gecko/widget/gonk/libui/KeyCharacterMap.cpp

839 lines
29 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "KeyCharacterMap"
#include <stdlib.h>
#include <string.h>
#include "utils_Log.h"
#include "android_keycodes.h"
#include "Keyboard.h"
#include "KeyCharacterMap.h"
#include <utils/Errors.h>
#include "Tokenizer.h"
#include "Timers.h"
// Enables debug output for the parser.
#define DEBUG_PARSER 0
// Enables debug output for parser performance.
#define DEBUG_PARSER_PERFORMANCE 0
// Enables debug output for mapping.
#define DEBUG_MAPPING 0
namespace android {
static const char* WHITESPACE = " \t\r";
static const char* WHITESPACE_OR_PROPERTY_DELIMITER = " \t\r,:";
struct Modifier {
const char* label;
int32_t metaState;
};
static const Modifier modifiers[] = {
{ "shift", AMETA_SHIFT_ON },
{ "lshift", AMETA_SHIFT_LEFT_ON },
{ "rshift", AMETA_SHIFT_RIGHT_ON },
{ "alt", AMETA_ALT_ON },
{ "lalt", AMETA_ALT_LEFT_ON },
{ "ralt", AMETA_ALT_RIGHT_ON },
{ "ctrl", AMETA_CTRL_ON },
{ "lctrl", AMETA_CTRL_LEFT_ON },
{ "rctrl", AMETA_CTRL_RIGHT_ON },
{ "meta", AMETA_META_ON },
{ "lmeta", AMETA_META_LEFT_ON },
{ "rmeta", AMETA_META_RIGHT_ON },
{ "sym", AMETA_SYM_ON },
{ "fn", AMETA_FUNCTION_ON },
{ "capslock", AMETA_CAPS_LOCK_ON },
{ "numlock", AMETA_NUM_LOCK_ON },
{ "scrolllock", AMETA_SCROLL_LOCK_ON },
};
#if DEBUG_MAPPING
static String8 toString(const char16_t* chars, size_t numChars) {
String8 result;
for (size_t i = 0; i < numChars; i++) {
result.appendFormat(i == 0 ? "%d" : ", %d", chars[i]);
}
return result;
}
#endif
// --- KeyCharacterMap ---
KeyCharacterMap::KeyCharacterMap() :
mType(KEYBOARD_TYPE_UNKNOWN) {
}
KeyCharacterMap::~KeyCharacterMap() {
for (size_t i = 0; i < mKeys.size(); i++) {
Key* key = mKeys.editValueAt(i);
delete key;
}
}
status_t KeyCharacterMap::load(const String8& filename, KeyCharacterMap** outMap) {
*outMap = NULL;
Tokenizer* tokenizer;
status_t status = Tokenizer::open(filename, &tokenizer);
if (status) {
ALOGE("Error %d opening key character map file %s.", status, filename.string());
} else {
KeyCharacterMap* map = new KeyCharacterMap();
if (!map) {
ALOGE("Error allocating key character map.");
status = NO_MEMORY;
} else {
#if DEBUG_PARSER_PERFORMANCE
nsecs_t startTime = systemTime(SYSTEM_TIME_MONOTONIC);
#endif
Parser parser(map, tokenizer);
status = parser.parse();
#if DEBUG_PARSER_PERFORMANCE
nsecs_t elapsedTime = systemTime(SYSTEM_TIME_MONOTONIC) - startTime;
ALOGD("Parsed key character map file '%s' %d lines in %0.3fms.",
tokenizer->getFilename().string(), tokenizer->getLineNumber(),
elapsedTime / 1000000.0);
#endif
if (status) {
delete map;
} else {
*outMap = map;
}
}
delete tokenizer;
}
return status;
}
int32_t KeyCharacterMap::getKeyboardType() const {
return mType;
}
char16_t KeyCharacterMap::getDisplayLabel(int32_t keyCode) const {
char16_t result = 0;
const Key* key;
if (getKey(keyCode, &key)) {
result = key->label;
}
#if DEBUG_MAPPING
ALOGD("getDisplayLabel: keyCode=%d ~ Result %d.", keyCode, result);
#endif
return result;
}
char16_t KeyCharacterMap::getNumber(int32_t keyCode) const {
char16_t result = 0;
const Key* key;
if (getKey(keyCode, &key)) {
result = key->number;
}
#if DEBUG_MAPPING
ALOGD("getNumber: keyCode=%d ~ Result %d.", keyCode, result);
#endif
return result;
}
