mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
275 lines
7.2 KiB
NASM
275 lines
7.2 KiB
NASM
;
|
|
; jcqntmmx.asm - sample data conversion and quantization (MMX)
|
|
;
|
|
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
|
;
|
|
; Based on
|
|
; x86 SIMD extension for IJG JPEG library
|
|
; Copyright (C) 1999-2006, MIYASAKA Masaru.
|
|
; For conditions of distribution and use, see copyright notice in jsimdext.inc
|
|
;
|
|
; This file should be assembled with NASM (Netwide Assembler),
|
|
; can *not* be assembled with Microsoft's MASM or any compatible
|
|
; assembler (including Borland's Turbo Assembler).
|
|
; NASM is available from http://nasm.sourceforge.net/ or
|
|
; http://sourceforge.net/project/showfiles.php?group_id=6208
|
|
;
|
|
; [TAB8]
|
|
|
|
%include "jsimdext.inc"
|
|
%include "jdct.inc"
|
|
|
|
; --------------------------------------------------------------------------
|
|
SECTION SEG_TEXT
|
|
BITS 32
|
|
;
|
|
; Load data into workspace, applying unsigned->signed conversion
|
|
;
|
|
; GLOBAL(void)
|
|
; jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col,
|
|
; DCTELEM * workspace);
|
|
;
|
|
|
|
%define sample_data ebp+8 ; JSAMPARRAY sample_data
|
|
%define start_col ebp+12 ; JDIMENSION start_col
|
|
%define workspace ebp+16 ; DCTELEM * workspace
|
|
|
|
align 16
|
|
global EXTN(jsimd_convsamp_mmx)
|
|
|
|
EXTN(jsimd_convsamp_mmx):
|
|
push ebp
|
|
mov ebp,esp
|
|
push ebx
|
|
; push ecx ; need not be preserved
|
|
; push edx ; need not be preserved
|
|
push esi
|
|
push edi
|
|
|
|
pxor mm6,mm6 ; mm6=(all 0's)
|
|
pcmpeqw mm7,mm7
|
|
psllw mm7,7 ; mm7={0xFF80 0xFF80 0xFF80 0xFF80}
|
|
|
|
mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *)
|
|
mov eax, JDIMENSION [start_col]
|
|
mov edi, POINTER [workspace] ; (DCTELEM *)
|
|
mov ecx, DCTSIZE/4
|
|
alignx 16,7
|
|
.convloop:
|
|
mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *)
|
|
mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *)
|
|
|
|
movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm0=(01234567)
|
|
movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm1=(89ABCDEF)
|
|
|
|
mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *)
|
|
mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *)
|
|
|
|
movq mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm2=(GHIJKLMN)
|
|
movq mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm3=(OPQRSTUV)
|
|
|
|
movq mm4,mm0
|
|
punpcklbw mm0,mm6 ; mm0=(0123)
|
|
punpckhbw mm4,mm6 ; mm4=(4567)
|
|
movq mm5,mm1
|
|
punpcklbw mm1,mm6 ; mm1=(89AB)
|
|
punpckhbw mm5,mm6 ; mm5=(CDEF)
|
|
|
|
paddw mm0,mm7
|
|
paddw mm4,mm7
|
|
paddw mm1,mm7
|
|
paddw mm5,mm7
|
|
|
|
movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
|
|
movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4
|
|
movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1
|
|
movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5
|
|
|
|
movq mm0,mm2
|
|
punpcklbw mm2,mm6 ; mm2=(GHIJ)
|
|
punpckhbw mm0,mm6 ; mm0=(KLMN)
|
|
movq mm4,mm3
|
|
punpcklbw mm3,mm6 ; mm3=(OPQR)
|
|
punpckhbw mm4,mm6 ; mm4=(STUV)
|
|
|
|
paddw mm2,mm7
|
|
paddw mm0,mm7
|
|
paddw mm3,mm7
|
|
paddw mm4,mm7
|
|
|
|
movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2
|
|
movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0
|
|
movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3
|
|
movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4
|
|
|
|
add esi, byte 4*SIZEOF_JSAMPROW
|
|
add edi, byte 4*DCTSIZE*SIZEOF_DCTELEM
|
|
dec ecx
|
|
jnz short .convloop
|
|
|
|
emms ; empty MMX state
|
|
|
|
pop edi
|
|
pop esi
|
|
; pop edx ; need not be preserved
|
|
; pop ecx ; need not be preserved
|
|
pop ebx
|
|
pop ebp
|
|
ret
|
|
|
|
; --------------------------------------------------------------------------
|
|
;
|
|
; Quantize/descale the coefficients, and store into coef_block
|
|
;
|
|
; This implementation is based on an algorithm described in
|
|
; "How to optimize for the Pentium family of microprocessors"
|
|
; (http://www.agner.org/assem/).
