gecko/tools/reorder/interval_map.h
2012-05-21 12:12:37 +01:00

327 lines
8.4 KiB
C++

/* -*- Mode: C++ -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef interval_map_h__
#define interval_map_h__
/*
A utility class that maps an interval to an object, allowing clients
to look up the object by a point within the interval.
*/
// TODO:
// - removing intervals
// - container iterators
#include <fstream>
#include <assert.h>
template<class coord, class T>
class interval_map {
protected:
class const_iterator;
friend class const_iterator;
struct node {
T m_data;
coord m_min;
coord m_max;
node *m_before; // intervals before this one
node *m_within; // intervals within this one
node *m_after; // intervals after this one
int m_bal;
};
public:
/**
* A unidirectional const iterator that is used to enumerate the
* intervals that overlap a specific point.
*/
class const_iterator {
protected:
const node *m_node;
const coord m_point;
friend class interval_map;
const_iterator(const node *n, const coord &point)
: m_node(n), m_point(point) {}
void advance();
public:
const_iterator() : m_node(0), m_point(0) {}
const_iterator(const const_iterator &iter)
: m_node(iter.m_node), m_point(iter.m_point) {}
const_iterator &
operator=(const const_iterator &iter) {
m_node = iter.m_node;
m_point = iter.m_point; }
const T &
operator*() const { return m_node->m_data; }
const T *
operator->() const { return &m_node->m_data; }
const_iterator &
operator++() { advance(); return *this; }
const_iterator
operator++(int) {
const_iterator temp(*this);
advance();
return temp; }
bool
operator==(const const_iterator &iter) const {
return m_node == iter.m_node; }
bool
operator!=(const const_iterator &iter) const {
return !iter.operator==(*this); }
};
interval_map() : m_root(0) {}
~interval_map() { delete m_root; }
/**
* Insert aData for the interval [aMin, aMax]
*/
void put(coord min, coord max, const T &data) {
put_into(&m_root, min, max, data);
#ifdef DEBUG
verify(m_root, 0);
#endif
}
/**
* Return an iterator that will enumerate the data for all intervals
* intersecting |aPoint|.
*/
const_iterator get(coord point) const;
/**
* Return an iterator that marks the end-point of iteration.
*/
const_iterator end() const {
return const_iterator(0, 0); }
protected:
void put_into(node **link, coord min, coord max, const T &data, bool *subsumed = 0);
void left_rotate(node **link, node *node);
void right_rotate(node **link, node *node);
#ifdef DEBUG
void verify(node *node, int depth);
#endif
node *m_root;
};
template<class coord, class T>
void
interval_map<coord, T>::put_into(node **root, coord min, coord max, const T &data, bool *subsumed)
{
assert(min < max);
node *interval = *root;
if (interval) {
bool before = min < interval->m_min;
bool after = max > interval->m_max;
if (!before || !after) {
// The interval we're adding does not completely subsume
// the |interval|. So we've got one of these situations:
//
// |======| |======| |======|
// |------| |--| |------|
//
// where |==| is the existing interval, and |--| is the
// new interval we're inserting. If there's left or right
// slop, then we ``split'' the new interval in half:
//
// |======| |======|
// |--|---| |---|--|
//
// and insert it both in the ``within'' and ``before'' (or
// ``after'') subtrees.
//
if (before) {
if (max > interval->m_min) {
put_into(&interval->m_within, interval->m_min, max, data);
max = interval->m_min;
}
bool was_subsumed = true;
put_into(&interval->m_before, min, max, data, &was_subsumed);
if (! was_subsumed) {
if (interval->m_bal < 0) {
if (interval->m_before->m_bal > 0)
left_rotate(&interval->m_before, interval->m_before);
right_rotate(root, interval);
}
else
--interval->m_bal;
if (subsumed)
*subsumed = (interval->m_bal == 0);
}
return;
}
if (after) {
if (min < interval->m_max) {
put_into(&interval->m_within, min, interval->m_max, data);
min = interval->m_max;
}
bool was_subsumed = true;
put_into(&interval->m_after, min, max, data, &was_subsumed);
if (! was_subsumed) {
if (interval->m_bal > 0) {
if (interval->m_after->m_bal < 0)
right_rotate(&interval->m_after, interval->m_after);
left_rotate(root, interval);
}
else
++interval->m_bal;
if (subsumed)
*subsumed = (interval->m_bal == 0);
}
return;
}
put_into(&interval->m_within, min, max, data);
return;
}
// If we get here, the interval we're adding completely
// subsumes |interval|. We'll go ahead and insert a new
// interval immediately above |interval|, with |interval| as
// the new interval's |m_within|.
}
if (subsumed)
*subsumed = false;
node *n = new node();
n->m_data = data;
n->m_before = n->m_after = 0;
n->m_min = min;
n->m_max = max;
n->m_within = interval;
n->m_bal = 0;
*root = n;
}
/*
* (*link) (*link)
* | == left rotate ==> |
* (x) (y)
* / \ / \
* a (y) <== right rotate == (x) c
* / \ / \
* b c a b
*/
template<class coord, class T>
void
interval_map<coord, T>::left_rotate(node **link, node *x)
{
node *y = x->m_after;
x->m_after = y->m_before;
*link = y;
y->m_before = x;
--x->m_bal;
--y->m_bal;
}
template<class coord, class T>
void
interval_map<coord, T>::right_rotate(node **link, node *y)
{
node *x = y->m_before;
y->m_before = x->m_after;
*link = x;
x->m_after = y;
++y->m_bal;
++x->m_bal;
}
template<class coord, class T>
interval_map<coord, T>::const_iterator
interval_map<coord, T>::get(coord point) const
{
node *interval = m_root;
while (interval) {
if (point < interval->m_min)
interval = interval->m_before;
else if (point > interval->m_max)
interval = interval->m_after;
else
break;
}
return const_iterator(interval, point);
}
template<class coord, class T>
void
interval_map<coord, T>::const_iterator::advance()
{
assert(m_node);
m_node = m_node->m_within;
while (m_node) {
if (m_point < m_node->m_min)
m_node = m_node->m_before;
else if (m_point > m_node->m_max)
m_node = m_node->m_after;
else
break;
}
}
#ifdef DEBUG
template<class coord, class T>
void
interval_map<coord, T>::verify(node<coord, T> *node, int depth)
{
if (node->m_after)
verify(node->m_after, depth + 1);
for (int i = 0; i < depth; ++i)
cout << " ";
hex(cout);
cout << node << "(";
dec(cout);
cout << node->m_bal << ")";
hex(cout);
cout << "[" << node->m_min << "," << node->m_max << "]";
cout << "@" << node->m_data;
cout << endl;
if (node->m_before)
verify(node->m_before, depth + 1);
}
#endif // DEBUG
#endif // interval_map_h__