char16_t KeyCharacterMap::getCharacter(int32_t keyCode, int32_t metaState) const {
char16_t result = 0;
const Key* key;
const Behavior* behavior;
if (getKeyBehavior(keyCode, metaState, &key, &behavior)) {
result = behavior->character;
}
#if DEBUG_MAPPING
ALOGD("getCharacter: keyCode=%d, metaState=0x%08x ~ Result %d.", keyCode, metaState, result);
#endif
return result;
}
bool KeyCharacterMap::getFallbackAction(int32_t keyCode, int32_t metaState,
FallbackAction* outFallbackAction) const {
outFallbackAction->keyCode = 0;
outFallbackAction->metaState = 0;
bool result = false;
const Key* key;
const Behavior* behavior;
if (getKeyBehavior(keyCode, metaState, &key, &behavior)) {
if (behavior->fallbackKeyCode) {
outFallbackAction->keyCode = behavior->fallbackKeyCode;
outFallbackAction->metaState = metaState & ~behavior->metaState;
result = true;
}
}
#if DEBUG_MAPPING
ALOGD("getFallbackKeyCode: keyCode=%d, metaState=0x%08x ~ Result %s, "
"fallback keyCode=%d, fallback metaState=0x%08x.",
keyCode, metaState, result ? "true" : "false",
outFallbackAction->keyCode, outFallbackAction->metaState);
#endif
return result;
}
char16_t KeyCharacterMap::getMatch(int32_t keyCode, const char16_t* chars, size_t numChars,
int32_t metaState) const {
char16_t result = 0;
const Key* key;
if (getKey(keyCode, &key)) {
// Try to find the most general behavior that maps to this character.
// For example, the base key behavior will usually be last in the list.
// However, if we find a perfect meta state match for one behavior then use that one.
for (const Behavior* behavior = key->firstBehavior; behavior; behavior = behavior->next) {
if (behavior->character) {
for (size_t i = 0; i < numChars; i++) {
if (behavior->character == chars[i]) {
result = behavior->character;
if ((behavior->metaState & metaState) == behavior->metaState) {
goto ExactMatch;
}
break;
}
}
}
}
ExactMatch: ;
}
#if DEBUG_MAPPING
ALOGD("getMatch: keyCode=%d, chars=[%s], metaState=0x%08x ~ Result %d.",
keyCode, toString(chars, numChars).string(), metaState, result);
#endif
return result;
}
bool KeyCharacterMap::getEvents(int32_t deviceId, const char16_t* chars, size_t numChars,
Vector<KeyEvent>& outEvents) const {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
for (size_t i = 0; i < numChars; i++) {
int32_t keyCode, metaState;
char16_t ch = chars[i];
if (!findKey(ch, &keyCode, &metaState)) {
#if DEBUG_MAPPING
ALOGD("getEvents: deviceId=%d, chars=[%s] ~ Failed to find mapping for character %d.",
deviceId, toString(chars, numChars).string(), ch);
#endif
return false;
}
int32_t currentMetaState = 0;
addMetaKeys(outEvents, deviceId, metaState, true, now, &currentMetaState);
addKey(outEvents, deviceId, keyCode, currentMetaState, true, now);
addKey(outEvents, deviceId, keyCode, currentMetaState, false, now);
addMetaKeys(outEvents, deviceId, metaState, false, now, &currentMetaState);
}
#if DEBUG_MAPPING
ALOGD("getEvents: deviceId=%d, chars=[%s] ~ Generated %d events.",
deviceId, toString(chars, numChars).string(), int32_t(outEvents.size()));
for (size_t i = 0; i < outEvents.size(); i++) {
ALOGD(" Key: keyCode=%d, metaState=0x%08x, %s.",
outEvents[i].getKeyCode(), outEvents[i].getMetaState(),
outEvents[i].getAction() == AKEY_EVENT_ACTION_DOWN ? "down" : "up");
}
#endif
return true;
}
bool KeyCharacterMap::getKey(int32_t keyCode, const Key** outKey) const {
