gecko/dom/media/MP3Demuxer.cpp

940 lines
22 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MP3Demuxer.h"
#include <inttypes.h>
#include <algorithm>
#include "mozilla/Assertions.h"
#include "mozilla/Endian.h"
#include "VideoUtils.h"
#include "TimeUnits.h"
using media::TimeUnit;
using media::TimeIntervals;
namespace mozilla {
namespace mp3 {
// MP3Demuxer
MP3Demuxer::MP3Demuxer(MediaResource* aSource)
: mSource(aSource)
{}
bool
MP3Demuxer::InitInternal() {
if (!mTrackDemuxer) {
mTrackDemuxer = new MP3TrackDemuxer(mSource);
}
return mTrackDemuxer->Init();
}
nsRefPtr<MP3Demuxer::InitPromise>
MP3Demuxer::Init() {
if (!InitInternal()) {
return InitPromise::CreateAndReject(
DemuxerFailureReason::WAITING_FOR_DATA, __func__);
}
return InitPromise::CreateAndResolve(NS_OK, __func__);
}
already_AddRefed<MediaDataDemuxer>
MP3Demuxer::Clone() const {
nsRefPtr<MP3Demuxer> demuxer = new MP3Demuxer(mSource);
if (!demuxer->InitInternal()) {
NS_WARNING("Couldn't recreate MP3Demuxer");
return nullptr;
}
return demuxer.forget();
}
bool
MP3Demuxer::HasTrackType(TrackInfo::TrackType aType) const {
return aType == TrackInfo::kAudioTrack;
}
uint32_t
MP3Demuxer::GetNumberTracks(TrackInfo::TrackType aType) const {
return aType == TrackInfo::kAudioTrack ? 1u : 0u;
}
already_AddRefed<MediaTrackDemuxer>
MP3Demuxer::GetTrackDemuxer(TrackInfo::TrackType aType, uint32_t aTrackNumber) {
if (!mTrackDemuxer) {
return nullptr;
}
return nsRefPtr<MP3TrackDemuxer>(mTrackDemuxer).forget();
}
bool
MP3Demuxer::IsSeekable() const {
return true;
}
void
MP3Demuxer::NotifyDataArrived(uint32_t aLength, int64_t aOffset) {
// TODO: bug 1169485.
NS_WARNING("Unimplemented function NotifyDataArrived");
}
void
MP3Demuxer::NotifyDataRemoved() {
// TODO: bug 1169485.
NS_WARNING("Unimplemented function NotifyDataRemoved");
}
// MP3TrackDemuxer
MP3TrackDemuxer::MP3TrackDemuxer(MediaResource* aSource)
: mSource(aSource),
mOffset(0),
mFirstFrameOffset(0),
mNumParsedFrames(0),
mFrameIndex(0),
mTotalFrameLen(0),
mSamplesPerFrame(0),
mSamplesPerSecond(0),
mChannels(0)
{
}
bool
MP3TrackDemuxer::Init() {
FastSeek(TimeUnit());
// Read the first frame to fetch sample rate and other meta data.
nsRefPtr<MediaRawData> frame(GetNextFrame(FindNextFrame()));
if (!frame) {
return false;
}
// Rewind back to the stream begin to avoid dropping the first frame.
FastSeek(TimeUnit());
if (!mInfo) {
mInfo = MakeUnique<AudioInfo>();
}
mInfo->mRate = mSamplesPerSecond;
mInfo->mChannels = mChannels;
mInfo->mBitDepth = 16;
mInfo->mMimeType = "audio/mpeg";
mInfo->mDuration = Duration().ToMicroseconds();
return mSamplesPerSecond && mChannels;
}
#ifdef ENABLE_TESTS
const FrameParser::Frame&
MP3TrackDemuxer::LastFrame() const {
return mParser.PrevFrame();
}
nsRefPtr<MediaRawData>
MP3TrackDemuxer::DemuxSample() {
return GetNextFrame(FindNextFrame());
}
#endif
const ID3Parser::ID3Header&
MP3TrackDemuxer::ID3Header() const {
return mParser.ID3Header();
}
const FrameParser::VBRHeader&
MP3TrackDemuxer::VBRInfo() const {
return mParser.VBRInfo();
}
UniquePtr<TrackInfo>
MP3TrackDemuxer::GetInfo() const {
return mInfo->Clone();
}
nsRefPtr<MP3TrackDemuxer::SeekPromise>
MP3TrackDemuxer::Seek(TimeUnit aTime) {
const TimeUnit seekTime = ScanUntil(aTime);
return SeekPromise::CreateAndResolve(seekTime, __func__);
}
TimeUnit
MP3TrackDemuxer::FastSeek(TimeUnit aTime) {
if (!aTime.ToMicroseconds()) {
// Quick seek to the beginning of the stream.
