gecko/xpcom/base/nsMemoryReporterManager.cpp
Nicholas Nethercote 37005fd521 Bug 822148 (part 3) - DMD: Rename |LiveBlock| as |Block|. r=jlebar.
--HG--
extra : rebase_source : 65ccba830ca872fd28a410122ebf65c12cbf6377
2012-12-17 19:56:51 -08:00

1210 lines
34 KiB
C++

/* -*- Mode: C++; tab-width: 50; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsAtomTable.h"
#include "nsAutoPtr.h"
#include "nsCOMPtr.h"
#include "nsDirectoryServiceUtils.h"
#include "nsServiceManagerUtils.h"
#include "nsMemoryReporterManager.h"
#include "nsArrayEnumerator.h"
#include "nsISimpleEnumerator.h"
#include "nsIFile.h"
#include "nsIFileStreams.h"
#include "nsPrintfCString.h"
#include "nsThreadUtils.h"
#include "nsIObserverService.h"
#include "nsThread.h"
#include "nsMemoryInfoDumper.h"
#include "mozilla/Telemetry.h"
#include "mozilla/Attributes.h"
#include "mozilla/Services.h"
#ifndef XP_WIN
#include <unistd.h>
#endif
using namespace mozilla;
#if defined(MOZ_MEMORY)
# define HAVE_JEMALLOC_STATS 1
# include "mozmemory.h"
#endif // MOZ_MEMORY
#ifdef XP_UNIX
#include <sys/time.h>
#include <sys/resource.h>
#define HAVE_PAGE_FAULT_REPORTERS 1
static nsresult GetHardPageFaults(int64_t *n)
{
struct rusage usage;
int err = getrusage(RUSAGE_SELF, &usage);
if (err != 0) {
return NS_ERROR_FAILURE;
}
*n = usage.ru_majflt;
return NS_OK;
}
static nsresult GetSoftPageFaults(int64_t *n)
{
struct rusage usage;
int err = getrusage(RUSAGE_SELF, &usage);
if (err != 0) {
return NS_ERROR_FAILURE;
}
*n = usage.ru_minflt;
return NS_OK;
}
#endif // HAVE_PAGE_FAULT_REPORTERS
#if defined(XP_LINUX)
#include <unistd.h>
static nsresult GetProcSelfStatmField(int field, int64_t *n)
{
// There are more than two fields, but we're only interested in the first
// two.
static const int MAX_FIELD = 2;
size_t fields[MAX_FIELD];
MOZ_ASSERT(field < MAX_FIELD, "bad field number");
FILE *f = fopen("/proc/self/statm", "r");
if (f) {
int nread = fscanf(f, "%zu %zu", &fields[0], &fields[1]);
fclose(f);
if (nread == MAX_FIELD) {
*n = fields[field] * getpagesize();
return NS_OK;
}
}
return NS_ERROR_FAILURE;
}
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t *n)
{
return GetProcSelfStatmField(0, n);
}
static nsresult GetResident(int64_t *n)
{
return GetProcSelfStatmField(1, n);
}
#elif defined(__DragonFly__) || defined(__FreeBSD__) \
|| defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
#if defined(__DragonFly__) || defined(__FreeBSD__)
#include <sys/user.h>
#endif
#include <unistd.h>
#if defined(__NetBSD__)
#undef KERN_PROC
#define KERN_PROC KERN_PROC2
#define KINFO_PROC struct kinfo_proc2
#else
#define KINFO_PROC struct kinfo_proc
#endif
#if defined(__DragonFly__)
#define KP_SIZE(kp) (kp.kp_vm_map_size)
#define KP_RSS(kp) (kp.kp_vm_rssize * getpagesize())
#elif defined(__FreeBSD__)
#define KP_SIZE(kp) (kp.ki_size)
#define KP_RSS(kp) (kp.ki_rssize * getpagesize())
#elif defined(__NetBSD__)
#define KP_SIZE(kp) (kp.p_vm_msize * getpagesize())
#define KP_RSS(kp) (kp.p_vm_rssize * getpagesize())
#elif defined(__OpenBSD__)
#define KP_SIZE(kp) ((kp.p_vm_dsize + kp.p_vm_ssize \
+ kp.p_vm_tsize) * getpagesize())
#define KP_RSS(kp) (kp.p_vm_rssize * getpagesize())
#endif
static nsresult GetKinfoProcSelf(KINFO_PROC *proc)
{
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
#if defined(__NetBSD__) || defined(__OpenBSD__)
sizeof(KINFO_PROC),
1,
#endif
};
u_int miblen = sizeof(mib) / sizeof(mib[0]);
size_t size = sizeof(KINFO_PROC);
if (sysctl(mib, miblen, proc, &size, NULL, 0))
return NS_ERROR_FAILURE;
return NS_OK;
}
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t *n)
{
KINFO_PROC proc;
nsresult rv = GetKinfoProcSelf(&proc);
if (NS_SUCCEEDED(rv))
*n = KP_SIZE(proc);
return rv;
}
static nsresult GetResident(int64_t *n)
{
KINFO_PROC proc;
nsresult rv = GetKinfoProcSelf(&proc);
if (NS_SUCCEEDED(rv))
*n = KP_RSS(proc);
return rv;
}
#elif defined(SOLARIS)
#include <procfs.h>
#include <fcntl.h>
#include <unistd.h>
static void XMappingIter(int64_t& vsize, int64_t& resident)
{
vsize = -1;
resident = -1;
int mapfd = open("/proc/self/xmap", O_RDONLY);
struct stat st;
prxmap_t *prmapp = NULL;
if (mapfd >= 0) {
if (!fstat(mapfd, &st)) {
int nmap = st.st_size / sizeof(prxmap_t);
while (1) {
// stat(2) on /proc/<pid>/xmap returns an incorrect value,
// prior to the release of Solaris 11.
