gecko/dom/telephony/ril_worker.js

2544 lines
78 KiB
JavaScript

/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is RIL JS Worker.
*
* The Initial Developer of the Original Code is
* the Mozilla Foundation.
* Portions created by the Initial Developer are Copyright (C) 2011
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Kyle Machulis <kyle@nonpolynomial.com>
* Philipp von Weitershausen <philipp@weitershausen.de>
* Fernando Jimenez <ferjmoreno@gmail.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/**
* This file implements the RIL worker thread. It communicates with
* the main thread to provide a high-level API to the phone's RIL
* stack, and with the RIL IPC thread to communicate with the RIL
* device itself. These communication channels use message events as
* known from Web Workers:
*
* - postMessage()/"message" events for main thread communication
*
* - postRILMessage()/"RILMessageEvent" events for RIL IPC thread
* communication.
*
* The three objects in this file represent individual parts of this
* communication chain:
*
* - RILMessageEvent -> Buf -> RIL -> Phone -> postMessage()
* - "message" event -> Phone -> RIL -> Buf -> postRILMessage()
*
* Note: The code below is purposely lean on abstractions to be as lean in
* terms of object allocations. As a result, it may look more like C than
* JavaScript, and that's intended.
*/
"use strict";
importScripts("ril_consts.js");
let DEBUG = false;
const INT32_MAX = 2147483647;
const UINT8_SIZE = 1;
const UINT16_SIZE = 2;
const UINT32_SIZE = 4;
const PARCEL_SIZE_SIZE = UINT32_SIZE;
/**
* This object contains helpers buffering incoming data & deconstructing it
* into parcels as well as buffering outgoing data & constructing parcels.
* For that it maintains two buffers and corresponding uint8 views, indexes.
*
* The incoming buffer is a circular buffer where we store incoming data.
* As soon as a complete parcel is received, it is processed right away, so
* the buffer only needs to be large enough to hold one parcel.
*
* The outgoing buffer is to prepare outgoing parcels. The index is reset
* every time a parcel is sent.
*/
let Buf = {
INCOMING_BUFFER_LENGTH: 1024,
OUTGOING_BUFFER_LENGTH: 1024,
init: function init() {
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
this.incomingBytes = new Uint8Array(this.incomingBuffer);
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
// Track where incoming data is read from and written to.
this.incomingWriteIndex = 0;
this.incomingReadIndex = 0;
// Leave room for the parcel size for outgoing parcels.
this.outgoingIndex = PARCEL_SIZE_SIZE;
// How many bytes we've read for this parcel so far.
this.readIncoming = 0;
// Size of the incoming parcel. If this is zero, we're expecting a new
// parcel.
this.currentParcelSize = 0;
// This gets incremented each time we send out a parcel.
this.token = 1;
// Maps tokens we send out with requests to the request type, so that
// when we get a response parcel back, we know what request it was for.
this.tokenRequestMap = {};
// This is the token of last solicited response.
this.lastSolicitedToken = 0;
},
/**
* Grow the incoming buffer.
*
* @param min_size
* Minimum new size. The actual new size will be the the smallest
* power of 2 that's larger than this number.
*/
growIncomingBuffer: function growIncomingBuffer(min_size) {
if (DEBUG) {
debug("Current buffer of " + this.INCOMING_BUFFER_LENGTH +
" can't handle incoming " + min_size + " bytes.");
}
let oldBytes = this.incomingBytes;
this.INCOMING_BUFFER_LENGTH =
2 << Math.floor(Math.log(min_size)/Math.log(2));
if (DEBUG) debug("New incoming buffer size: " + this.INCOMING_BUFFER_LENGTH);
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
this.incomingBytes = new Uint8Array(this.incomingBuffer);
if (this.incomingReadIndex <= this.incomingWriteIndex) {
// Read and write index are in natural order, so we can just copy
// the old buffer over to the bigger one without having to worry
// about the indexes.
this.incomingBytes.set(oldBytes, 0);
} else {
// The write index has wrapped around but the read index hasn't yet.
