gecko/js/src/jsmath.cpp
Catalin Iacob fddabbee4e Bug 798914 (part 4) - Use newly introduced mozilla::MallocSizeOf in js. r=njn.
--HG--
extra : rebase_source : d1c063b94c7ec58729150cbea602bb4c9f2a0e24
2013-06-23 13:21:01 +02:00

858 lines
20 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* JS math package.
*/
#if defined(XP_WIN)
/* _CRT_RAND_S must be #defined before #including stdlib.h to get rand_s(). */
#define _CRT_RAND_S
#endif
#include "jsmath.h"
#include "jslibmath.h"
#include "mozilla/Constants.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryReporting.h"
#include <fcntl.h>
#ifdef XP_UNIX
# include <unistd.h>
#endif
#include "jstypes.h"
#include "prmjtime.h"
#include "jsapi.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jscompartment.h"
#include "jsobjinlines.h"
using namespace js;
using mozilla::Abs;
using mozilla::DoubleIsInt32;
using mozilla::ExponentComponent;
using mozilla::IsFinite;
using mozilla::IsInfinite;
using mozilla::IsNaN;
using mozilla::IsNegative;
using mozilla::IsNegativeZero;
using mozilla::PositiveInfinity;
using mozilla::NegativeInfinity;
using mozilla::SpecificNaN;
#ifndef M_E
#define M_E 2.7182818284590452354
#endif
#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif
#ifndef M_LOG10E
#define M_LOG10E 0.43429448190325182765
#endif
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
#ifndef M_LN10
#define M_LN10 2.30258509299404568402
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440
#endif
static const JSConstDoubleSpec math_constants[] = {
{M_E, "E", 0, {0,0,0}},
{M_LOG2E, "LOG2E", 0, {0,0,0}},
{M_LOG10E, "LOG10E", 0, {0,0,0}},
{M_LN2, "LN2", 0, {0,0,0}},
{M_LN10, "LN10", 0, {0,0,0}},
{M_PI, "PI", 0, {0,0,0}},
{M_SQRT2, "SQRT2", 0, {0,0,0}},
{M_SQRT1_2, "SQRT1_2", 0, {0,0,0}},
{0,0,0,{0,0,0}}
};
MathCache::MathCache() {
memset(table, 0, sizeof(table));
/* See comments in lookup(). */
JS_ASSERT(IsNegativeZero(-0.0));
JS_ASSERT(!IsNegativeZero(+0.0));
JS_ASSERT(hash(-0.0) != hash(+0.0));
}
size_t
MathCache::sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf)
{
return mallocSizeOf(this);
}
Class js::MathClass = {
js_Math_str,
JSCLASS_HAS_CACHED_PROTO(JSProto_Math),
JS_PropertyStub, /* addProperty */
JS_DeletePropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub
};
JSBool
js_math_abs(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
double z = Abs(x);
args.rval().setNumber(z);
return true;
}
double
js::math_acos_impl(MathCache *cache, double x)
{
#if defined(SOLARIS) && defined(__GNUC__)
if (x < -1 || 1 < x)
return js_NaN;
#endif
return cache->lookup(acos, x);
}
JSBool
js::math_acos(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_acos_impl(mathCache, x);
args.rval().setDouble(z);
return true;
}
double
js::math_asin_impl(MathCache *cache, double x)
{
#if defined(SOLARIS) && defined(__GNUC__)
if (x < -1 || 1 < x)
return js_NaN;
#endif
return cache->lookup(asin, x);
}
JSBool
js::math_asin(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_asin_impl(mathCache, x);
args.rval().setDouble(z);
return true;
}
double
js::math_atan_impl(MathCache *cache, double x)
{
return cache->lookup(atan, x);
}
JSBool
js::math_atan(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_atan_impl(mathCache, x);
args.rval().setDouble(z);
return true;
}
double
js::ecmaAtan2(double y, double x)
{
#if defined(_MSC_VER)
/*
* MSVC's atan2 does not yield the result demanded by ECMA when both x
* and y are infinite.
* - The result is a multiple of pi/4.