// Here is a workaround for it.
nmap *= 2;
prmapp = (prxmap_t*)malloc((nmap + 1) * sizeof(prxmap_t));
if (!prmapp) {
// out of memory
break;
}
int n = pread(mapfd, prmapp, (nmap + 1) * sizeof(prxmap_t), 0);
if (n < 0) {
break;
}
if (nmap >= n / sizeof (prxmap_t)) {
vsize = 0;
resident = 0;
for (int i = 0; i < n / sizeof (prxmap_t); i++) {
vsize += prmapp[i].pr_size;
resident += prmapp[i].pr_rss * prmapp[i].pr_pagesize;
}
break;
}
free(prmapp);
}
free(prmapp);
}
close(mapfd);
}
}
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t *n)
{
int64_t vsize, resident;
XMappingIter(vsize, resident);
if (vsize == -1) {
return NS_ERROR_FAILURE;
}
*n = vsize;
return NS_OK;
}
static nsresult GetResident(int64_t *n)
{
int64_t vsize, resident;
XMappingIter(vsize, resident);
if (resident == -1) {
return NS_ERROR_FAILURE;
}
*n = resident;
return NS_OK;
}
#elif defined(XP_MACOSX)
#include <mach/mach_init.h>
#include <mach/task.h>
static bool GetTaskBasicInfo(struct task_basic_info *ti)
{
mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT;
kern_return_t kr = task_info(mach_task_self(), TASK_BASIC_INFO,
(task_info_t)ti, &count);
return kr == KERN_SUCCESS;
}
// The VSIZE figure on Mac includes huge amounts of shared memory and is always
// absurdly high, eg. 2GB+ even at start-up. But both 'top' and 'ps' report
// it, so we might as well too.
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t *n)
{
task_basic_info ti;
if (!GetTaskBasicInfo(&ti))
return NS_ERROR_FAILURE;
*n = ti.virtual_size;
return NS_OK;
}
static nsresult GetResident(int64_t *n)
{
#ifdef HAVE_JEMALLOC_STATS
// If we're using jemalloc on Mac, we need to instruct jemalloc to purge
// the pages it has madvise(MADV_FREE)'d before we read our RSS. The OS
// will take away MADV_FREE'd pages when there's memory pressure, so they
// shouldn't count against our RSS.
//
// Purging these pages shouldn't take more than 10ms or so, but we want to
// keep an eye on it since GetResident() is called on each Telemetry ping.
{
Telemetry::AutoTimer<Telemetry::MEMORY_FREE_PURGED_PAGES_MS> timer;
jemalloc_purge_freed_pages();
}
#endif
task_basic_info ti;
if (!GetTaskBasicInfo(&ti))
return NS_ERROR_FAILURE;
*n = ti.resident_size;
return NS_OK;
}
#elif defined(XP_WIN)
#include <windows.h>
#include <psapi.h>
#define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1
static nsresult GetVsize(int64_t *n)
{
MEMORYSTATUSEX s;
s.dwLength = sizeof(s);
if (!GlobalMemoryStatusEx(&s)) {
return NS_ERROR_FAILURE;
}
*n = s.ullTotalVirtual - s.ullAvailVirtual;
return NS_OK;
}
static nsresult GetResident(int64_t *n)
{
PROCESS_MEMORY_COUNTERS pmc;
pmc.cb = sizeof(PROCESS_MEMORY_COUNTERS);
if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) {
return NS_ERROR_FAILURE;
}
*n = pmc.WorkingSetSize;
return NS_OK;
}
#define HAVE_PRIVATE_REPORTER
static nsresult GetPrivate(int64_t *n)
{
PROCESS_MEMORY_COUNTERS_EX pmcex;
pmcex.cb = sizeof(PROCESS_MEMORY_COUNTERS_EX);
if (!GetProcessMemoryInfo(GetCurrentProcess(),
(PPROCESS_MEMORY_COUNTERS) &pmcex, sizeof(pmcex)))
{
return NS_ERROR_FAILURE;
}
*n = pmcex.PrivateUsage;
return NS_OK;
}
NS_FALLIBLE_MEMORY_REPORTER_IMPLEMENT(Private,
"private",
KIND_OTHER,
UNITS_BYTES,
GetPrivate,
"Memory that cannot be shared with other processes, including memory that "
"is committed and marked MEM_PRIVATE, data that is not mapped, and "
"executable pages that have been written to.")