// Write whatever the read index has left to read until it would
// circle around to the beginning of the new buffer, and the rest
// behind that.
let head = oldBytes.subarray(this.incomingReadIndex);
let tail = oldBytes.subarray(0, this.incomingReadIndex);
this.incomingBytes.set(head, 0);
this.incomingBytes.set(tail, head.length);
this.incomingReadIndex = 0;
this.incomingWriteIndex += head.length;
}
if (DEBUG) {
debug("New incoming buffer size is " + this.INCOMING_BUFFER_LENGTH);
}
},
/**
* Grow the outgoing buffer.
*
* @param min_size
* Minimum new size. The actual new size will be the the smallest
* power of 2 that's larger than this number.
*/
growOutgoingBuffer: function growOutgoingBuffer(min_size) {
if (DEBUG) {
debug("Current buffer of " + this.OUTGOING_BUFFER_LENGTH +
" is too small.");
}
let oldBytes = this.outgoingBytes;
this.OUTGOING_BUFFER_LENGTH =
2 << Math.floor(Math.log(min_size)/Math.log(2));
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
this.outgoingBytes.set(oldBytes, 0);
if (DEBUG) {
debug("New outgoing buffer size is " + this.OUTGOING_BUFFER_LENGTH);
}
},
/**
* Functions for reading data from the incoming buffer.
*
* These are all little endian, apart from readParcelSize();
*/
readUint8: function readUint8() {
let value = this.incomingBytes[this.incomingReadIndex];
this.incomingReadIndex = (this.incomingReadIndex + 1) %
this.INCOMING_BUFFER_LENGTH;
return value;
},
readUint16: function readUint16() {
return this.readUint8() | this.readUint8() << 8;
},
readUint32: function readUint32() {
return this.readUint8() | this.readUint8() << 8 |
this.readUint8() << 16 | this.readUint8() << 24;
},
readUint32List: function readUint32List() {
let length = this.readUint32();
let ints = [];
for (let i = 0; i < length; i++) {
ints.push(this.readUint32());
}
return ints;
},
readString: function readString() {
let string_len = this.readUint32();
if (string_len < 0 || string_len >= INT32_MAX) {
return null;
}
let s = "";
for (let i = 0; i < string_len; i++) {
s += String.fromCharCode(this.readUint16());
}
// Strings are \0\0 delimited, but that isn't part of the length. And
// if the string length is even, the delimiter is two characters wide.
// It's insane, I know.
let delimiter = this.readUint16();
if (!(string_len & 1)) {
delimiter |= this.readUint16();
}
if (DEBUG) {
if (delimiter != 0) {
debug("Something's wrong, found string delimiter: " + delimiter);
}
}
return s;
},
readStringList: function readStringList() {
let num_strings = this.readUint32();
let strings = [];
for (let i = 0; i < num_strings; i++) {
strings.push(this.readString());
}
return strings;
},
readParcelSize: function readParcelSize() {
return this.readUint8() << 24 | this.readUint8() << 16 |
this.readUint8() << 8 | this.readUint8();
},
/**
* Functions for writing data to the outgoing buffer.
*/
writeUint8: function writeUint8(value) {
if (this.outgoingIndex >= this.OUTGOING_BUFFER_LENGTH) {
this.growOutgoingBuffer(this.outgoingIndex + 1);
}
this.outgoingBytes[this.outgoingIndex] = value;
this.outgoingIndex++;
},
writeUint16: function writeUint16(value) {
this.writeUint8(value & 0xff);
this.writeUint8((value >> 8) & 0xff);
},
writeUint32: function writeUint32(value) {
this.writeUint8(value & 0xff);
this.writeUint8((value >> 8) & 0xff);
this.writeUint8((value >> 16) & 0xff);
this.writeUint8((value >> 24) & 0xff);
},
writeString: function writeString(value) {
if (value == null) {
this.writeUint32(-1);
return;
}
this.writeUint32(value.length);
for (let i = 0; i < value.length; i++) {
this.writeUint16(value.charCodeAt(i));
}
// Strings are \0\0 delimited, but that isn't part of the length. And
// if the string length is even, the delimiter is two characters wide.