* - The sign of y determines the sign of the result.
* - The sign of x determines the multiplicator, 1 or 3.
*/
if (IsInfinite(y) && IsInfinite(x)) {
double z = js_copysign(M_PI / 4, y);
if (x < 0)
z *= 3;
return z;
}
#endif
#if defined(SOLARIS) && defined(__GNUC__)
if (y == 0) {
if (IsNegativeZero(x))
return js_copysign(M_PI, y);
if (x == 0)
return y;
}
#endif
return atan2(y, x);
}
JSBool
js::math_atan2(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() <= 1) {
args.rval().setDouble(js_NaN);
return true;
}
double x, y;
if (!ToNumber(cx, args[0], &x) || !ToNumber(cx, args[1], &y))
return false;
double z = ecmaAtan2(x, y);
args.rval().setDouble(z);
return true;
}
double
js_math_ceil_impl(double x)
{
#ifdef __APPLE__
if (x < 0 && x > -1.0)
return js_copysign(0, -1);
#endif
return ceil(x);
}
JSBool
js_math_ceil(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
double z = js_math_ceil_impl(x);
args.rval().setNumber(z);
return true;
}
double
js::math_cos_impl(MathCache *cache, double x)
{
return cache->lookup(cos, x);
}
JSBool
js::math_cos(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_cos_impl(mathCache, x);
args.rval().setDouble(z);
return true;
}
double
js::math_exp_impl(MathCache *cache, double x)
{
#ifdef _WIN32
if (!IsNaN(x)) {
if (x == js_PositiveInfinity)
return js_PositiveInfinity;
if (x == js_NegativeInfinity)
return 0.0;
}
#endif
return cache->lookup(exp, x);
}
JSBool
js::math_exp(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_exp_impl(mathCache, x);
args.rval().setNumber(z);
return true;
}
double
js_math_floor_impl(double x)
{
return floor(x);
}
JSBool
js_math_floor(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
double z = js_math_floor_impl(x);
args.rval().setNumber(z);
return true;
}
JSBool
js::math_imul(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
uint32_t a = 0, b = 0;
if (args.hasDefined(0) && !ToUint32(cx, args[0], &a))
return false;
if (args.hasDefined(1) && !ToUint32(cx, args[1], &b))
return false;
uint32_t product = a * b;
args.rval().setInt32(product > INT32_MAX
? int32_t(INT32_MIN + (product - INT32_MAX - 1))
: int32_t(product));
return true;
}
double
js::math_log_impl(MathCache *cache, double x)
{
#if defined(SOLARIS) && defined(__GNUC__)
if (x < 0)
return js_NaN;
#endif
return cache->lookup(log, x);
}
JSBool
js::math_log(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_log_impl(mathCache, x);
args.rval().setNumber(z);
return true;
}
JSBool
js_math_max(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
double maxval = NegativeInfinity();
for (unsigned i = 0; i < args.length(); i++) {
double x;
if (!ToNumber(cx, args[i], &x))
return false;
// Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0
if (x > maxval || IsNaN(x) || (x == maxval && IsNegative(maxval)))
maxval = x;
}
args.rval().setNumber(maxval);
return true;
}
JSBool
js_math_min(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
double minval = PositiveInfinity();
for (unsigned i = 0; i < args.length(); i++) {
double x;
if (!ToNumber(cx, args[i], &x))
return false;
// Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0
if (x < minval || IsNaN(x) || (x == minval && IsNegativeZero(x)))
minval = x;
}
args.rval().setNumber(minval);
return true;
}
// Disable PGO for Math.pow() and related functions (see bug 791214).
#if defined(_MSC_VER)
# pragma optimize("g", off)
#endif
double
js::powi(double x, int y)
{
unsigned n = (y < 0) ? -y : y;
double m = x;
double p = 1;
while (true) {
if ((n & 1) != 0) p *= m;
n >>= 1;
if (n == 0) {
if (y < 0) {
// Unfortunately, we have to be careful when p has reached
// infinity in the computation, because sometimes the higher
// internal precision in the pow() implementation would have
// given us a finite p. This happens very rarely.
double result = 1.0 / p;
return (result == 0 && IsInfinite(p))
? pow(x, static_cast<double>(y)) // Avoid pow(double, int).