mOffset = mFirstFrameOffset;
mFrameIndex = 0;
mParser.FinishParsing();
return TimeUnit();
}
if (!mSamplesPerFrame || !mNumParsedFrames) {
return TimeUnit::FromMicroseconds(-1);
}
const int64_t numFrames = aTime.ToSeconds() *
mSamplesPerSecond / mSamplesPerFrame;
mOffset = mFirstFrameOffset + numFrames * AverageFrameLength();
mFrameIndex = numFrames;
mParser.FinishParsing();
return Duration(mFrameIndex);
}
TimeUnit
MP3TrackDemuxer::ScanUntil(TimeUnit aTime) {
if (!aTime.ToMicroseconds()) {
return FastSeek(aTime);
}
if (Duration(mFrameIndex) > aTime) {
FastSeek(aTime);
}
MediaByteRange nextRange = FindNextFrame();
while (SkipNextFrame(nextRange) && Duration(mFrameIndex + 1) < aTime) {
nextRange = FindNextFrame();
}
return Duration(mFrameIndex);
}
nsRefPtr<MP3TrackDemuxer::SamplesPromise>
MP3TrackDemuxer::GetSamples(int32_t aNumSamples) {
if (!aNumSamples) {
return SamplesPromise::CreateAndReject(
DemuxerFailureReason::DEMUXER_ERROR, __func__);
}
nsRefPtr<SamplesHolder> frames = new SamplesHolder();
while (aNumSamples--) {
nsRefPtr<MediaRawData> frame(GetNextFrame(FindNextFrame()));
if (!frame) {
break;
}
frames->mSamples.AppendElement(frame);
}
if (frames->mSamples.IsEmpty()) {
return SamplesPromise::CreateAndReject(
DemuxerFailureReason::END_OF_STREAM, __func__);
}
return SamplesPromise::CreateAndResolve(frames, __func__);
}
void
MP3TrackDemuxer::Reset() {
FastSeek(TimeUnit());
}
nsRefPtr<MP3TrackDemuxer::SkipAccessPointPromise>
MP3TrackDemuxer::SkipToNextRandomAccessPoint(TimeUnit aTimeThreshold) {
// Will not be called for audio-only resources.
return SkipAccessPointPromise::CreateAndReject(
SkipFailureHolder(DemuxerFailureReason::DEMUXER_ERROR, 0), __func__);
}
int64_t
MP3TrackDemuxer::GetResourceOffset() const {
return mOffset;
}
TimeIntervals
MP3TrackDemuxer::GetBuffered() {
// TODO: bug 1169485.
NS_WARNING("Unimplemented function GetBuffered");
return TimeIntervals();
}
int64_t
MP3TrackDemuxer::GetEvictionOffset(TimeUnit aTime) {
return 0;
}
int64_t
MP3TrackDemuxer::StreamLength() const {
return mSource->GetLength();
}
TimeUnit
MP3TrackDemuxer::Duration() const {
if (!mNumParsedFrames) {
return TimeUnit::FromMicroseconds(-1);
}
const int64_t streamLen = StreamLength();
// Assume we know the exact number of frames from the VBR header.
int64_t numFrames = mParser.VBRInfo().NumFrames();
if (numFrames < 0) {
if (streamLen < 0) {
// Unknown length, we can't estimate duration.
return TimeUnit::FromMicroseconds(-1);
}
numFrames = (streamLen - mFirstFrameOffset) / AverageFrameLength();
}
return Duration(numFrames);
}
TimeUnit
MP3TrackDemuxer::Duration(int64_t aNumFrames) const {
if (!mSamplesPerSecond) {
return TimeUnit::FromMicroseconds(-1);
}
const double usPerFrame = USECS_PER_S * mSamplesPerFrame / mSamplesPerSecond;
return TimeUnit::FromMicroseconds(aNumFrames * usPerFrame);
}
MediaByteRange
MP3TrackDemuxer::FindNextFrame() {
static const int BUFFER_SIZE = 4096;
uint8_t buffer[BUFFER_SIZE];
int32_t read = 0;
const uint8_t* frameBeg = nullptr;
const uint8_t* bufferEnd = nullptr;
while (frameBeg == bufferEnd &&
(read = Read(buffer, mOffset, BUFFER_SIZE)) > 0) {
MOZ_ASSERT(mOffset + read > mOffset);
mOffset += read;
bufferEnd = buffer + read;
frameBeg = mParser.Parse(buffer, bufferEnd);
}
if (frameBeg == bufferEnd || !mParser.CurrentFrame().Length()) {
return { 0, 0 };
}
const int64_t nextBeg = mOffset - (bufferEnd - frameBeg) + 1;
return { nextBeg, nextBeg + mParser.CurrentFrame().Length() };
}
bool
MP3TrackDemuxer::SkipNextFrame(const MediaByteRange& aRange) {
if (!mNumParsedFrames || !aRange.Length()) {
// We can't skip the first frame, since it could contain VBR headers.