// It's insane, I know.
this.writeUint16(0);
if (!(value.length & 1)) {
this.writeUint16(0);
}
},
writeStringList: function writeStringList(strings) {
this.writeUint32(strings.length);
for (let i = 0; i < strings.length; i++) {
this.writeString(strings[i]);
}
},
writeParcelSize: function writeParcelSize(value) {
/**
* Parcel size will always be the first thing in the parcel byte
* array, but the last thing written. Store the current index off
* to a temporary to be reset after we write the size.
*/
let currentIndex = this.outgoingIndex;
this.outgoingIndex = 0;
this.writeUint8((value >> 24) & 0xff);
this.writeUint8((value >> 16) & 0xff);
this.writeUint8((value >> 8) & 0xff);
this.writeUint8(value & 0xff);
this.outgoingIndex = currentIndex;
},
/**
* Parcel management
*/
/**
* Write incoming data to the circular buffer.
*
* @param incoming
* Uint8Array containing the incoming data.
*/
writeToIncoming: function writeToIncoming(incoming) {
// We don't have to worry about the head catching the tail since
// we process any backlog in parcels immediately, before writing
// new data to the buffer. So the only edge case we need to handle
// is when the incoming data is larger than the buffer size.
if (incoming.length > this.INCOMING_BUFFER_LENGTH) {
this.growIncomingBuffer(incoming.length);
}
// We can let the typed arrays do the copying if the incoming data won't
// wrap around the edges of the circular buffer.
let remaining = this.INCOMING_BUFFER_LENGTH - this.incomingWriteIndex;
if (remaining >= incoming.length) {
this.incomingBytes.set(incoming, this.incomingWriteIndex);
} else {
// The incoming data would wrap around it.
let head = incoming.subarray(0, remaining);
let tail = incoming.subarray(remaining);
this.incomingBytes.set(head, this.incomingWriteIndex);
this.incomingBytes.set(tail, 0);
}
this.incomingWriteIndex = (this.incomingWriteIndex + incoming.length) %
this.INCOMING_BUFFER_LENGTH;
},
/**
* Process incoming data.
*
* @param incoming
* Uint8Array containing the incoming data.
*/
processIncoming: function processIncoming(incoming) {
if (DEBUG) {
debug("Received " + incoming.length + " bytes.");
debug("Already read " + this.readIncoming);
}
this.writeToIncoming(incoming);
this.readIncoming += incoming.length;
while (true) {
if (!this.currentParcelSize) {
// We're expecting a new parcel.
if (this.readIncoming < PARCEL_SIZE_SIZE) {
// We don't know how big the next parcel is going to be, need more
// data.
if (DEBUG) debug("Next parcel size unknown, going to sleep.");
return;
}
this.currentParcelSize = this.readParcelSize();
if (DEBUG) debug("New incoming parcel of size " +
this.currentParcelSize);
// The size itself is not included in the size.
this.readIncoming -= PARCEL_SIZE_SIZE;
}
if (this.readIncoming < this.currentParcelSize) {
// We haven't read enough yet in order to be able to process a parcel.
if (DEBUG) debug("Read " + this.readIncoming + ", but parcel size is "
+ this.currentParcelSize + ". Going to sleep.");
return;
}
// Alright, we have enough data to process at least one whole parcel.
// Let's do that.
let expectedAfterIndex = (this.incomingReadIndex + this.currentParcelSize)
% this.INCOMING_BUFFER_LENGTH;
if (DEBUG) {
let parcel;
if (expectedAfterIndex < this.incomingReadIndex) {
let head = this.incomingBytes.subarray(this.incomingReadIndex);
let tail = this.incomingBytes.subarray(0, expectedAfterIndex);
parcel = Array.slice(head).concat(Array.slice(tail));
} else {
parcel = Array.slice(this.incomingBytes.subarray(
this.incomingReadIndex, expectedAfterIndex));
}
debug("Parcel (size " + this.currentParcelSize + "): " + parcel);
}
if (DEBUG) debug("We have at least one complete parcel.");
try {
this.processParcel();
} catch (ex) {
if (DEBUG) debug("Parcel handling threw " + ex + "\n" + ex.stack);
}
// Ensure that the whole parcel was consumed.
if (this.incomingReadIndex != expectedAfterIndex) {
if (DEBUG) {
debug("Parcel handler didn't consume whole parcel, " +
Math.abs(expectedAfterIndex - this.incomingReadIndex) +
" bytes left over");
}
this.incomingReadIndex = expectedAfterIndex;
}
this.readIncoming -= this.currentParcelSize;
this.currentParcelSize = 0;
}
},
/**
* Process one parcel.