#endif // XP_<PLATFORM>
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
NS_FALLIBLE_MEMORY_REPORTER_IMPLEMENT(Vsize,
"vsize",
KIND_OTHER,
UNITS_BYTES,
GetVsize,
"Memory mapped by the process, including code and data segments, the "
"heap, thread stacks, memory explicitly mapped by the process via mmap "
"and similar operations, and memory shared with other processes. "
"This is the vsize figure as reported by 'top' and 'ps'. This figure is of "
"limited use on Mac, where processes share huge amounts of memory with one "
"another. But even on other operating systems, 'resident' is a much better "
"measure of the memory resources used by the process.")
NS_FALLIBLE_MEMORY_REPORTER_IMPLEMENT(Resident,
"resident",
KIND_OTHER,
UNITS_BYTES,
GetResident,
"Memory mapped by the process that is present in physical memory, "
"also known as the resident set size (RSS). This is the best single "
"figure to use when considering the memory resources used by the process, "
"but it depends both on other processes being run and details of the OS "
"kernel and so is best used for comparing the memory usage of a single "
"process at different points in time.")
#endif // HAVE_VSIZE_AND_RESIDENT_REPORTERS
#ifdef HAVE_PAGE_FAULT_REPORTERS
NS_FALLIBLE_MEMORY_REPORTER_IMPLEMENT(PageFaultsSoft,
"page-faults-soft",
KIND_OTHER,
UNITS_COUNT_CUMULATIVE,
GetSoftPageFaults,
"The number of soft page faults (also known as 'minor page faults') that "
"have occurred since the process started. A soft page fault occurs when the "
"process tries to access a page which is present in physical memory but is "
"not mapped into the process's address space. For instance, a process might "
"observe soft page faults when it loads a shared library which is already "
"present in physical memory. A process may experience many thousands of soft "
"page faults even when the machine has plenty of available physical memory, "
"and because the OS services a soft page fault without accessing the disk, "
"they impact performance much less than hard page faults.")
NS_FALLIBLE_MEMORY_REPORTER_IMPLEMENT(PageFaultsHard,
"page-faults-hard",
KIND_OTHER,
UNITS_COUNT_CUMULATIVE,
GetHardPageFaults,
"The number of hard page faults (also known as 'major page faults') that "
"have occurred since the process started. A hard page fault occurs when a "
"process tries to access a page which is not present in physical memory. "
"The operating system must access the disk in order to fulfill a hard page "
"fault. When memory is plentiful, you should see very few hard page faults. "
"But if the process tries to use more memory than your machine has "
"available, you may see many thousands of hard page faults. Because "
"accessing the disk is up to a million times slower than accessing RAM, "
"the program may run very slowly when it is experiencing more than 100 or "
"so hard page faults a second.")
#endif // HAVE_PAGE_FAULT_REPORTERS
/**
** memory reporter implementation for jemalloc and OSX malloc,
** to obtain info on total memory in use (that we know about,
** at least -- on OSX, there are sometimes other zones in use).
**/
#if HAVE_JEMALLOC_STATS
static int64_t GetHeapUnused()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) (stats.mapped - stats.allocated);
}
static int64_t GetHeapAllocated()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) stats.allocated;
}
static int64_t GetHeapCommitted()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) stats.committed;
}
static int64_t GetHeapCommittedUnused()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return stats.committed - stats.allocated;
}
static int64_t GetHeapCommittedUnusedRatio()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) 10000 * (stats.committed - stats.allocated) /
((double)stats.allocated);
}
static int64_t GetHeapDirty()
{
jemalloc_stats_t stats;
jemalloc_stats(&stats);
return (int64_t) stats.dirty;
}
NS_MEMORY_REPORTER_IMPLEMENT(HeapCommitted,
"heap-committed",
KIND_OTHER,
UNITS_BYTES,
GetHeapCommitted,
"Memory mapped by the heap allocator that is committed, i.e. in physical "
"memory or paged to disk. When heap-committed is larger than "
"heap-allocated, the difference between the two values is likely due to "
"external fragmentation; that is, the allocator allocated a large block of "
"memory and is unable to decommit it because a small part of that block is "
"currently in use.")