ssize_t index = mKeys.indexOfKey(keyCode);
if (index >= 0) {
*outKey = mKeys.valueAt(index);
return true;
}
return false;
}
bool KeyCharacterMap::getKeyBehavior(int32_t keyCode, int32_t metaState,
const Key** outKey, const Behavior** outBehavior) const {
const Key* key;
if (getKey(keyCode, &key)) {
const Behavior* behavior = key->firstBehavior;
while (behavior) {
if ((behavior->metaState & metaState) == behavior->metaState) {
*outKey = key;
*outBehavior = behavior;
return true;
}
behavior = behavior->next;
}
}
return false;
}
bool KeyCharacterMap::findKey(char16_t ch, int32_t* outKeyCode, int32_t* outMetaState) const {
if (!ch) {
return false;
}
for (size_t i = 0; i < mKeys.size(); i++) {
const Key* key = mKeys.valueAt(i);
// Try to find the most general behavior that maps to this character.
// For example, the base key behavior will usually be last in the list.
const Behavior* found = NULL;
for (const Behavior* behavior = key->firstBehavior; behavior; behavior = behavior->next) {
if (behavior->character == ch) {
found = behavior;
}
}
if (found) {
*outKeyCode = mKeys.keyAt(i);
*outMetaState = found->metaState;
return true;
}
}
return false;
}
void KeyCharacterMap::addKey(Vector<KeyEvent>& outEvents,
int32_t deviceId, int32_t keyCode, int32_t metaState, bool down, nsecs_t time) {
outEvents.push();
KeyEvent& event = outEvents.editTop();
event.initialize(deviceId, AINPUT_SOURCE_KEYBOARD,
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
0, keyCode, 0, metaState, 0, time, time);
}
void KeyCharacterMap::addMetaKeys(Vector<KeyEvent>& outEvents,
int32_t deviceId, int32_t metaState, bool down, nsecs_t time,
int32_t* currentMetaState) {
// Add and remove meta keys symmetrically.
if (down) {
addLockedMetaKey(outEvents, deviceId, metaState, time,
AKEYCODE_CAPS_LOCK, AMETA_CAPS_LOCK_ON, currentMetaState);
addLockedMetaKey(outEvents, deviceId, metaState, time,
AKEYCODE_NUM_LOCK, AMETA_NUM_LOCK_ON, currentMetaState);
addLockedMetaKey(outEvents, deviceId, metaState, time,
AKEYCODE_SCROLL_LOCK, AMETA_SCROLL_LOCK_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time,
AKEYCODE_SHIFT_LEFT, AMETA_SHIFT_LEFT_ON,
AKEYCODE_SHIFT_RIGHT, AMETA_SHIFT_RIGHT_ON,
AMETA_SHIFT_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time,
AKEYCODE_ALT_LEFT, AMETA_ALT_LEFT_ON,
AKEYCODE_ALT_RIGHT, AMETA_ALT_RIGHT_ON,
AMETA_ALT_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time,
AKEYCODE_CTRL_LEFT, AMETA_CTRL_LEFT_ON,
AKEYCODE_CTRL_RIGHT, AMETA_CTRL_RIGHT_ON,
AMETA_CTRL_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time,
AKEYCODE_META_LEFT, AMETA_META_LEFT_ON,
AKEYCODE_META_RIGHT, AMETA_META_RIGHT_ON,
AMETA_META_ON, currentMetaState);
addSingleEphemeralMetaKey(outEvents, deviceId, metaState, true, time,
AKEYCODE_SYM, AMETA_SYM_ON, currentMetaState);
addSingleEphemeralMetaKey(outEvents, deviceId, metaState, true, time,
AKEYCODE_FUNCTION, AMETA_FUNCTION_ON, currentMetaState);
} else {
addSingleEphemeralMetaKey(outEvents, deviceId, metaState, false, time,
AKEYCODE_FUNCTION, AMETA_FUNCTION_ON, currentMetaState);
addSingleEphemeralMetaKey(outEvents, deviceId, metaState, false, time,
AKEYCODE_SYM, AMETA_SYM_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time,
AKEYCODE_META_LEFT, AMETA_META_LEFT_ON,
