
localtime_r(&local, &tm); /* get dst information */
#endif
JSInt32 diff = ((tm.tm_hour - prtm.tm_hour) * SECONDS_PER_HOUR) +
((tm.tm_min - prtm.tm_min) * SECONDS_PER_MINUTE);
if (diff < 0)
diff += SECONDS_PER_DAY;
return diff * MILLISECONDS_PER_SECOND;
}
JSInt64
DSTOffsetCache::getDSTOffsetMilliseconds(JSInt64 localTimeMilliseconds, JSContext *cx)
{
sanityCheck();
noteOffsetCalculation();
JSInt64 localTimeSeconds = localTimeMilliseconds / MILLISECONDS_PER_SECOND;
if (localTimeSeconds > MAX_UNIX_TIMET) {
localTimeSeconds = MAX_UNIX_TIMET;
} else if (localTimeSeconds < 0) {
/* Go ahead a day to make localtime work (does not work with 0). */
localTimeSeconds = SECONDS_PER_DAY;
}
/*
* NB: Be aware of the initial range values when making changes to this
* code: the first call to this method, with those initial range
* values, must result in a cache miss.
*/
if (rangeStartSeconds <= localTimeSeconds) {
if (localTimeSeconds <= rangeEndSeconds) {
noteCacheHit();
return offsetMilliseconds;
}
JSInt64 newEndSeconds = JS_MIN(rangeEndSeconds + RANGE_EXPANSION_AMOUNT, MAX_UNIX_TIMET);
if (newEndSeconds >= localTimeSeconds) {
JSInt64 endOffsetMilliseconds = computeDSTOffsetMilliseconds(newEndSeconds);
if (endOffsetMilliseconds == offsetMilliseconds) {
noteCacheMissIncrease();
rangeEndSeconds = newEndSeconds;
return offsetMilliseconds;
}
offsetMilliseconds = computeDSTOffsetMilliseconds(localTimeSeconds);
if (offsetMilliseconds == endOffsetMilliseconds) {
noteCacheMissIncreasingOffsetChangeUpper();
rangeStartSeconds = localTimeSeconds;
rangeEndSeconds = newEndSeconds;
} else {
noteCacheMissIncreasingOffsetChangeExpand();
rangeEndSeconds = localTimeSeconds;
}
return offsetMilliseconds;
}
noteCacheMissLargeIncrease();
offsetMilliseconds = computeDSTOffsetMilliseconds(localTimeSeconds);
rangeStartSeconds = rangeEndSeconds = localTimeSeconds;
return offsetMilliseconds;
}
JSInt64 newStartSeconds = JS_MAX(rangeStartSeconds - RANGE_EXPANSION_AMOUNT, 0);
if (newStartSeconds <= localTimeSeconds) {
JSInt64 startOffsetMilliseconds = computeDSTOffsetMilliseconds(newStartSeconds);
if (startOffsetMilliseconds == offsetMilliseconds) {
noteCacheMissDecrease();
rangeStartSeconds = newStartSeconds;
return offsetMilliseconds;
}
offsetMilliseconds = computeDSTOffsetMilliseconds(localTimeSeconds);
if (offsetMilliseconds == startOffsetMilliseconds) {
noteCacheMissDecreasingOffsetChangeLower();
rangeStartSeconds = newStartSeconds;
rangeEndSeconds = localTimeSeconds;
} else {
noteCacheMissDecreasingOffsetChangeExpand();
rangeStartSeconds = localTimeSeconds;
}
return offsetMilliseconds;
}
noteCacheMissLargeDecrease();
rangeStartSeconds = rangeEndSeconds = localTimeSeconds;
offsetMilliseconds = computeDSTOffsetMilliseconds(localTimeSeconds);
return offsetMilliseconds;
}
void
DSTOffsetCache::sanityCheck()
{
JS_ASSERT(rangeStartSeconds <= rangeEndSeconds);
JS_ASSERT_IF(rangeStartSeconds == INT64_MIN, rangeEndSeconds == INT64_MIN);
JS_ASSERT_IF(rangeEndSeconds == INT64_MIN, rangeStartSeconds == INT64_MIN);
JS_ASSERT_IF(rangeStartSeconds != INT64_MIN,
rangeStartSeconds >= 0 && rangeEndSeconds >= 0);
JS_ASSERT_IF(rangeStartSeconds != INT64_MIN,
rangeStartSeconds <= MAX_UNIX_TIMET && rangeEndSeconds <= MAX_UNIX_TIMET);
#ifdef JS_METER_DST_OFFSET_CACHING
JS_ASSERT(totalCalculations ==
hit +
missIncreasing + missDecreasing +
missIncreasingOffsetChangeExpand + missIncreasingOffsetChangeUpper +
missDecreasingOffsetChangeExpand + missDecreasingOffsetChangeLower +
missLargeIncrease + missLargeDecrease);
#endif
}
#ifdef JS_METER_DST_OFFSET_CACHING
void
DSTOffsetCache::dumpStats()
{
if (!getenv("JS_METER_DST_OFFSET_CACHING"))
return;
FILE *fp = fopen("/tmp/dst-offset-cache.stats", "a");
if (!fp)
return;
typedef unsigned long UL;
fprintf(fp,
"hit:\n"
" in range: %lu\n"
"misses:\n"
" increase range end: %lu\n"
" decrease range start: %lu\n"
" increase, offset change, expand: %lu\n"
" increase, offset change, new range: %lu\n"
" decrease, offset change, expand: %lu\n"
" decrease, offset change, new range: %lu\n"
" large increase: %lu\n"
" large decrease: %lu\n"
"total: %lu\n\n",
UL(hit),
UL(missIncreasing), UL(missDecreasing),
UL(missIncreasingOffsetChangeExpand), UL(missIncreasingOffsetChangeUpper),
UL(missDecreasingOffsetChangeExpand), UL(missDecreasingOffsetChangeLower),
UL(missLargeIncrease), UL(missLargeDecrease),
UL(totalCalculations));
fclose(fp);
}
#endif