gecko/js/src/jstl.h
2010-04-13 18:15:20 -04:00

349 lines
11 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=99 ft=cpp:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla SpiderMonkey JavaScript 1.9 code, released
* July 16, 2009.
*
* The Initial Developer of the Original Code is
* the Mozilla Corporation.
*
* Contributor(s):
* Luke Wagner <lw@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef jstl_h_
#define jstl_h_
#include "jsbit.h"
#include <new>
#include <string.h>
namespace js {
/* JavaScript Template Library. */
namespace tl {
/* Compute min/max/clamp. */
template <size_t i, size_t j> struct Min {
static const size_t result = i < j ? i : j;
};
template <size_t i, size_t j> struct Max {
static const size_t result = i > j ? i : j;
};
template <size_t i, size_t min, size_t max> struct Clamp {
static const size_t result = i < min ? min : (i > max ? max : i);
};
/* Compute x^y. */
template <size_t x, size_t y> struct Pow {
static const size_t result = x * Pow<x, y - 1>::result;
};
template <size_t x> struct Pow<x,0> {
static const size_t result = 1;
};
/* Compute floor(log2(i)). */
template <size_t i> struct FloorLog2 {
static const size_t result = 1 + FloorLog2<i / 2>::result;
};
template <> struct FloorLog2<0> { /* Error */ };
template <> struct FloorLog2<1> { static const size_t result = 0; };
/* Compute ceiling(log2(i)). */
template <size_t i> struct CeilingLog2 {
static const size_t result = FloorLog2<2 * i - 1>::result;
};
/* Round up to the nearest power of 2. */
template <size_t i> struct RoundUpPow2 {
static const size_t result = 1u << CeilingLog2<i>::result;
};
template <> struct RoundUpPow2<0> {
static const size_t result = 1;
};
/* Compute the number of bits in the given unsigned type. */
template <class T> struct BitSize {
static const size_t result = sizeof(T) * JS_BITS_PER_BYTE;
};
/* Allow Assertions by only including the 'result' typedef if 'true'. */
template <bool> struct StaticAssert {};
template <> struct StaticAssert<true> { typedef int result; };
/* Boolean test for whether two types are the same. */
template <class T, class U> struct IsSameType {
static const bool result = false;
};
template <class T> struct IsSameType<T,T> {
static const bool result = true;
};
/*
* Produce an N-bit mask, where N <= BitSize<size_t>::result. Handle the
* language-undefined edge case when N = BitSize<size_t>::result.
*/
template <size_t N> struct NBitMask {
typedef typename StaticAssert<N < BitSize<size_t>::result>::result _;
static const size_t result = (size_t(1) << N) - 1;
};
template <> struct NBitMask<BitSize<size_t>::result> {
static const size_t result = size_t(-1);
};
/*
* For the unsigned integral type size_t, compute a mask M for N such that
* for all X, !(X & M) implies X * N will not overflow (w.r.t size_t)
*/
template <size_t N> struct MulOverflowMask {
static const size_t result =
~NBitMask<BitSize<size_t>::result - CeilingLog2<N>::result>::result;
};
template <> struct MulOverflowMask<0> { /* Error */ };
template <> struct MulOverflowMask<1> { static const size_t result = 0; };
/*
* Generate a mask for T such that if (X & sUnsafeRangeSizeMask), an X-sized
* array of T's is big enough to cause a ptrdiff_t overflow when subtracting
* a pointer to the end of the array from the beginning.
*/
template <class T> struct UnsafeRangeSizeMask {
/*
* The '2' factor means the top bit is clear, sizeof(T) converts from
* units of elements to bytes.
*/
static const size_t result = MulOverflowMask<2 * sizeof(T)>::result;
};
/* Return T stripped of any const-ness. */
template <class T> struct StripConst { typedef T result; };
template <class T> struct StripConst<const T> { typedef T result; };
/*
* Traits class for identifying POD types. Until C++0x, there is no automatic
* way to detect PODs, so for the moment it is done manually.
*/
template <class T> struct IsPodType { static const bool result = false; };
template <> struct IsPodType<char> { static const bool result = true; };
template <> struct IsPodType<signed char> { static const bool result = true; };
template <> struct IsPodType<unsigned char> { static const bool result = true; };
template <> struct IsPodType<short> { static const bool result = true; };
template <> struct IsPodType<unsigned short> { static const bool result = true; };
template <> struct IsPodType<int> { static const bool result = true; };
template <> struct IsPodType<unsigned int> { static const bool result = true; };
template <> struct IsPodType<long> { static const bool result = true; };
template <> struct IsPodType<unsigned long> { static const bool result = true; };
template <> struct IsPodType<float> { static const bool result = true; };
template <> struct IsPodType<double> { static const bool result = true; };
/* Return the size/end of an array without using macros. */
template <class T, size_t N> inline T *ArraySize(T (&)[N]) { return N; }
template <class T, size_t N> inline T *ArrayEnd(T (&arr)[N]) { return arr + N; }
} /* namespace tl */
/* Useful for implementing containers that assert non-reentrancy */
class ReentrancyGuard
{
/* ReentrancyGuard is not copyable. */
ReentrancyGuard(const ReentrancyGuard &);
void operator=(const ReentrancyGuard &);
#ifdef DEBUG
bool &entered;
#endif
public:
template <class T>
ReentrancyGuard(T &obj)
#ifdef DEBUG
: entered(obj.entered)
#endif
{
#ifdef DEBUG
JS_ASSERT(!entered);
entered = true;
#endif
}
~ReentrancyGuard()
{
#ifdef DEBUG
entered = false;
#endif
}
};
/*
* Round x up to the nearest power of 2. This function assumes that the most
* significant bit of x is not set, which would lead to overflow.
