mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
3bfb5507c3
A functional difference is that HRTFKernel is not reference-counted. --HG-- extra : rebase_source : 66a9653fed75265ec55d915b731876bcb793d513
100 lines
4.3 KiB
C++
100 lines
4.3 KiB
C++
/*
|
|
* Copyright (C) 2010 Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "HRTFKernel.h"
|
|
namespace WebCore {
|
|
|
|
// Takes the input audio channel |impulseP| as an input impulse response and calculates the average group delay.
|
|
// This represents the initial delay before the most energetic part of the impulse response.
|
|
// The sample-frame delay is removed from the |impulseP| impulse response, and this value is returned.
|
|
// The |length| of the passed in |impulseP| must be must be a power of 2.
|
|
static float extractAverageGroupDelay(float* impulseP, size_t length)
|
|
{
|
|
// Check for power-of-2.
|
|
MOZ_ASSERT(length && (length & (length - 1)) == 0);
|
|
|
|
FFTBlock estimationFrame(length);
|
|
estimationFrame.PerformFFT(impulseP);
|
|
|
|
float frameDelay = static_cast<float>(estimationFrame.ExtractAverageGroupDelay());
|
|
estimationFrame.PerformInverseFFT(impulseP);
|
|
|
|
return frameDelay;
|
|
}
|
|
|
|
HRTFKernel::HRTFKernel(float* impulseResponse, size_t length, float sampleRate)
|
|
: m_frameDelay(0)
|
|
, m_sampleRate(sampleRate)
|
|
{
|
|
// Determine the leading delay (average group delay) for the response.
|
|
m_frameDelay = extractAverageGroupDelay(impulseResponse, length);
|
|
|
|
// The FFT size (with zero padding) needs to be twice the response length
|
|
// in order to do proper convolution.
|
|
unsigned fftSize = 2 * length;
|
|
|
|
// Quick fade-out (apply window) at truncation point
|
|
// because the impulse response has been truncated.
|
|
unsigned numberOfFadeOutFrames = static_cast<unsigned>(sampleRate / 4410); // 10 sample-frames @44.1KHz sample-rate
|
|
MOZ_ASSERT(numberOfFadeOutFrames < length);
|
|
if (numberOfFadeOutFrames < length) {
|
|
for (unsigned i = length - numberOfFadeOutFrames; i < length; ++i) {
|
|
float x = 1.0f - static_cast<float>(i - (length - numberOfFadeOutFrames)) / numberOfFadeOutFrames;
|
|
impulseResponse[i] *= x;
|
|
}
|
|
}
|
|
|
|
m_fftFrame = new FFTBlock(fftSize);
|
|
m_fftFrame->PerformPaddedFFT(impulseResponse, length);
|
|
}
|
|
|
|
// Interpolates two kernels with x: 0 -> 1 and returns the result.
|
|
nsReturnRef<HRTFKernel> HRTFKernel::createInterpolatedKernel(HRTFKernel* kernel1, HRTFKernel* kernel2, float x)
|
|
{
|
|
MOZ_ASSERT(kernel1 && kernel2);
|
|
if (!kernel1 || !kernel2)
|
|
return nsReturnRef<HRTFKernel>();
|
|
|
|
MOZ_ASSERT(x >= 0.0 && x < 1.0);
|
|
x = mozilla::clamped(x, 0.0f, 1.0f);
|
|
|
|
float sampleRate1 = kernel1->sampleRate();
|
|
float sampleRate2 = kernel2->sampleRate();
|
|
MOZ_ASSERT(sampleRate1 == sampleRate2);
|
|
if (sampleRate1 != sampleRate2)
|
|
return nsReturnRef<HRTFKernel>();
|
|
|
|
float frameDelay = (1 - x) * kernel1->frameDelay() + x * kernel2->frameDelay();
|
|
|
|
nsAutoPtr<FFTBlock> interpolatedFrame(
|
|
FFTBlock::CreateInterpolatedBlock(*kernel1->fftFrame(), *kernel2->fftFrame(), x));
|
|
return HRTFKernel::create(interpolatedFrame, frameDelay, sampleRate1);
|
|
}
|
|
|
|
} // namespace WebCore
|