NS_MEMORY_REPORTER_IMPLEMENT(HeapCommittedUnused,
"heap-committed-unused",
KIND_OTHER,
UNITS_BYTES,
GetHeapCommittedUnused,
"Committed bytes which do not correspond to an active allocation; i.e., "
"'heap-committed' - 'heap-allocated'. Although the allocator will waste some "
"space under any circumstances, a large value here may indicate that the "
"heap is highly fragmented.")
NS_MEMORY_REPORTER_IMPLEMENT(HeapCommittedUnusedRatio,
"heap-committed-unused-ratio",
KIND_OTHER,
UNITS_PERCENTAGE,
GetHeapCommittedUnusedRatio,
"Ratio of committed, unused bytes to allocated bytes; i.e., "
"'heap-committed-unused' / 'heap-allocated'. This measures the overhead "
"of the heap allocator relative to amount of memory allocated.")
NS_MEMORY_REPORTER_IMPLEMENT(HeapDirty,
"heap-dirty",
KIND_OTHER,
UNITS_BYTES,
GetHeapDirty,
"Memory which the allocator could return to the operating system, but "
"hasn't. The allocator keeps this memory around as an optimization, so it "
"doesn't have to ask the OS the next time it needs to fulfill a request. "
"This value is typically not larger than a few megabytes.")
NS_MEMORY_REPORTER_IMPLEMENT(HeapUnused,
"heap-unused",
KIND_OTHER,
UNITS_BYTES,
GetHeapUnused,
"Memory mapped by the heap allocator that is not part of an active "
"allocation. Much of this memory may be uncommitted -- that is, it does not "
"take up space in physical memory or in the swap file.")
NS_MEMORY_REPORTER_IMPLEMENT(HeapAllocated,
"heap-allocated",
KIND_OTHER,
UNITS_BYTES,
GetHeapAllocated,
"Memory mapped by the heap allocator that is currently allocated to the "
"application. This may exceed the amount of memory requested by the "
"application because the allocator regularly rounds up request sizes. (The "
"exact amount requested is not recorded.)")
// The computation of "explicit" fails if "heap-allocated" isn't available,
// which is why this is depends on HAVE_JEMALLOC_STATS.
static nsresult GetExplicit(int64_t *n)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (mgr == nullptr)
return NS_ERROR_FAILURE;
return mgr->GetExplicit(n);
}
NS_FALLIBLE_MEMORY_REPORTER_IMPLEMENT(Explicit,
"explicit",
KIND_OTHER,
UNITS_BYTES,
GetExplicit,
"This is the same measurement as the root of the 'explicit' tree. "
"However, it is measured at a different time and so gives slightly "
"different results.")
#endif // HAVE_JEMALLOC_STATS
NS_MEMORY_REPORTER_MALLOC_SIZEOF_FUN(AtomTableMallocSizeOf, "atom-table")
static int64_t GetAtomTableSize() {
return NS_SizeOfAtomTablesIncludingThis(AtomTableMallocSizeOf);
}
// Why is this here? At first glance, you'd think it could be defined and
// registered with nsMemoryReporterManager entirely within nsAtomTable.cpp.
// However, the obvious time to register it is when the table is initialized,
// and that happens before XPCOM components are initialized, which means the
// NS_RegisterMemoryReporter call fails. So instead we do it here.
NS_MEMORY_REPORTER_IMPLEMENT(AtomTable,
"explicit/atom-tables",
KIND_HEAP,
UNITS_BYTES,
GetAtomTableSize,
"Memory used by the dynamic and static atoms tables.")
