mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
187 lines
5.6 KiB
JavaScript
187 lines
5.6 KiB
JavaScript
/* -*- Mode: javascript; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
"use strict";
|
|
|
|
/**
|
|
* This worker handles picking, given a set of vertices and a ray (calculates
|
|
* the intersection points and offers back information about the closest hit).
|
|
*
|
|
* Used in the TiltVisualization.Presenter object.
|
|
*/
|
|
self.onmessage = function TWP_onMessage(event)
|
|
{
|
|
let data = event.data;
|
|
let vertices = data.vertices;
|
|
let ray = data.ray;
|
|
|
|
let intersection = null;
|
|
let hit = [];
|
|
|
|
// calculates the squared distance between two points
|
|
function dsq(p1, p2) {
|
|
let xd = p2[0] - p1[0];
|
|
let yd = p2[1] - p1[1];
|
|
let zd = p2[2] - p1[2];
|
|
|
|
return xd * xd + yd * yd + zd * zd;
|
|
}
|
|
|
|
// check each stack face in the visualization mesh for intersections with
|
|
// the mouse ray (using a ray picking algorithm)
|
|
for (let i = 0, len = vertices.length; i < len; i += 36) {
|
|
|
|
// the front quad
|
|
let v0f = [vertices[i], vertices[i + 1], vertices[i + 2]];
|
|
let v1f = [vertices[i + 3], vertices[i + 4], vertices[i + 5]];
|
|
let v2f = [vertices[i + 6], vertices[i + 7], vertices[i + 8]];
|
|
let v3f = [vertices[i + 9], vertices[i + 10], vertices[i + 11]];
|
|
|
|
// the back quad
|
|
let v0b = [vertices[i + 24], vertices[i + 25], vertices[i + 26]];
|
|
let v1b = [vertices[i + 27], vertices[i + 28], vertices[i + 29]];
|
|
let v2b = [vertices[i + 30], vertices[i + 31], vertices[i + 32]];
|
|
let v3b = [vertices[i + 33], vertices[i + 34], vertices[i + 35]];
|
|
|
|
// don't do anything with degenerate quads
|
|
if (!v0f[0] && !v1f[0] && !v2f[0] && !v3f[0]) {
|
|
continue;
|
|
}
|
|
|
|
// for each triangle in the stack box, check for the intersections
|
|
if (self.intersect(v0f, v1f, v2f, ray, hit) || // front left
|
|
self.intersect(v0f, v2f, v3f, ray, hit) || // front right
|
|
self.intersect(v0b, v1b, v1f, ray, hit) || // left back
|
|
self.intersect(v0b, v1f, v0f, ray, hit) || // left front
|
|
self.intersect(v3f, v2b, v3b, ray, hit) || // right back
|
|
self.intersect(v3f, v2f, v2b, ray, hit) || // right front
|
|
self.intersect(v0b, v0f, v3f, ray, hit) || // top left
|
|
self.intersect(v0b, v3f, v3b, ray, hit) || // top right
|
|
self.intersect(v1f, v1b, v2b, ray, hit) || // bottom left
|
|
self.intersect(v1f, v2b, v2f, ray, hit)) { // bottom right
|
|
|
|
// calculate the distance between the intersection hit point and camera
|
|
let d = dsq(hit, ray.origin);
|
|
|
|
// we're picking the closest stack in the mesh from the camera
|
|
if (intersection === null || d < intersection.distance) {
|
|
intersection = {
|
|
// each mesh stack is composed of 12 vertices, so there's information
|
|
// about a node once in 12 * 3 = 36 iterations (to avoid duplication)
|
|
index: i / 36,
|
|
distance: d
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|
|
self.postMessage(intersection);
|
|
close();
|
|
};
|
|
|
|
/**
|
|
* Utility function for finding intersections between a ray and a triangle.
|
|
*/
|
|
self.intersect = (function() {
|
|
|
|
// creates a new instance of a vector
|
|
function create() {
|
|
return new Float32Array(3);
|
|
}
|
|
|
|
// performs a vector addition
|
|
function add(aVec, aVec2, aDest) {
|
|
aDest[0] = aVec[0] + aVec2[0];
|
|
aDest[1] = aVec[1] + aVec2[1];
|
|
aDest[2] = aVec[2] + aVec2[2];
|
|
return aDest;
|
|
}
|
|
|
|
// performs a vector subtraction
|
|
function subtract(aVec, aVec2, aDest) {
|
|
aDest[0] = aVec[0] - aVec2[0];
|
|
aDest[1] = aVec[1] - aVec2[1];
|
|
aDest[2] = aVec[2] - aVec2[2];
|
|
return aDest;
|
|
}
|
|
|
|
// performs a vector scaling
|
|
function scale(aVec, aVal, aDest) {
|
|
aDest[0] = aVec[0] * aVal;
|
|
aDest[1] = aVec[1] * aVal;
|
|
aDest[2] = aVec[2] * aVal;
|
|
return aDest;
|
|
}
|
|
|
|
// generates the cross product of two vectors
|
|
function cross(aVec, aVec2, aDest) {
|
|
let x = aVec[0];
|
|
let y = aVec[1];
|
|
let z = aVec[2];
|
|
let x2 = aVec2[0];
|
|
let y2 = aVec2[1];
|
|
let z2 = aVec2[2];
|
|
|
|
aDest[0] = y * z2 - z * y2;
|
|
aDest[1] = z * x2 - x * z2;
|
|
aDest[2] = x * y2 - y * x2;
|
|
return aDest;
|
|
}
|
|
|
|
// calculates the dot product of two vectors
|
|
function dot(aVec, aVec2) {
|
|
return aVec[0] * aVec2[0] + aVec[1] * aVec2[1] + aVec[2] * aVec2[2];
|
|
}
|
|
|
|
let edge1 = create();
|
|
let edge2 = create();
|
|
let pvec = create();
|
|
let tvec = create();
|
|
let qvec = create();
|
|
let lvec = create();
|
|
|
|
// checks for ray-triangle intersections using the Fast Minimum-Storage
|
|
// (simplified) algorithm by Tomas Moller and Ben Trumbore
|
|
return function intersect(aVert0, aVert1, aVert2, aRay, aDest) {
|
|
let dir = aRay.direction;
|
|
let orig = aRay.origin;
|
|
|
|
// find vectors for two edges sharing vert0
|
|
subtract(aVert1, aVert0, edge1);
|
|
subtract(aVert2, aVert0, edge2);
|
|
|
|
// begin calculating determinant - also used to calculate the U parameter
|
|
cross(dir, edge2, pvec);
|
|
|
|
// if determinant is near zero, ray lines in plane of triangle
|
|
let inv_det = 1 / dot(edge1, pvec);
|
|
|
|
// calculate distance from vert0 to ray origin
|
|
subtract(orig, aVert0, tvec);
|
|
|
|
// calculate U parameter and test bounds
|
|
let u = dot(tvec, pvec) * inv_det;
|
|
if (u < 0 || u > 1) {
|
|
return false;
|
|
}
|
|
|
|
// prepare to test V parameter
|
|
cross(tvec, edge1, qvec);
|
|
|
|
// calculate V parameter and test bounds
|
|
let v = dot(dir, qvec) * inv_det;
|
|
if (v < 0 || u + v > 1) {
|
|
return false;
|
|
}
|
|
|
|
// calculate T, ray intersects triangle
|
|
let t = dot(edge2, qvec) * inv_det;
|
|
|
|
scale(dir, t, lvec);
|
|
add(orig, lvec, aDest);
|
|
return true;
|
|
};
|
|
}());
|