*/
processParcel: function processParcel() {
let response_type = this.readUint32();
let length = this.readIncoming - UINT32_SIZE;
let request_type;
if (response_type == RESPONSE_TYPE_SOLICITED) {
let token = this.readUint32();
let error = this.readUint32();
length -= 2 * UINT32_SIZE;
request_type = this.tokenRequestMap[token];
if (error) {
//TODO
debug("Received error " + error + " for solicited parcel type " +
request_type);
return;
}
debug("Solicited response for request type " + request_type +
", token " + token);
delete this.tokenRequestMap[token];
this.lastSolicitedToken = token;
} else if (response_type == RESPONSE_TYPE_UNSOLICITED) {
request_type = this.readUint32();
length -= UINT32_SIZE;
debug("Unsolicited response for request type " + request_type);
} else {
debug("Unknown response type: " + response_type);
return;
}
RIL.handleParcel(request_type, length);
},
/**
* Start a new outgoing parcel.
*
* @param type
* Integer specifying the request type.
*/
newParcel: function newParcel(type) {
// We're going to leave room for the parcel size at the beginning.
this.outgoingIndex = PARCEL_SIZE_SIZE;
this.writeUint32(type);
let token = this.token;
this.writeUint32(token);
this.tokenRequestMap[token] = type;
this.token++;
return token;
},
/**
* Communication with the RIL IPC thread.
*/
sendParcel: function sendParcel() {
// Compute the size of the parcel and write it to the front of the parcel
// where we left room for it. Note that he parcel size does not include
// the size itself.
let parcelSize = this.outgoingIndex - PARCEL_SIZE_SIZE;
this.writeParcelSize(parcelSize);
// This assumes that postRILMessage will make a copy of the ArrayBufferView
// right away!
let parcel = this.outgoingBytes.subarray(0, this.outgoingIndex);
debug("Outgoing parcel: " + Array.slice(parcel));
postRILMessage(parcel);
this.outgoingIndex = PARCEL_SIZE_SIZE;
},
simpleRequest: function simpleRequest(type) {
this.newParcel(type);
this.sendParcel();
}
};
/**
* Provide a high-level API representing the RIL's capabilities. This is
* where parcels are sent and received from and translated into API calls.
* For the most part, this object is pretty boring as it simply translates
* between method calls and RIL parcels. Somebody's gotta do the job...
*/
let RIL = {
/**
* Retrieve the ICC's status.
*
* Response will call Phone.onICCStatus().
*/
getICCStatus: function getICCStatus() {
Buf.simpleRequest(REQUEST_GET_SIM_STATUS);
},
/**
* Enter a PIN to unlock the ICC.
*
* @param pin
* String containing the PIN.
*
* Response will call Phone.onEnterICCPIN().
*/
enterICCPIN: function enterICCPIN(pin) {
Buf.newParcel(REQUEST_ENTER_SIM_PIN);
Buf.writeUint32(1);
Buf.writeString(pin);
Buf.sendParcel();
},
/**
* Change the current ICC PIN number
*
* @param oldPin
* String containing the old PIN value
* @param newPin
* String containing the new PIN value
*
* Response will call Phone.onChangeICCPIN().
*/
changeICCPIN: function changeICCPIN(oldPin, newPin) {
Buf.newParcel(REQUEST_CHANGE_SIM_PIN);
Buf.writeUint32(2);
Buf.writeString(oldPin);
Buf.writeString(newPin);
Buf.sendParcel();
},
/**
* Supplies SIM PUK and a new PIN to unlock the ICC
*
* @param puk
* String containing the PUK value.