#ifdef MOZ_DMD
namespace mozilla {
namespace dmd {
class MemoryReporter MOZ_FINAL : public nsIMemoryMultiReporter
{
public:
MemoryReporter()
{}
NS_DECL_ISUPPORTS
NS_IMETHOD GetName(nsACString &name)
{
name.Assign("dmd");
return NS_OK;
}
NS_IMETHOD CollectReports(nsIMemoryMultiReporterCallback *callback,
nsISupports *closure)
{
dmd::Sizes sizes;
dmd::SizeOf(&sizes);
#define REPORT(_path, _amount, _desc) \
do { \
nsresult rv; \
rv = callback->Callback(EmptyCString(), NS_LITERAL_CSTRING(_path), \
nsIMemoryReporter::KIND_HEAP, \
nsIMemoryReporter::UNITS_BYTES, _amount, \
NS_LITERAL_CSTRING(_desc), closure); \
NS_ENSURE_SUCCESS(rv, rv); \
} while (0)
REPORT("explicit/dmd/stack-traces",
sizes.mStackTraces,
"Memory used by DMD's stack traces.");
REPORT("explicit/dmd/stack-trace-table",
sizes.mStackTraceTable,
"Memory used by DMD's stack trace table.");
REPORT("explicit/dmd/block-table",
sizes.mBlockTable,
"Memory used by DMD's live block table.");
#undef REPORT
return NS_OK;
}
NS_IMETHOD GetExplicitNonHeap(int64_t *n)
{
// No non-heap allocations.
*n = 0;
return NS_OK;
}
};
NS_IMPL_ISUPPORTS1(MemoryReporter, nsIMemoryMultiReporter)
} // namespace dmd
} // namespace mozilla
#endif // MOZ_DMD
/**
** nsMemoryReporterManager implementation
**/
NS_IMPL_THREADSAFE_ISUPPORTS1(nsMemoryReporterManager, nsIMemoryReporterManager)
NS_IMETHODIMP
nsMemoryReporterManager::Init()
{
#if HAVE_JEMALLOC_STATS && defined(XP_LINUX)
if (!jemalloc_stats)
return NS_ERROR_FAILURE;
#endif
#define REGISTER(_x) RegisterReporter(new NS_MEMORY_REPORTER_NAME(_x))
#ifdef HAVE_JEMALLOC_STATS
REGISTER(HeapAllocated);
REGISTER(HeapUnused);
REGISTER(HeapCommitted);
REGISTER(HeapCommittedUnused);
REGISTER(HeapCommittedUnusedRatio);
REGISTER(HeapDirty);
REGISTER(Explicit);
#endif
#ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS
REGISTER(Vsize);
REGISTER(Resident);
#endif
#ifdef HAVE_PAGE_FAULT_REPORTERS
REGISTER(PageFaultsSoft);
REGISTER(PageFaultsHard);
#endif
#ifdef HAVE_PRIVATE_REPORTER
REGISTER(Private);
#endif
REGISTER(AtomTable);
#ifdef MOZ_DMD
RegisterMultiReporter(new mozilla::dmd::MemoryReporter);
#endif
#if defined(XP_LINUX)
nsMemoryInfoDumper::Initialize();
#endif
return NS_OK;
}
nsMemoryReporterManager::nsMemoryReporterManager()
: mMutex("nsMemoryReporterManager::mMutex")
{
}
nsMemoryReporterManager::~nsMemoryReporterManager()
{
}
NS_IMETHODIMP
nsMemoryReporterManager::EnumerateReporters(nsISimpleEnumerator **result)
{
nsresult rv;
mozilla::MutexAutoLock autoLock(mMutex);
rv = NS_NewArrayEnumerator(result, mReporters);
return rv;
}
NS_IMETHODIMP
nsMemoryReporterManager::EnumerateMultiReporters(nsISimpleEnumerator **result)
{
nsresult rv;
mozilla::MutexAutoLock autoLock(mMutex);
rv = NS_NewArrayEnumerator(result, mMultiReporters);
return rv;
}
NS_IMETHODIMP
nsMemoryReporterManager::RegisterReporter(nsIMemoryReporter *reporter)
{
mozilla::MutexAutoLock autoLock(mMutex);
if (mReporters.IndexOf(reporter) != -1)
return NS_ERROR_FAILURE;
mReporters.AppendObject(reporter);
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::RegisterMultiReporter(nsIMemoryMultiReporter *reporter)
{
mozilla::MutexAutoLock autoLock(mMutex);
if (mMultiReporters.IndexOf(reporter) != -1)
return NS_ERROR_FAILURE;
mMultiReporters.AppendObject(reporter);
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::UnregisterReporter(nsIMemoryReporter *reporter)
{
mozilla::MutexAutoLock autoLock(mMutex);
if (!mReporters.RemoveObject(reporter))
return NS_ERROR_FAILURE;
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::UnregisterMultiReporter(nsIMemoryMultiReporter *reporter)
{
mozilla::MutexAutoLock autoLock(mMutex);
if (!mMultiReporters.RemoveObject(reporter))
return NS_ERROR_FAILURE;
return NS_OK;
}
NS_IMETHODIMP
nsMemoryReporterManager::GetResident(int64_t *aResident)
{
#if HAVE_VSIZE_AND_RESIDENT_REPORTERS
return ::GetResident(aResident);
#else
*aResident = 0;
return NS_ERROR_NOT_AVAILABLE;
#endif
}
struct MemoryReport {
MemoryReport(const nsACString &path, int64_t amount)
: path(path), amount(amount)
{
MOZ_COUNT_CTOR(MemoryReport);
}
MemoryReport(const MemoryReport& rhs)
: path(rhs.path), amount(rhs.amount)
{
MOZ_COUNT_CTOR(MemoryReport);
}
~MemoryReport()
{
MOZ_COUNT_DTOR(MemoryReport);
}
const nsCString path;
int64_t amount;
};
#if defined(DEBUG) && !defined(MOZ_DMD)
// This is just a wrapper for int64_t that implements nsISupports, so it can be
// passed to nsIMemoryMultiReporter::CollectReports.