|
|
;
|
|
; GLOBAL(void)
|
|
; jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM * divisors,
|
|
; DCTELEM * workspace);
|
|
;
|
|
|
|
%define RECIPROCAL(m,n,b) MMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM)
|
|
%define CORRECTION(m,n,b) MMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM)
|
|
%define SCALE(m,n,b) MMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM)
|
|
%define SHIFT(m,n,b) MMBLOCK(DCTSIZE*3+(m),(n),(b),SIZEOF_DCTELEM)
|
|
|
|
%define coef_block ebp+8 ; JCOEFPTR coef_block
|
|
%define divisors ebp+12 ; DCTELEM * divisors
|
|
%define workspace ebp+16 ; DCTELEM * workspace
|
|
|
|
align 16
|
|
global EXTN(jsimd_quantize_mmx)
|
|
|
|
EXTN(jsimd_quantize_mmx):
|
|
push ebp
|
|
mov ebp,esp
|
|
; push ebx ; unused
|
|
; push ecx ; unused
|
|
; push edx ; need not be preserved
|
|
push esi
|
|
push edi
|
|
|
|
mov esi, POINTER [workspace]
|
|
mov edx, POINTER [divisors]
|
|
mov edi, JCOEFPTR [coef_block]
|
|
mov ah, 2
|
|
alignx 16,7
|
|
.quantloop1:
|
|
mov al, DCTSIZE2/8/2
|
|
alignx 16,7
|
|
.quantloop2:
|
|
movq mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)]
|
|
movq mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)]
|
|
|
|
movq mm0,mm2
|
|
movq mm1,mm3
|
|
|
|
psraw mm2,(WORD_BIT-1) ; -1 if value < 0, 0 otherwise
|
|
psraw mm3,(WORD_BIT-1)
|
|
|
|
pxor mm0,mm2 ; val = -val
|
|
pxor mm1,mm3
|
|
psubw mm0,mm2
|
|
psubw mm1,mm3
|
|
|
|
;
|
|
; MMX is an annoyingly crappy instruction set. It has two
|
|
; misfeatures that are causing problems here:
|
|
;
|
|
; - All multiplications are signed.
|
|
;
|
|
; - The second operand for the shifts is not treated as packed.
|
|
;
|
|
;
|
|
; We work around the first problem by implementing this algorithm:
|
|
;
|
|
; unsigned long unsigned_multiply(unsigned short x, unsigned short y)
|
|
; {
|
|
; enum { SHORT_BIT = 16 };
|
|
; signed short sx = (signed short) x;
|
|
; signed short sy = (signed short) y;
|
|
; signed long sz;
|
|
;
|
|
; sz = (long) sx * (long) sy; /* signed multiply */
|
|
;
|
|
; if (sx < 0) sz += (long) sy << SHORT_BIT;
|
|
; if (sy < 0) sz += (long) sx << SHORT_BIT;
|
|
;
|
|
; return (unsigned long) sz;
|
|
; }
|
|
;
|
|
; (note that a negative sx adds _sy_ and vice versa)
|
|
;
|
|
; For the second problem, we replace the shift by a multiplication.
|
|
; Unfortunately that means we have to deal with the signed issue again.
|
|
;
|
|
|
|
paddw mm0, MMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor
|
|
paddw mm1, MMWORD [CORRECTION(0,1,edx)]
|
|
|
|
movq mm4,mm0 ; store current value for later
|
|
movq mm5,mm1
|
|
pmulhw mm0, MMWORD [RECIPROCAL(0,0,edx)] ; reciprocal
|
|
pmulhw mm1, MMWORD [RECIPROCAL(0,1,edx)]
|
|
paddw mm0,mm4 ; reciprocal is always negative (MSB=1),
|
|
paddw mm1,mm5 ; so we always need to add the initial value
|
|
; (input value is never negative as we
|
|
; inverted it at the start of this routine)
|
|
|
|
; here it gets a bit tricky as both scale
|
|
; and mm0/mm1 can be negative
|
|
movq mm6, MMWORD [SCALE(0,0,edx)] ; scale
|
|
movq mm7, MMWORD [SCALE(0,1,edx)]
|
|
movq mm4,mm0
|
|
movq mm5,mm1
|
|
pmulhw mm0,mm6
|
|
pmulhw mm1,mm7
|
|
|
|
psraw mm6,(WORD_BIT-1) ; determine if scale is negative
|
|
psraw mm7,(WORD_BIT-1)
|
|
|
|
pand mm6,mm4 ; and add input if it is
|
|
pand mm7,mm5
|
|
paddw mm0,mm6
|
|
paddw mm1,mm7
|
|
|
|
psraw mm4,(WORD_BIT-1) ; then check if negative input
|
|
psraw mm5,(WORD_BIT-1)
|
|
|
|
pand mm4, MMWORD [SCALE(0,0,edx)] ; and add scale if it is
|
|
pand mm5, MMWORD [SCALE(0,1,edx)]
|
|
paddw mm0,mm4
|
|
paddw mm1,mm5
|
|
|
|
pxor mm0,mm2 ; val = -val
|
|
pxor mm1,mm3
|
|
psubw mm0,mm2
|
|
psubw mm1,mm3
|
|
|
|
movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
|
|
movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1
|
|
|
|
add esi, byte 8*SIZEOF_DCTELEM
|
|
add edx, byte 8*SIZEOF_DCTELEM
|
|
add edi, byte 8*SIZEOF_JCOEF
|
|
dec al
|
|
jnz near .quantloop2
|
|
dec ah
|
|
jnz near .quantloop1 ; to avoid branch misprediction
|
|
|
|
emms ; empty MMX state
|
|
|
|
pop edi
|
|
pop esi
|
|
; pop edx ; need not be preserved
|
|
; pop ecx ; unused
|
|
; pop ebx ; unused
|
|
pop ebp
|
|
ret
|
|
|
|
; For some reason, the OS X linker does not honor the request to align the
|
|
; segment unless we do this.
|
|
align 16
|