AKEYCODE_META_RIGHT, AMETA_META_RIGHT_ON,
AMETA_META_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time,
AKEYCODE_CTRL_LEFT, AMETA_CTRL_LEFT_ON,
AKEYCODE_CTRL_RIGHT, AMETA_CTRL_RIGHT_ON,
AMETA_CTRL_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time,
AKEYCODE_ALT_LEFT, AMETA_ALT_LEFT_ON,
AKEYCODE_ALT_RIGHT, AMETA_ALT_RIGHT_ON,
AMETA_ALT_ON, currentMetaState);
addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time,
AKEYCODE_SHIFT_LEFT, AMETA_SHIFT_LEFT_ON,
AKEYCODE_SHIFT_RIGHT, AMETA_SHIFT_RIGHT_ON,
AMETA_SHIFT_ON, currentMetaState);
addLockedMetaKey(outEvents, deviceId, metaState, time,
AKEYCODE_SCROLL_LOCK, AMETA_SCROLL_LOCK_ON, currentMetaState);
addLockedMetaKey(outEvents, deviceId, metaState, time,
AKEYCODE_NUM_LOCK, AMETA_NUM_LOCK_ON, currentMetaState);
addLockedMetaKey(outEvents, deviceId, metaState, time,
AKEYCODE_CAPS_LOCK, AMETA_CAPS_LOCK_ON, currentMetaState);
}
}
bool KeyCharacterMap::addSingleEphemeralMetaKey(Vector<KeyEvent>& outEvents,
int32_t deviceId, int32_t metaState, bool down, nsecs_t time,
int32_t keyCode, int32_t keyMetaState,
int32_t* currentMetaState) {
if ((metaState & keyMetaState) == keyMetaState) {
*currentMetaState = updateMetaState(keyCode, down, *currentMetaState);
addKey(outEvents, deviceId, keyCode, *currentMetaState, down, time);
return true;
}
return false;
}
void KeyCharacterMap::addDoubleEphemeralMetaKey(Vector<KeyEvent>& outEvents,
int32_t deviceId, int32_t metaState, bool down, nsecs_t time,
int32_t leftKeyCode, int32_t leftKeyMetaState,
int32_t rightKeyCode, int32_t rightKeyMetaState,
int32_t eitherKeyMetaState,
int32_t* currentMetaState) {
bool specific = false;
specific |= addSingleEphemeralMetaKey(outEvents, deviceId, metaState, down, time,
leftKeyCode, leftKeyMetaState, currentMetaState);
specific |= addSingleEphemeralMetaKey(outEvents, deviceId, metaState, down, time,
rightKeyCode, rightKeyMetaState, currentMetaState);
if (!specific) {
addSingleEphemeralMetaKey(outEvents, deviceId, metaState, down, time,
leftKeyCode, eitherKeyMetaState, currentMetaState);
}
}
void KeyCharacterMap::addLockedMetaKey(Vector<KeyEvent>& outEvents,
int32_t deviceId, int32_t metaState, nsecs_t time,
int32_t keyCode, int32_t keyMetaState,
int32_t* currentMetaState) {
if ((metaState & keyMetaState) == keyMetaState) {
*currentMetaState = updateMetaState(keyCode, true, *currentMetaState);
addKey(outEvents, deviceId, keyCode, *currentMetaState, true, time);
*currentMetaState = updateMetaState(keyCode, false, *currentMetaState);
addKey(outEvents, deviceId, keyCode, *currentMetaState, false, time);
}
}
// --- KeyCharacterMap::Key ---
KeyCharacterMap::Key::Key() :
label(0), number(0), firstBehavior(NULL) {
}
KeyCharacterMap::Key::~Key() {
Behavior* behavior = firstBehavior;
while (behavior) {
Behavior* next = behavior->next;
delete behavior;
behavior = next;
}
}
// --- KeyCharacterMap::Behavior ---
KeyCharacterMap::Behavior::Behavior() :
next(NULL), metaState(0), character(0), fallbackKeyCode(0) {
}
// --- KeyCharacterMap::Parser ---
KeyCharacterMap::Parser::Parser(KeyCharacterMap* map, Tokenizer* tokenizer) :
mMap(map), mTokenizer(tokenizer), mState(STATE_TOP) {
}
KeyCharacterMap::Parser::~Parser() {
}
status_t KeyCharacterMap::Parser::parse() {
while (!mTokenizer->isEof()) {
#if DEBUG_PARSER