class Int64Wrapper MOZ_FINAL : public nsISupports {
public:
NS_DECL_ISUPPORTS
Int64Wrapper() : mValue(0) { }
int64_t mValue;
};
NS_IMPL_ISUPPORTS0(Int64Wrapper)
class ExplicitNonHeapCountingCallback MOZ_FINAL : public nsIMemoryMultiReporterCallback
{
public:
NS_DECL_ISUPPORTS
NS_IMETHOD Callback(const nsACString &aProcess, const nsACString &aPath,
int32_t aKind, int32_t aUnits, int64_t aAmount,
const nsACString &aDescription,
nsISupports *aWrappedExplicitNonHeap)
{
if (aKind == nsIMemoryReporter::KIND_NONHEAP &&
PromiseFlatCString(aPath).Find("explicit") == 0 &&
aAmount != int64_t(-1))
{
Int64Wrapper *wrappedPRInt64 =
static_cast<Int64Wrapper *>(aWrappedExplicitNonHeap);
wrappedPRInt64->mValue += aAmount;
}
return NS_OK;
}
};
NS_IMPL_ISUPPORTS1(
ExplicitNonHeapCountingCallback
, nsIMemoryMultiReporterCallback
)
#endif // defined(DEBUG) && !defined(MOZ_DMD)
NS_IMETHODIMP
nsMemoryReporterManager::GetExplicit(int64_t *aExplicit)
{
NS_ENSURE_ARG_POINTER(aExplicit);
*aExplicit = 0;
#ifndef HAVE_JEMALLOC_STATS
return NS_ERROR_NOT_AVAILABLE;
#else
nsresult rv;
bool more;
// Get "heap-allocated" and all the KIND_NONHEAP measurements from normal
// (i.e. non-multi) "explicit" reporters.
int64_t heapAllocated = int64_t(-1);
int64_t explicitNonHeapNormalSize = 0;
nsCOMPtr<nsISimpleEnumerator> e;
EnumerateReporters(getter_AddRefs(e));
while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryReporter> r;
e->GetNext(getter_AddRefs(r));
int32_t kind;
rv = r->GetKind(&kind);
NS_ENSURE_SUCCESS(rv, rv);
nsCString path;
rv = r->GetPath(path);
NS_ENSURE_SUCCESS(rv, rv);
// We're only interested in NONHEAP explicit reporters and
// the 'heap-allocated' reporter.
if (kind == nsIMemoryReporter::KIND_NONHEAP &&
path.Find("explicit") == 0)
{
// Just skip any NONHEAP reporters that fail, because
// "heap-allocated" is the most important one.
int64_t amount;
rv = r->GetAmount(&amount);
if (NS_SUCCEEDED(rv)) {
explicitNonHeapNormalSize += amount;
}
} else if (path.Equals("heap-allocated")) {
// If we don't have "heap-allocated", give up, because the result
// would be horribly inaccurate.
rv = r->GetAmount(&heapAllocated);
NS_ENSURE_SUCCESS(rv, rv);
}
}
// For each multi-reporter we could call CollectReports and filter out the
// non-explicit, non-NONHEAP measurements. But that's lots of wasted work,
// so we instead use GetExplicitNonHeap() which exists purely for this
// purpose.