* @param newPin
* String containing the new PIN value.
*
* Response will call Phone.onEnterICCPUK().
*/
enterICCPUK: function enterICCPUK(puk, newPin) {
Buf.newParcel(REQUEST_ENTER_SIM_PUK);
Buf.writeUint32(2);
Buf.writeString(puk);
Buf.writeString(newPin);
Buf.sendParcel();
},
/**
* Request the phone's radio power to be switched on or off.
*
* @param on
* Boolean indicating the desired power state.
*/
setRadioPower: function setRadioPower(on) {
Buf.newParcel(REQUEST_RADIO_POWER);
Buf.writeUint32(1);
Buf.writeUint32(on ? 1 : 0);
Buf.sendParcel();
},
/**
* Set screen state.
*
* @param on
* Boolean indicating whether the screen should be on or off.
*/
setScreenState: function setScreenState(on) {
Buf.newParcel(REQUEST_SCREEN_STATE);
Buf.writeUint32(1);
Buf.writeUint32(on ? 1 : 0);
Buf.sendParcel();
},
getRegistrationState: function getRegistrationState() {
Buf.simpleRequest(REQUEST_REGISTRATION_STATE);
},
getGPRSRegistrationState: function getGPRSRegistrationState() {
Buf.simpleRequest(REQUEST_GPRS_REGISTRATION_STATE);
},
getOperator: function getOperator() {
Buf.simpleRequest(REQUEST_OPERATOR);
},
getNetworkSelectionMode: function getNetworkSelectionMode() {
Buf.simpleRequest(REQUEST_QUERY_NETWORK_SELECTION_MODE);
},
/**
* Get current calls.
*/
getCurrentCalls: function getCurrentCalls() {
Buf.simpleRequest(REQUEST_GET_CURRENT_CALLS);
},
/**
* Get the signal strength.
*/
getSignalStrength: function getSignalStrength() {
Buf.simpleRequest(REQUEST_SIGNAL_STRENGTH);
},
getIMEI: function getIMEI() {
Buf.simpleRequest(REQUEST_GET_IMEI);
},
getIMEISV: function getIMEISV() {
Buf.simpleRequest(REQUEST_GET_IMEISV);
},
getDeviceIdentity: function getDeviceIdentity() {
Buf.simpleRequest(REQUEST_GET_DEVICE_IDENTITY);
},
/**
* Dial the phone.
*
* @param address
* String containing the address (number) to dial.
* @param clirMode
* Integer doing something XXX TODO
* @param uusInfo
* Integer doing something XXX TODO
*/
dial: function dial(address, clirMode, uusInfo) {
let token = Buf.newParcel(REQUEST_DIAL);
Buf.writeString(address);
Buf.writeUint32(clirMode || 0);
Buf.writeUint32(uusInfo || 0);
// TODO Why do we need this extra 0? It was put it in to make this
// match the format of the binary message.
Buf.writeUint32(0);
Buf.sendParcel();
},
/**
* Hang up the phone.
*
* @param callIndex
* Call index (1-based) as reported by REQUEST_GET_CURRENT_CALLS.
*/
hangUp: function hangUp(callIndex) {
Buf.newParcel(REQUEST_HANGUP);
Buf.writeUint32(1);
Buf.writeUint32(callIndex);
Buf.sendParcel();
},
/**
* Mute or unmute the radio.
*
* @param mute
* Boolean to indicate whether to mute or unmute the radio.
*/
setMute: function setMute(mute) {
Buf.newParcel(REQUEST_SET_MUTE);
Buf.writeUint32(1);
Buf.writeUint32(mute ? 1 : 0);
Buf.sendParcel();
},
/**
* Answer an incoming call.
*/
answerCall: function answerCall() {
Buf.simpleRequest(REQUEST_ANSWER);
},
/**
* Reject an incoming call.
*/
rejectCall: function rejectCall() {
Buf.simpleRequest(REQUEST_UDUB);
},
/**
* Send an SMS.
*
* @param smscPDU
* String containing the SMSC PDU in hex format.
* @param address
* String containing the recipients address.