ALOGD("Parsing %s: '%s'.", mTokenizer->getLocation().string(),
mTokenizer->peekRemainderOfLine().string());
#endif
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') {
switch (mState) {
case STATE_TOP: {
String8 keywordToken = mTokenizer->nextToken(WHITESPACE);
if (keywordToken == "type") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseType();
if (status) return status;
} else if (keywordToken == "key") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseKey();
if (status) return status;
} else {
ALOGE("%s: Expected keyword, got '%s'.", mTokenizer->getLocation().string(),
keywordToken.string());
return BAD_VALUE;
}
break;
}
case STATE_KEY: {
status_t status = parseKeyProperty();
if (status) return status;
break;
}
}
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol()) {
ALOGE("%s: Expected end of line, got '%s'.",
mTokenizer->getLocation().string(),
mTokenizer->peekRemainderOfLine().string());
return BAD_VALUE;
}
}
mTokenizer->nextLine();
}
if (mState != STATE_TOP) {
ALOGE("%s: Unterminated key description at end of file.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
if (mMap->mType == KEYBOARD_TYPE_UNKNOWN) {
ALOGE("%s: Missing required keyboard 'type' declaration.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
return NO_ERROR;
}
status_t KeyCharacterMap::Parser::parseType() {
if (mMap->mType != KEYBOARD_TYPE_UNKNOWN) {
ALOGE("%s: Duplicate keyboard 'type' declaration.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
KeyboardType type;
String8 typeToken = mTokenizer->nextToken(WHITESPACE);
if (typeToken == "NUMERIC") {
type = KEYBOARD_TYPE_NUMERIC;
} else if (typeToken == "PREDICTIVE") {
type = KEYBOARD_TYPE_PREDICTIVE;
} else if (typeToken == "ALPHA") {
type = KEYBOARD_TYPE_ALPHA;
} else if (typeToken == "FULL") {
type = KEYBOARD_TYPE_FULL;
} else if (typeToken == "SPECIAL_FUNCTION") {
type = KEYBOARD_TYPE_SPECIAL_FUNCTION;
} else {
ALOGE("%s: Expected keyboard type label, got '%s'.", mTokenizer->getLocation().string(),
typeToken.string());
return BAD_VALUE;
}
#if DEBUG_PARSER
ALOGD("Parsed type: type=%d.", type);
#endif
mMap->mType = type;
return NO_ERROR;
}
status_t KeyCharacterMap::Parser::parseKey() {
String8 keyCodeToken = mTokenizer->nextToken(WHITESPACE);
int32_t keyCode = getKeyCodeByLabel(keyCodeToken.string());
if (!keyCode) {
ALOGE("%s: Expected key code label, got '%s'.", mTokenizer->getLocation().string(),
keyCodeToken.string());
return BAD_VALUE;
}
if (mMap->mKeys.indexOfKey(keyCode) >= 0) {
ALOGE("%s: Duplicate entry for key code '%s'.", mTokenizer->getLocation().string(),
keyCodeToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 openBraceToken = mTokenizer->nextToken(WHITESPACE);
if (openBraceToken != "{") {
ALOGE("%s: Expected '{' after key code label, got '%s'.",
mTokenizer->getLocation().string(), openBraceToken.string());
return BAD_VALUE;
}
#if DEBUG_PARSER
ALOGD("Parsed beginning of key: keyCode=%d.", keyCode);
#endif
mKeyCode = keyCode;
mMap->mKeys.add(keyCode, new Key());
mState = STATE_KEY;
return NO_ERROR;
}
status_t KeyCharacterMap::Parser::parseKeyProperty() {
String8 token = mTokenizer->nextToken(WHITESPACE_OR_PROPERTY_DELIMITER);
if (token == "}") {
mState = STATE_TOP;
return NO_ERROR;
}
Vector<Property> properties;
// Parse all comma-delimited property names up to the first colon.