nsRefPtr<MediaRawData> frame(GetNextFrame(aRange));
return frame;
}
UpdateState(aRange);
return true;
}
already_AddRefed<MediaRawData>
MP3TrackDemuxer::GetNextFrame(const MediaByteRange& aRange) {
if (!aRange.Length()) {
return nullptr;
}
nsRefPtr<MediaRawData> frame = new MediaRawData();
frame->mOffset = aRange.mStart;
nsAutoPtr<MediaRawDataWriter> frameWriter(frame->CreateWriter());
if (!frameWriter->SetSize(aRange.Length())) {
return nullptr;
}
const uint32_t read = Read(frameWriter->mData, frame->mOffset, frame->mSize);
if (read != aRange.Length()) {
return nullptr;
}
UpdateState(aRange);
frame->mTime = Duration(mFrameIndex - 1).ToMicroseconds();
frame->mDuration = Duration(1).ToMicroseconds();
MOZ_ASSERT(frame->mTime >= 0);
MOZ_ASSERT(frame->mDuration > 0);
if (mNumParsedFrames == 1) {
// First frame parsed, let's read VBR info if available.
// TODO: read info that helps with seeking (bug 1163667).
mParser.ParseVBRHeader(frame->mData, frame->mData + frame->mSize);
mFirstFrameOffset = frame->mOffset;
}
return frame.forget();
}
void
MP3TrackDemuxer::UpdateState(const MediaByteRange& aRange) {
// Prevent overflow.
if (mTotalFrameLen + aRange.Length() < mTotalFrameLen) {
// These variables have a linear dependency and are only used to derive the
// average frame length.
mTotalFrameLen /= 2;
mNumParsedFrames /= 2;
}
// Full frame parsed, move offset to its end.
mOffset = aRange.mEnd;
mTotalFrameLen += aRange.Length();
mSamplesPerFrame = mParser.CurrentFrame().Header().SamplesPerFrame();
mSamplesPerSecond = mParser.CurrentFrame().Header().SampleRate();
mChannels = mParser.CurrentFrame().Header().Channels();
++mNumParsedFrames;
++mFrameIndex;
MOZ_ASSERT(mFrameIndex > 0);
// Prepare the parser for the next frame parsing session.
mParser.FinishParsing();
}
int32_t
MP3TrackDemuxer::Read(uint8_t* aBuffer, int64_t aOffset, int32_t aSize) {
aSize = std::min<int64_t>(aSize, StreamLength() - aOffset);
if (aSize <= 0) {
return 0;
}
uint32_t read = 0;
const nsresult rv = mSource->ReadAt(aOffset, reinterpret_cast<char*>(aBuffer),
static_cast<uint32_t>(aSize), &read);
NS_ENSURE_SUCCESS(rv, 0);
return static_cast<int32_t>(read);
}
double
MP3TrackDemuxer::AverageFrameLength() const {
if (!mNumParsedFrames) {
return 0.0;
}
return static_cast<double>(mTotalFrameLen) / mNumParsedFrames;
}
// FrameParser
namespace frame_header {
// FrameHeader mRaw byte offsets.
static const int SYNC1 = 0;
static const int SYNC2_VERSION_LAYER_PROTECTION = 1;
static const int BITRATE_SAMPLERATE_PADDING_PRIVATE = 2;
static const int CHANNELMODE_MODEEXT_COPY_ORIG_EMPH = 3;
}
FrameParser::FrameParser()
{
}
void
FrameParser::Reset() {
mID3Parser.Reset();
mFirstFrame.Reset();
mFrame.Reset();
}
void
FrameParser::FinishParsing() {
if (!mID3Parser.Header().IsValid()) {
// Reset ID3 tags only if we have not parsed a valid ID3 header yet.