//
// (Actually, in debug builds we also do it the slow way and compare the
// result to the result obtained from GetExplicitNonHeap(). This
// guarantees the two measurement paths are equivalent. This is wise
// because it's easy for memory reporters to have bugs. But there's an
// exception if DMD is enabled, because that makes DMD think that all the
// blocks are double-counted.)
int64_t explicitNonHeapMultiSize = 0;
nsCOMPtr<nsISimpleEnumerator> e2;
EnumerateMultiReporters(getter_AddRefs(e2));
while (NS_SUCCEEDED(e2->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryMultiReporter> r;
e2->GetNext(getter_AddRefs(r));
int64_t n;
rv = r->GetExplicitNonHeap(&n);
NS_ENSURE_SUCCESS(rv, rv);
explicitNonHeapMultiSize += n;
}
#if defined(DEBUG) && !defined(MOZ_DMD)
nsRefPtr<ExplicitNonHeapCountingCallback> cb =
new ExplicitNonHeapCountingCallback();
nsRefPtr<Int64Wrapper> wrappedExplicitNonHeapMultiSize2 =
new Int64Wrapper();
nsCOMPtr<nsISimpleEnumerator> e3;
EnumerateMultiReporters(getter_AddRefs(e3));
while (NS_SUCCEEDED(e3->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryMultiReporter> r;
e3->GetNext(getter_AddRefs(r));
r->CollectReports(cb, wrappedExplicitNonHeapMultiSize2);
}
int64_t explicitNonHeapMultiSize2 = wrappedExplicitNonHeapMultiSize2->mValue;
// Check the two measurements give the same result. This was an
// NS_ASSERTION but they occasionally don't match due to races (bug
// 728990).
if (explicitNonHeapMultiSize != explicitNonHeapMultiSize2) {
NS_WARNING(nsPrintfCString("The two measurements of 'explicit' memory "
"usage don't match (%lld vs %lld)",
explicitNonHeapMultiSize,
explicitNonHeapMultiSize2).get());
}
#endif // defined(DEBUG) && !defined(MOZ_DMD)
*aExplicit = heapAllocated + explicitNonHeapNormalSize + explicitNonHeapMultiSize;
return NS_OK;
#endif // HAVE_JEMALLOC_STATS
}
NS_IMETHODIMP
nsMemoryReporterManager::GetHasMozMallocUsableSize(bool *aHas)
{
void *p = malloc(16);
if (!p) {
return NS_ERROR_OUT_OF_MEMORY;
}
size_t usable = moz_malloc_usable_size(p);
free(p);
*aHas = !!(usable > 0);
return NS_OK;
}
namespace {
/**
* This runnable lets us implement nsIMemoryReporterManager::MinimizeMemoryUsage().
* We fire a heap-minimize notification, spin the event loop, and repeat this
* process a few times.
*
* When this sequence finishes, we invoke the callback function passed to the
* runnable's constructor.
*/
class MinimizeMemoryUsageRunnable : public nsCancelableRunnable
{
public:
MinimizeMemoryUsageRunnable(nsIRunnable* aCallback)
: mCallback(aCallback)
, mRemainingIters(sNumIters)
, mCanceled(false)
{}
NS_IMETHOD Run()
{
if (mCanceled) {
return NS_OK;
}
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (!os) {
return NS_ERROR_FAILURE;
}
if (mRemainingIters == 0) {
os->NotifyObservers(nullptr, "after-minimize-memory-usage",
NS_LITERAL_STRING("MinimizeMemoryUsageRunnable").get());
if (mCallback) {
mCallback->Run();
}
return NS_OK;
}
os->NotifyObservers(nullptr, "memory-pressure",
NS_LITERAL_STRING("heap-minimize").get());
mRemainingIters--;
NS_DispatchToMainThread(this);
return NS_OK;
}
NS_IMETHOD Cancel()
{
if (mCanceled) {
return NS_ERROR_UNEXPECTED;
}
mCanceled = true;
return NS_OK;
}
private:
// Send sNumIters heap-minimize notifications, spinning the event
// loop after each notification (see bug 610166 comment 12 for an
// explanation), because one notification doesn't cut it.