* @param body
* String containing the message body.
* @param dcs
* Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET
* constants.
* @param bodyLengthInOctets
* Byte length of the message body when encoded with the given DCS.
*/
sendSMS: function sendSMS(smscPDU, address, body, dcs, bodyLengthInOctets) {
let token = Buf.newParcel(REQUEST_SEND_SMS);
//TODO we want to map token to the input values so that on the
// response from the RIL device we know which SMS request was successful
// or not. Maybe we should build that functionality into newParcel() and
// handle it within tokenRequestMap[].
Buf.writeUint32(2);
Buf.writeString(smscPDU);
GsmPDUHelper.writeMessage(address, body, dcs, bodyLengthInOctets);
Buf.sendParcel();
},
/**
* Acknowledge the receipt and handling of an SMS.
*
* @param success
* Boolean indicating whether the message was successfuly handled.
* @param cause
* SMS_* constant indicating the reason for unsuccessful handling.
*/
acknowledgeSMS: function acknowledgeSMS(success, cause) {
let token = Buf.newParcel(REQUEST_SMS_ACKNOWLEDGE);
Buf.writeUint32(2);
Buf.writeUint32(success ? 1 : 0);
Buf.writeUint32(cause);
Buf.sendParcel();
},
/**
* Start a DTMF Tone.
*
* @param dtmfChar
* DTMF signal to send, 0-9, *, +
*/
startTone: function startTone(dtmfChar) {
Buf.newParcel(REQUEST_DTMF_START);
Buf.writeString(dtmfChar);
Buf.sendParcel();
},
stopTone: function stopTone() {
Buf.simpleRequest(REQUEST_DTMF_STOP);
},
sendTone: function sendTone(dtmfChar) {
Buf.newParcel(REQUEST_DTMF);
Buf.writeString(dtmfChar);
Buf.sendParcel();
},
/**
* Get the Short Message Service Center address.
*/
getSMSCAddress: function getSMSCAddress() {
Buf.simpleRequest(REQUEST_GET_SMSC_ADDRESS);
},
/**
* Set the Short Message Service Center address.
*
* @param smsc
* Short Message Service Center address in PDU format.
*/
setSMSCAddress: function setSMSCAddress(smsc) {
Buf.newParcel(REQUEST_SET_SMSC_ADDRESS);
Buf.writeString(smsc);
Buf.sendParcel();
},
/**
* Setup a data call.
*
* @param radioTech
* Integer to indicate radio technology.
* DATACALL_RADIOTECHONLOGY_CDMA => CDMA.
* DATACALL_RADIOTECHONLOGY_GSM => GSM.
* @param apn
* String containing the name of the APN to connect to.
* @param user
* String containing the username for the APN.
* @param passwd
* String containing the password for the APN.
* @param chappap
* Integer containing CHAP/PAP auth type.
* DATACALL_AUTH_NONE => PAP and CHAP is never performed.
* DATACALL_AUTH_PAP => PAP may be performed.
* DATACALL_AUTH_CHAP => CHAP may be performed.
* DATACALL_AUTH_PAP_OR_CHAP => PAP / CHAP may be performed.
* @param pdptype
* String containing PDP type to request. ("IP", "IPV6", ...)
*/
setupDataCall: function (radioTech, apn, user, passwd, chappap, pdptype) {
let token = Buf.newParcel(REQUEST_SETUP_DATA_CALL);
Buf.writeUint32(7);
Buf.writeString(radioTech.toString());
Buf.writeString(DATACALL_PROFILE_DEFAULT.toString());
Buf.writeString(apn);
Buf.writeString(user);
Buf.writeString(passwd);
Buf.writeString(chappap.toString());
Buf.writeString(pdptype);
Buf.sendParcel();
return token;
},
/**
* Deactivate a data call.
*
* @param cid
* String containing CID.
* @param reason
* One of DATACALL_DEACTIVATE_* constants.
*/
deactivateDataCall: function (cid, reason) {
let token = Buf.newParcel(REQUEST_DEACTIVATE_DATA_CALL);
Buf.writeUint32(2);
Buf.writeString(cid);
Buf.writeString(reason);
Buf.sendParcel();
return token;
},
/**
* Get a list of data calls.