mID3Parser.Reset();
}
#ifdef ENABLE_TESTS
mPrevFrame = mFrame;
#endif
mFrame.Reset();
}
const FrameParser::Frame&
FrameParser::CurrentFrame() const {
return mFrame;
}
#ifdef ENABLE_TESTS
const FrameParser::Frame&
FrameParser::PrevFrame() const {
return mPrevFrame;
}
#endif
const FrameParser::Frame&
FrameParser::FirstFrame() const {
return mFirstFrame;
}
const ID3Parser::ID3Header&
FrameParser::ID3Header() const {
return mID3Parser.Header();
}
const FrameParser::VBRHeader&
FrameParser::VBRInfo() const {
return mVBRHeader;
}
const uint8_t*
FrameParser::Parse(const uint8_t* aBeg, const uint8_t* aEnd) {
if (!aBeg || !aEnd || aBeg >= aEnd) {
return aEnd;
}
if (!mID3Parser.Header().Size() && !mFirstFrame.Length()) {
// No MP3 frames have been parsed yet, look for ID3v2 headers at file begin.
// ID3v1 tags may only be at file end.
// TODO: should we try to read ID3 tags at end of file/mid-stream, too?
const uint8_t* id3Beg = mID3Parser.Parse(aBeg, aEnd);
if (id3Beg != aEnd) {
// ID3 headers found, skip past them.
aBeg = id3Beg + ID3Parser::ID3Header::SIZE + mID3Parser.Header().Size();
}
}
while (aBeg < aEnd && !mFrame.ParseNext(*aBeg)) {
++aBeg;
}
if (mFrame.Length()) {
// MP3 frame found.
if (!mFirstFrame.Length()) {
mFirstFrame = mFrame;
}
// Move to the frame header begin to allow for whole-frame parsing.
aBeg -= FrameHeader::SIZE;
return aBeg;
}
return aEnd;
}
// FrameParser::Header
FrameParser::FrameHeader::FrameHeader()
{
Reset();
}
uint8_t
FrameParser::FrameHeader::Sync1() const {
return mRaw[frame_header::SYNC1];
}
uint8_t
FrameParser::FrameHeader::Sync2() const {
return 0x7 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 5;
}
uint8_t
FrameParser::FrameHeader::RawVersion() const {
return 0x3 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 3;
}
uint8_t
FrameParser::FrameHeader::RawLayer() const {
return 0x3 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 1;
}
uint8_t
FrameParser::FrameHeader::RawProtection() const {
return 0x1 & mRaw[frame_header::SYNC2_VERSION_LAYER_PROTECTION] >> 6;
}
uint8_t
FrameParser::FrameHeader::RawBitrate() const {
return 0xF & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE] >> 4;
}
uint8_t
FrameParser::FrameHeader::RawSampleRate() const {
return 0x3 & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE] >> 2;
}
uint8_t
FrameParser::FrameHeader::Padding() const {
return 0x1 & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE] >> 1;
}
uint8_t
FrameParser::FrameHeader::Private() const {
return 0x1 & mRaw[frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE];
}
uint8_t
FrameParser::FrameHeader::RawChannelMode() const {
return 0xF & mRaw[frame_header::CHANNELMODE_MODEEXT_COPY_ORIG_EMPH] >> 4;
}
int32_t
FrameParser::FrameHeader::Layer() const {
static const uint8_t LAYERS[4] = { 0, 3, 2, 1 };
return LAYERS[RawLayer()];
}
int32_t
FrameParser::FrameHeader::SampleRate() const {
// Sample rates - use [version][srate]
static const uint16_t SAMPLE_RATE[4][4] = {
{ 11025, 12000, 8000, 0 }, // MPEG 2.5
{ 0, 0, 0, 0 }, // Reserved
{ 22050, 24000, 16000, 0 }, // MPEG 2
{ 44100, 48000, 32000, 0 } // MPEG 1
};
return SAMPLE_RATE[RawVersion()][RawSampleRate()];
}
int32_t
FrameParser::FrameHeader::Channels() const {
// 3 is single channel (mono), any other value is some variant of dual
// channel.