for (;;) {
if (token == "label") {
properties.add(Property(PROPERTY_LABEL));
} else if (token == "number") {
properties.add(Property(PROPERTY_NUMBER));
} else {
int32_t metaState;
status_t status = parseModifier(token, &metaState);
if (status) {
ALOGE("%s: Expected a property name or modifier, got '%s'.",
mTokenizer->getLocation().string(), token.string());
return status;
}
properties.add(Property(PROPERTY_META, metaState));
}
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol()) {
char ch = mTokenizer->nextChar();
if (ch == ':') {
break;
} else if (ch == ',') {
mTokenizer->skipDelimiters(WHITESPACE);
token = mTokenizer->nextToken(WHITESPACE_OR_PROPERTY_DELIMITER);
continue;
}
}
ALOGE("%s: Expected ',' or ':' after property name.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
// Parse behavior after the colon.
mTokenizer->skipDelimiters(WHITESPACE);
Behavior behavior;
bool haveCharacter = false;
bool haveFallback = false;
do {
char ch = mTokenizer->peekChar();
if (ch == '\'') {
char16_t character;
status_t status = parseCharacterLiteral(&character);
if (status || !character) {
ALOGE("%s: Invalid character literal for key.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
if (haveCharacter) {
ALOGE("%s: Cannot combine multiple character literals or 'none'.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
behavior.character = character;
haveCharacter = true;
} else {
token = mTokenizer->nextToken(WHITESPACE);
if (token == "none") {
if (haveCharacter) {
ALOGE("%s: Cannot combine multiple character literals or 'none'.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
haveCharacter = true;
} else if (token == "fallback") {
mTokenizer->skipDelimiters(WHITESPACE);
token = mTokenizer->nextToken(WHITESPACE);
int32_t keyCode = getKeyCodeByLabel(token.string());
if (!keyCode) {
ALOGE("%s: Invalid key code label for fallback behavior, got '%s'.",
mTokenizer->getLocation().string(),
token.string());
return BAD_VALUE;
}
if (haveFallback) {
ALOGE("%s: Cannot combine multiple fallback key codes.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
behavior.fallbackKeyCode = keyCode;
haveFallback = true;
} else {
ALOGE("%s: Expected a key behavior after ':'.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
}
mTokenizer->skipDelimiters(WHITESPACE);
} while (!mTokenizer->isEol());
// Add the behavior.