: result;
}
return p;
}
m *= m;
}
}
#if defined(_MSC_VER)
# pragma optimize("", on)
#endif
// Disable PGO for Math.pow() and related functions (see bug 791214).
#if defined(_MSC_VER)
# pragma optimize("g", off)
#endif
double
js::ecmaPow(double x, double y)
{
/*
* Use powi if the exponent is an integer-valued double. We don't have to
* check for NaN since a comparison with NaN is always false.
*/
if (int32_t(y) == y)
return powi(x, int32_t(y));
/*
* Because C99 and ECMA specify different behavior for pow(),
* we need to wrap the libm call to make it ECMA compliant.
*/
if (!IsFinite(y) && (x == 1.0 || x == -1.0))
return js_NaN;
/* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */
if (y == 0)
return 1;
return pow(x, y);
}
#if defined(_MSC_VER)
# pragma optimize("", on)
#endif
// Disable PGO for Math.pow() and related functions (see bug 791214).
#if defined(_MSC_VER)
# pragma optimize("g", off)
#endif
JSBool
js_math_pow(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() <= 1) {
args.rval().setDouble(js_NaN);
return true;
}
double x, y;
if (!ToNumber(cx, args[0], &x) || !ToNumber(cx, args[1], &y))
return false;
/*
* Special case for square roots. Note that pow(x, 0.5) != sqrt(x)
* when x = -0.0, so we have to guard for this.
*/
if (IsFinite(x) && x != 0.0) {
if (y == 0.5) {
args.rval().setNumber(sqrt(x));
return true;
}
if (y == -0.5) {
args.rval().setNumber(1.0/sqrt(x));
return true;
}
}
/* pow(x, +-0) is always 1, even for x = NaN. */
if (y == 0) {
args.rval().setInt32(1);
return true;
}
double z = ecmaPow(x, y);
args.rval().setNumber(z);
return true;
}
#if defined(_MSC_VER)
# pragma optimize("", on)
#endif
static uint64_t
random_generateSeed()
{
union {
uint8_t u8[8];
uint32_t u32[2];
uint64_t u64;
} seed;
seed.u64 = 0;
#if defined(XP_WIN)
/*
* Our PRNG only uses 48 bits, so calling rand_s() twice to get 64 bits is
* probably overkill.
*/
rand_s(&seed.u32[0]);
#elif defined(XP_UNIX)
/*
* In the unlikely event we can't read /dev/urandom, there's not much we can
* do, so just mix in the fd error code and the current time.
*/
int fd = open("/dev/urandom", O_RDONLY);
MOZ_ASSERT(fd >= 0, "Can't open /dev/urandom");
if (fd >= 0) {
read(fd, seed.u8, mozilla::ArrayLength(seed.u8));
close(fd);
}
seed.u32[0] ^= fd;
#else
# error "Platform needs to implement random_generateSeed()"
#endif
seed.u32[1] ^= PRMJ_Now();
return seed.u64;
}
static const uint64_t RNG_MULTIPLIER = 0x5DEECE66DLL;
static const uint64_t RNG_ADDEND = 0xBLL;
static const uint64_t RNG_MASK = (1LL << 48) - 1;
static const double RNG_DSCALE = double(1LL << 53);
/*
* Math.random() support, lifted from java.util.Random.java.