static const uint32_t sNumIters = 3;
nsCOMPtr<nsIRunnable> mCallback;
uint32_t mRemainingIters;
bool mCanceled;
};
} // anonymous namespace
NS_IMETHODIMP
nsMemoryReporterManager::MinimizeMemoryUsage(nsIRunnable* aCallback,
nsICancelableRunnable **result)
{
NS_ENSURE_ARG_POINTER(result);
nsRefPtr<nsICancelableRunnable> runnable =
new MinimizeMemoryUsageRunnable(aCallback);
NS_ADDREF(*result = runnable);
return NS_DispatchToMainThread(runnable);
}
NS_IMPL_ISUPPORTS1(nsMemoryReporter, nsIMemoryReporter)
nsMemoryReporter::nsMemoryReporter(nsACString& process,
nsACString& path,
int32_t kind,
int32_t units,
int64_t amount,
nsACString& desc)
: mProcess(process)
, mPath(path)
, mKind(kind)
, mUnits(units)
, mAmount(amount)
, mDesc(desc)
{
}
nsMemoryReporter::~nsMemoryReporter()
{
}
NS_IMETHODIMP nsMemoryReporter::GetProcess(nsACString &aProcess)
{
aProcess.Assign(mProcess);
return NS_OK;
}
NS_IMETHODIMP nsMemoryReporter::GetPath(nsACString &aPath)
{
aPath.Assign(mPath);
return NS_OK;
}
NS_IMETHODIMP nsMemoryReporter::GetKind(int32_t *aKind)
{
*aKind = mKind;
return NS_OK;
}
NS_IMETHODIMP nsMemoryReporter::GetUnits(int32_t *aUnits)
{
*aUnits = mUnits;
return NS_OK;
}
NS_IMETHODIMP nsMemoryReporter::GetAmount(int64_t *aAmount)
{
*aAmount = mAmount;
return NS_OK;
}
NS_IMETHODIMP nsMemoryReporter::GetDescription(nsACString &aDescription)
{
aDescription.Assign(mDesc);
return NS_OK;
}
nsresult
NS_RegisterMemoryReporter (nsIMemoryReporter *reporter)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (mgr == nullptr)
return NS_ERROR_FAILURE;
return mgr->RegisterReporter(reporter);
}
nsresult
NS_RegisterMemoryMultiReporter (nsIMemoryMultiReporter *reporter)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (mgr == nullptr)
return NS_ERROR_FAILURE;
return mgr->RegisterMultiReporter(reporter);
}
nsresult
NS_UnregisterMemoryReporter (nsIMemoryReporter *reporter)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (mgr == nullptr)
return NS_ERROR_FAILURE;
return mgr->UnregisterReporter(reporter);
}
nsresult
NS_UnregisterMemoryMultiReporter (nsIMemoryMultiReporter *reporter)
{
nsCOMPtr<nsIMemoryReporterManager> mgr = do_GetService("@mozilla.org/memory-reporter-manager;1");
if (mgr == nullptr)
return NS_ERROR_FAILURE;
return mgr->UnregisterMultiReporter(reporter);
}
#if defined(MOZ_DMDV) || defined(MOZ_DMD)
namespace mozilla {
namespace dmd {
class NullMultiReporterCallback : public nsIMemoryMultiReporterCallback
{
public:
NS_DECL_ISUPPORTS
NS_IMETHOD Callback(const nsACString &aProcess, const nsACString &aPath,
int32_t aKind, int32_t aUnits, int64_t aAmount,
const nsACString &aDescription,
nsISupports *aData)
{
// Do nothing; the reporter has already reported to DMDV.
return NS_OK;
}
};
NS_IMPL_ISUPPORTS1(
NullMultiReporterCallback
, nsIMemoryMultiReporterCallback
)
void
RunReporters()
{
nsCOMPtr<nsIMemoryReporterManager> mgr =
do_GetService("@mozilla.org/memory-reporter-manager;1");
// Do vanilla reporters.
nsCOMPtr<nsISimpleEnumerator> e;
mgr->EnumerateReporters(getter_AddRefs(e));
bool more;
while (NS_SUCCEEDED(e->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryReporter> r;
e->GetNext(getter_AddRefs(r));
int32_t kind;
nsresult rv = r->GetKind(&kind);
if (NS_FAILED(rv)) {
continue;
}
nsCString path;
rv = r->GetPath(path);
if (NS_FAILED(rv)) {
continue;
}
// We're only interested in HEAP explicit reporters. (In particular,
// some heap blocks are deliberately measured once inside an "explicit"
// reporter and once outside, which isn't a problem. This condition
// prevents them being reported as double-counted. See bug 811018
// comment 2.)
if (kind == nsIMemoryReporter::KIND_HEAP &&
path.Find("explicit") == 0)
{
// Just getting the amount is enough for the reporter to report to
// DMDV.
int64_t amount;
(void)r->GetAmount(&amount);
}
}
// Do multi-reporters.
nsCOMPtr<nsISimpleEnumerator> e2;
mgr->EnumerateMultiReporters(getter_AddRefs(e2));
nsRefPtr<NullMultiReporterCallback> cb = new NullMultiReporterCallback();
while (NS_SUCCEEDED(e2->HasMoreElements(&more)) && more) {
nsCOMPtr<nsIMemoryMultiReporter> r;
e2->GetNext(getter_AddRefs(r));
r->CollectReports(cb, nullptr);
}
}
} // namespace dmd
} // namespace mozilla
#endif // defined(MOZ_DMDV) || defined(MOZ_DMD)
#ifdef MOZ_DMDV
namespace mozilla {
namespace dmdv {
void
Dump()
{
VALGRIND_DMDV_CHECK_REPORTING;
}
} // namespace dmdv
} // namespace mozilla
#endif /* defined(MOZ_DMDV) */