*/
JS_ALWAYS_INLINE size_t
RoundUpPow2(size_t x)
{
size_t log2 = JS_CEILING_LOG2W(x);
JS_ASSERT(log2 < tl::BitSize<size_t>::result);
size_t result = size_t(1) << log2;
return result;
}
/*
* Safely subtract two pointers when it is known that end > begin. This avoids
* the common compiler bug that if (size_t(end) - size_t(begin)) has the MSB
* set, the unsigned subtraction followed by right shift will produce -1, or
* size_t(-1), instead of the real difference.
*/
template <class T>
JS_ALWAYS_INLINE size_t
PointerRangeSize(T *begin, T *end)
{
return (size_t(end) - size_t(begin)) / sizeof(T);
}
/*
* Allocation policies. These model the concept:
* - public copy constructor, assignment, destructor
* - void *malloc(size_t)
* Responsible for OOM reporting on NULL return value.
* - void *realloc(size_t)
* Responsible for OOM reporting on NULL return value.
* - void free(void *)
* - reportAllocOverflow()
* Called on overflow before the container returns NULL.
*/
/* Policy for using system memory functions and doing no error reporting. */
class SystemAllocPolicy
{
public:
void *malloc(size_t bytes) { return ::malloc(bytes); }
void *realloc(void *p, size_t bytes) { return ::realloc(p, bytes); }
void free(void *p) { ::free(p); }
void reportAllocOverflow() const {}
};
/*
* Small utility for lazily constructing objects without using dynamic storage.
* When a LazilyConstructed<T> is constructed, it is |empty()|, i.e., no value
* of T has been constructed and no T destructor will be called when the
* LazilyConstructed<T> is destroyed. Upon calling |construct|, a T object will
* be constructed with the given arguments and that object will be destroyed
* when the owning LazilyConstructed<T> is destroyed.
*/
template <class T>
class LazilyConstructed
{
union {
uint64 align;
char bytes[sizeof(T) + 1];
};
T &asT() { return *reinterpret_cast<T *>(bytes); }
char & constructed() { return bytes[sizeof(T)]; }
public:
LazilyConstructed() { constructed() = false; }
~LazilyConstructed() { if (constructed()) asT().~T(); }
bool empty() const { return !constructed(); }
void construct() {
JS_ASSERT(!constructed());
new(bytes) T();
constructed() = true;
}
template <class T1>
void construct(const T1 &t1) {
JS_ASSERT(!constructed());
new(bytes) T(t1);
constructed() = true;
}
template <class T1, class T2>
void construct(const T1 &t1, const T2 &t2) {
JS_ASSERT(!constructed());
new(bytes) T(t1, t2);
constructed() = true;
}
template <class T1, class T2, class T3>
void construct(const T1 &t1, const T2 &t2, const T3 &t3) {
JS_ASSERT(!constructed());
new(bytes) T(t1, t2, t3);
constructed() = true;
}
};
template <class T>
class Conditionally {
LazilyConstructed<T> t;
public:
Conditionally(bool b) { if (b) t.construct(); }
template <class T1>
Conditionally(bool b, const T1 &t1) { if (b) t.construct(t1); }
};
template <class T>
JS_ALWAYS_INLINE static void
PodZero(T *t)
{
memset(t, 0, sizeof(T));
}
template <class T>
JS_ALWAYS_INLINE static void
PodZero(T *t, size_t nelem)
{
memset(t, 0, nelem * sizeof(T));
}
/*
* Arrays implicitly convert to pointers to their first element, which is
* dangerous when combined with the above PodZero definitions. Adding an
* overload for arrays is ambiguous, so we need another identifier. The
* ambiguous overload is left to catch mistaken uses of PodZero; if you get a
* compile error involving PodZero and array types, use PodArrayZero instead.
*/
template <class T, size_t N> static void PodZero(T (&)[N]); /* undefined */
template <class T, size_t N> static void PodZero(T (&)[N], size_t); /* undefined */
template <class T, size_t N>
JS_ALWAYS_INLINE static void
PodArrayZero(T (&t)[N])
{
memset(t, 0, N * sizeof(T));
}
} /* namespace js */
#endif /* jstl_h_ */