Key* key = mMap->mKeys.valueFor(mKeyCode);
for (size_t i = 0; i < properties.size(); i++) {
const Property& property = properties.itemAt(i);
switch (property.property) {
case PROPERTY_LABEL:
if (key->label) {
ALOGE("%s: Duplicate label for key.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
key->label = behavior.character;
#if DEBUG_PARSER
ALOGD("Parsed key label: keyCode=%d, label=%d.", mKeyCode, key->label);
#endif
break;
case PROPERTY_NUMBER:
if (key->number) {
ALOGE("%s: Duplicate number for key.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
key->number = behavior.character;
#if DEBUG_PARSER
ALOGD("Parsed key number: keyCode=%d, number=%d.", mKeyCode, key->number);
#endif
break;
case PROPERTY_META: {
for (Behavior* b = key->firstBehavior; b; b = b->next) {
if (b->metaState == property.metaState) {
ALOGE("%s: Duplicate key behavior for modifier.",
mTokenizer->getLocation().string());
return BAD_VALUE;
}
}
Behavior* newBehavior = new Behavior(behavior);
newBehavior->metaState = property.metaState;
newBehavior->next = key->firstBehavior;
key->firstBehavior = newBehavior;
#if DEBUG_PARSER
ALOGD("Parsed key meta: keyCode=%d, meta=0x%x, char=%d, fallback=%d.", mKeyCode,
newBehavior->metaState, newBehavior->character, newBehavior->fallbackKeyCode);
#endif
break;
}
}
}
return NO_ERROR;
}
status_t KeyCharacterMap::Parser::parseModifier(const String8& token, int32_t* outMetaState) {
if (token == "base") {
*outMetaState = 0;
return NO_ERROR;
}
int32_t combinedMeta = 0;
const char* str = token.string();
const char* start = str;
for (const char* cur = str; ; cur++) {
char ch = *cur;
if (ch == '+' || ch == '\0') {
size_t len = cur - start;
int32_t metaState = 0;
for (size_t i = 0; i < sizeof(modifiers) / sizeof(Modifier); i++) {
if (strlen(modifiers[i].label) == len
&& strncmp(modifiers[i].label, start, len) == 0) {
metaState = modifiers[i].metaState;
break;
}
}
if (!metaState) {
return BAD_VALUE;
}
if (combinedMeta & metaState) {
ALOGE("%s: Duplicate modifier combination '%s'.",
mTokenizer->getLocation().string(), token.string());
return BAD_VALUE;
}
combinedMeta |= metaState;
start = cur + 1;
if (ch == '\0') {
break;
}
}
}
*outMetaState = combinedMeta;
return NO_ERROR;
}
status_t KeyCharacterMap::Parser::parseCharacterLiteral(char16_t* outCharacter) {
char ch = mTokenizer->nextChar();
if (ch != '\'') {
goto Error;
}
ch = mTokenizer->nextChar();
if (ch == '\\') {
// Escape sequence.
ch = mTokenizer->nextChar();
if (ch == 'n') {
*outCharacter = '\n';
} else if (ch == 't') {
*outCharacter = '\t';
} else if (ch == '\\') {
*outCharacter = '\\';
} else if (ch == '\'') {
*outCharacter = '\'';
} else if (ch == '"') {
*outCharacter = '"';
} else if (ch == 'u') {
*outCharacter = 0;
for (int i = 0; i < 4; i++) {
ch = mTokenizer->nextChar();
int digit;
if (ch >= '0' && ch <= '9') {
digit = ch - '0';
} else if (ch >= 'A' && ch <= 'F') {
digit = ch - 'A' + 10;
} else if (ch >= 'a' && ch <= 'f') {
digit = ch - 'a' + 10;
} else {
goto Error;
}
*outCharacter = (*outCharacter << 4) | digit;
}
} else {
goto Error;
}
} else if (ch >= 32 && ch <= 126 && ch != '\'') {
// ASCII literal character.
*outCharacter = ch;
} else {
goto Error;
}
ch = mTokenizer->nextChar();
if (ch != '\'') {
goto Error;
}
// Ensure that we consumed the entire token.
if (mTokenizer->nextToken(WHITESPACE).isEmpty()) {
return NO_ERROR;
}
Error:
ALOGE("%s: Malformed character literal.", mTokenizer->getLocation().string());
return BAD_VALUE;
}
} // namespace android