*/
static void
random_initState(uint64_t *rngState)
{
/* Our PRNG only uses 48 bits, so squeeze our entropy into those bits. */
uint64_t seed = random_generateSeed();
seed ^= (seed >> 16);
*rngState = (seed ^ RNG_MULTIPLIER) & RNG_MASK;
}
uint64_t
random_next(uint64_t *rngState, int bits)
{
MOZ_ASSERT((*rngState & 0xffff000000000000ULL) == 0, "Bad rngState");
MOZ_ASSERT(bits > 0 && bits <= 48, "bits is out of range");
if (*rngState == 0) {
random_initState(rngState);
}
uint64_t nextstate = *rngState * RNG_MULTIPLIER;
nextstate += RNG_ADDEND;
nextstate &= RNG_MASK;
*rngState = nextstate;
return nextstate >> (48 - bits);
}
static inline double
random_nextDouble(JSContext *cx)
{
uint64_t *rng = &cx->compartment()->rngState;
return double((random_next(rng, 26) << 27) + random_next(rng, 27)) / RNG_DSCALE;
}
double
math_random_no_outparam(JSContext *cx)
{
/* Calculate random without memory traffic, for use in the JITs. */
return random_nextDouble(cx);
}
JSBool
js_math_random(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
double z = random_nextDouble(cx);
args.rval().setDouble(z);
return true;
}
JSBool /* ES5 15.8.2.15. */
js_math_round(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
int32_t i;
if (DoubleIsInt32(x, &i)) {
args.rval().setInt32(i);
return true;
}
/* Some numbers are so big that adding 0.5 would give the wrong number. */
if (ExponentComponent(x) >= 52) {
args.rval().setNumber(x);
return true;
}
args.rval().setNumber(js_copysign(floor(x + 0.5), x));
return true;
}
double
js::math_sin_impl(MathCache *cache, double x)
{
return cache->lookup(sin, x);
}
JSBool
js::math_sin(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_sin_impl(mathCache, x);
args.rval().setDouble(z);
return true;
}
JSBool
js_math_sqrt(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = mathCache->lookup(sqrt, x);
args.rval().setDouble(z);
return true;
}
double
js::math_tan_impl(MathCache *cache, double x)
{
return cache->lookup(tan, x);
}
JSBool
js::math_tan(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
if (args.length() == 0) {
args.rval().setDouble(js_NaN);
return true;
}
double x;
if (!ToNumber(cx, args[0], &x))
return false;
MathCache *mathCache = cx->runtime()->getMathCache(cx);
if (!mathCache)
return false;
double z = math_tan_impl(mathCache, x);
args.rval().setDouble(z);
return true;
}
#if JS_HAS_TOSOURCE
static JSBool
math_toSource(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
args.rval().setString(cx->names().Math);
return true;
}
#endif
static const JSFunctionSpec math_static_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, math_toSource, 0, 0),
#endif
JS_FN("abs", js_math_abs, 1, 0),
JS_FN("acos", math_acos, 1, 0),
JS_FN("asin", math_asin, 1, 0),
JS_FN("atan", math_atan, 1, 0),
JS_FN("atan2", math_atan2, 2, 0),
JS_FN("ceil", js_math_ceil, 1, 0),
JS_FN("cos", math_cos, 1, 0),
JS_FN("exp", math_exp, 1, 0),
JS_FN("floor", js_math_floor, 1, 0),
JS_FN("imul", math_imul, 2, 0),
JS_FN("log", math_log, 1, 0),
JS_FN("max", js_math_max, 2, 0),
JS_FN("min", js_math_min, 2, 0),
JS_FN("pow", js_math_pow, 2, 0),
JS_FN("random", js_math_random, 0, 0),
JS_FN("round", js_math_round, 1, 0),
JS_FN("sin", math_sin, 1, 0),
JS_FN("sqrt", js_math_sqrt, 1, 0),
JS_FN("tan", math_tan, 1, 0),
JS_FS_END
};
JSObject *
js_InitMathClass(JSContext *cx, HandleObject obj)
{
RootedObject Math(cx, NewObjectWithClassProto(cx, &MathClass, NULL, obj, SingletonObject));
if (!Math)
return NULL;
if (!JS_DefineProperty(cx, obj, js_Math_str, OBJECT_TO_JSVAL(Math),
JS_PropertyStub, JS_StrictPropertyStub, 0)) {
return NULL;
}
if (!JS_DefineFunctions(cx, Math, math_static_methods))
return NULL;
if (!JS_DefineConstDoubles(cx, Math, math_constants))
return NULL;
MarkStandardClassInitializedNoProto(obj, &MathClass);
return Math;
}