return RawChannelMode() == 3 ? 1 : 2;
}
int32_t
FrameParser::FrameHeader::SamplesPerFrame() const {
// Samples per frame - use [version][layer]
static const uint16_t FRAME_SAMPLE[4][4] = {
// Layer 3 2 1 Version
{ 0, 576, 1152, 384 }, // 2.5
{ 0, 0, 0, 0 }, // Reserved
{ 0, 576, 1152, 384 }, // 2
{ 0, 1152, 1152, 384 } // 1
};
return FRAME_SAMPLE[RawVersion()][RawLayer()];
}
int32_t
FrameParser::FrameHeader::Bitrate() const {
// Bitrates - use [version][layer][bitrate]
static const uint16_t BITRATE[4][4][16] = {
{ // Version 2.5
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Reserved
{ 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 3
{ 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 2
{ 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 0 } // Layer 1
},
{ // Reserved
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Invalid
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Invalid
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Invalid
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } // Invalid
},
{ // Version 2
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Reserved
{ 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 3
{ 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }, // Layer 2
{ 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 0 } // Layer 1
},
{ // Version 1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // Reserved
{ 0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 0 }, // Layer 3
{ 0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 0 }, // Layer 2
{ 0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 0 }, // Layer 1
}
};
return 1000 * BITRATE[RawVersion()][RawLayer()][RawBitrate()];
}
int32_t
FrameParser::FrameHeader::SlotSize() const {
// Slot size (MPEG unit of measurement) - use [layer]
static const uint8_t SLOT_SIZE[4] = { 0, 1, 1, 4 }; // Rsvd, 3, 2, 1
return SLOT_SIZE[RawLayer()];
}
bool
FrameParser::FrameHeader::ParseNext(uint8_t c) {
if (!Update(c)) {
Reset();
if (!Update(c)) {
Reset();
}
}
return IsValid();
}
bool
FrameParser::FrameHeader::IsValid(int aPos) const {
if (IsValid()) {
return true;
}
if (aPos == frame_header::SYNC1) {
return Sync1() == 0xFF;
}
if (aPos == frame_header::SYNC2_VERSION_LAYER_PROTECTION) {
return Sync2() == 7 &&
RawVersion() != 1 &&
RawLayer() != 0;
}
if (aPos == frame_header::BITRATE_SAMPLERATE_PADDING_PRIVATE) {
return RawBitrate() != 0xF;
}
return true;
}
bool
FrameParser::FrameHeader::IsValid() const {
return mPos >= SIZE;
}
void
FrameParser::FrameHeader::Reset() {
mPos = 0;
}
bool
FrameParser::FrameHeader::Update(uint8_t c) {
if (mPos < SIZE) {
mRaw[mPos] = c;
}
return IsValid(mPos++);
}
// FrameParser::VBRHeader
FrameParser::VBRHeader::VBRHeader()
: mNumFrames(-1),
mType(NONE)
{
}
FrameParser::VBRHeader::VBRHeaderType
FrameParser::VBRHeader::Type() const {
return mType;
}
int64_t
FrameParser::VBRHeader::NumFrames() const {
return mNumFrames;
}
bool
FrameParser::VBRHeader::ParseXing(const uint8_t* aBeg, const uint8_t* aEnd) {
static const uint32_t TAG = BigEndian::readUint32("Xing");
static const uint32_t FRAME_COUNT_OFFSET = 8;
enum Flags {
NUM_FRAMES = 0x01,
NUM_BYTES = 0x02,
TOC = 0x04,
VBR_SCALE = 0x08
};
if (!aBeg || !aEnd || aBeg >= aEnd) {
return false;
}
// We have to search for the Xing header as its position can change.
for (; aBeg + sizeof(TAG) < aEnd; ++aBeg) {
if (BigEndian::readUint32(aBeg) != TAG) {
continue;
}
const uint32_t flags = BigEndian::readUint32(aBeg + sizeof(TAG));
if (flags & NUM_FRAMES && aBeg + FRAME_COUNT_OFFSET < aEnd) {
mNumFrames = BigEndian::readUint32(aBeg + FRAME_COUNT_OFFSET);
}
mType = XING;
return true;
}
return false;
}
bool
FrameParser::VBRHeader::ParseVBRI(const uint8_t* aBeg, const uint8_t* aEnd) {
static const uint32_t TAG = BigEndian::readUint32("VBRI");
static const uint32_t OFFSET = 32 - FrameParser::FrameHeader::SIZE;
static const uint32_t FRAME_COUNT_OFFSET = OFFSET + 14;
static const uint32_t MIN_FRAME_SIZE = OFFSET + 26;
if (!aBeg || !aEnd || aBeg >= aEnd) {
return false;
}
const int64_t frameLen = aEnd - aBeg;
// VBRI have a fixed relative position, so let's check for it there.
if (frameLen > MIN_FRAME_SIZE &&
BigEndian::readUint32(aBeg + OFFSET) == TAG) {
mNumFrames = BigEndian::readUint32(aBeg + FRAME_COUNT_OFFSET);
mType = VBRI;
return true;
}
return false;
}
bool
FrameParser::VBRHeader::Parse(const uint8_t* aBeg, const uint8_t* aEnd) {
return ParseVBRI(aBeg, aEnd) || ParseXing(aBeg, aEnd);
}
// FrameParser::Frame
void
FrameParser::Frame::Reset() {
mHeader.Reset();
}
int32_t
FrameParser::Frame::Length() const {
if (!mHeader.IsValid() || !mHeader.SampleRate()) {
return 0;
}
const float bitsPerSample = mHeader.SamplesPerFrame() / 8.0f;
const int32_t frameLen = bitsPerSample * mHeader.Bitrate() /
mHeader.SampleRate() +
mHeader.Padding() * mHeader.SlotSize();
return frameLen;
}
bool
FrameParser::Frame::ParseNext(uint8_t c) {
return mHeader.ParseNext(c);
}
const FrameParser::FrameHeader&
FrameParser::Frame::Header() const {
return mHeader;
}
bool
FrameParser::ParseVBRHeader(const uint8_t* aBeg, const uint8_t* aEnd) {
return mVBRHeader.Parse(aBeg, aEnd);
}
// ID3Parser
// Constants
namespace id3_header {
static const int ID_LEN = 3;
static const int VERSION_LEN = 2;
static const int FLAGS_LEN = 1;
static const int SIZE_LEN = 4;
static const int ID_END = ID_LEN;
static const int VERSION_END = ID_END + VERSION_LEN;
static const int FLAGS_END = VERSION_END + FLAGS_LEN;
static const int SIZE_END = FLAGS_END + SIZE_LEN;
static const uint8_t ID[ID_LEN] = {'I', 'D', '3'};
}
const uint8_t*
ID3Parser::Parse(const uint8_t* aBeg, const uint8_t* aEnd) {
if (!aBeg || !aEnd || aBeg >= aEnd) {
return aEnd;
}
while (aBeg < aEnd && !mHeader.ParseNext(*aBeg)) {
++aBeg;
}
if (aBeg < aEnd) {
// Header found, move to header begin.
aBeg -= ID3Header::SIZE - 1;
}
return aBeg;
}
void
ID3Parser::Reset() {
mHeader.Reset();
}
const ID3Parser::ID3Header&
ID3Parser::Header() const {
return mHeader;
}
// ID3Parser::Header
ID3Parser::ID3Header::ID3Header()
{
Reset();
}
void
ID3Parser::ID3Header::Reset() {
mSize = 0;
mPos = 0;
}
uint8_t
ID3Parser::ID3Header::MajorVersion() const {
return mRaw[id3_header::ID_END];
}
uint8_t
ID3Parser::ID3Header::MinorVersion() const {
return mRaw[id3_header::ID_END + 1];
}
uint8_t
ID3Parser::ID3Header::Flags() const {
return mRaw[id3_header::FLAGS_END - id3_header::FLAGS_LEN];
}
uint32_t
ID3Parser::ID3Header::Size() const {
return mSize;
}
bool
ID3Parser::ID3Header::ParseNext(uint8_t c) {
if (!Update(c)) {
Reset();
if (!Update(c)) {
Reset();
}
}
return IsValid();
}
bool
ID3Parser::ID3Header::IsValid(int aPos) const {
if (IsValid()) {
return true;
}
const uint8_t c = mRaw[aPos];
if (aPos < id3_header::ID_END) {
return id3_header::ID[aPos] == c;
}
if (aPos < id3_header::VERSION_END) {
return c < 0xFF;
}
if (aPos < id3_header::FLAGS_END) {
return true;
}
if (aPos < id3_header::SIZE_END) {
return c < 0x80;
}
return true;
}
bool
ID3Parser::ID3Header::IsValid() const {
return mPos >= SIZE;
}
bool
ID3Parser::ID3Header::Update(uint8_t c) {
if (mPos >= id3_header::SIZE_END - id3_header::SIZE_LEN &&
mPos < id3_header::SIZE_END) {
mSize <<= 7;
mSize |= c;
}
if (mPos < SIZE) {
mRaw[mPos] = c;
}
return IsValid(mPos++);
}
} // namespace mp3
} // namespace mozilla