*/
getDataCallList: function getDataCallList() {
Buf.simpleRequest(REQUEST_DATA_CALL_LIST);
},
/**
* Get failure casue code for the most recently failed PDP context.
*/
getFailCauseCode: function getFailCauseCode() {
Buf.simpleRequest(REQUEST_LAST_CALL_FAIL_CAUSE);
},
/**
* Handle incoming requests from the RIL. We find the method that
* corresponds to the request type. Incidentally, the request type
* _is_ the method name, so that's easy.
*/
handleParcel: function handleParcel(request_type, length) {
let method = this[request_type];
if (typeof method == "function") {
debug("Handling parcel as " + method.name);
method.call(this, length);
}
}
};
RIL[REQUEST_GET_SIM_STATUS] = function REQUEST_GET_SIM_STATUS() {
let iccStatus = {
cardState: Buf.readUint32(), // CARD_STATE_*
universalPINState: Buf.readUint32(), // PINSTATE_*
gsmUmtsSubscriptionAppIndex: Buf.readUint32(),
setCdmaSubscriptionAppIndex: Buf.readUint32(),
apps: []
};
let apps_length = Buf.readUint32();
if (apps_length > CARD_MAX_APPS) {
apps_length = CARD_MAX_APPS;
}
for (let i = 0 ; i < apps_length ; i++) {
iccStatus.apps.push({
app_type: Buf.readUint32(), // APPTYPE_*
app_state: Buf.readUint32(), // CARD_APP_STATE_*
perso_substate: Buf.readUint32(), // PERSOSUBSTATE_*
aid: Buf.readString(),
app_label: Buf.readString(),
pin1_replaced: Buf.readUint32(),
pin1: Buf.readUint32(),
pin2: Buf.readUint32()
});
}
Phone.onICCStatus(iccStatus);
};
RIL[REQUEST_ENTER_SIM_PIN] = function REQUEST_ENTER_SIM_PIN() {
let response = Buf.readUint32List();
Phone.onEnterICCPIN(response);
};
RIL[REQUEST_ENTER_SIM_PUK] = function REQUEST_ENTER_SIM_PUK() {
let response = Buf.readUint32List();
Phone.onEnterICCPUK(response);
};
RIL[REQUEST_ENTER_SIM_PIN2] = null;
RIL[REQUEST_ENTER_SIM_PUK2] = null;
RIL[REQUEST_CHANGE_SIM_PIN] = function REQUEST_CHANGE_SIM_PIN() {
Phone.onChangeICCPIN();
};
RIL[REQUEST_CHANGE_SIM_PIN2] = null;
RIL[REQUEST_ENTER_NETWORK_DEPERSONALIZATION] = null;
RIL[REQUEST_GET_CURRENT_CALLS] = function REQUEST_GET_CURRENT_CALLS(length) {
let calls_length = 0;
// The RIL won't even send us the length integer if there are no active calls.
// So only read this integer if the parcel actually has it.
if (length) {
calls_length = Buf.readUint32();
}
if (!calls_length) {
Phone.onCurrentCalls(null);
return;
}
let calls = {};
for (let i = 0; i < calls_length; i++) {
let call = {
state: Buf.readUint32(), // CALL_STATE_*
callIndex: Buf.readUint32(), // GSM index (1-based)
toa: Buf.readUint32(),
isMpty: Boolean(Buf.readUint32()),
isMT: Boolean(Buf.readUint32()),
als: Buf.readUint32(),
isVoice: Boolean(Buf.readUint32()),
isVoicePrivacy: Boolean(Buf.readUint32()),
somethingOrOther: Buf.readUint32(), //XXX TODO whatziz? not in ril.h, but it's in the output...
number: Buf.readString(), //TODO munge with TOA
numberPresentation: Buf.readUint32(), // CALL_PRESENTATION_*
name: Buf.readString(),
namePresentation: Buf.readUint32(),
uusInfo: null
};
let uusInfoPresent = Buf.readUint32();
if (uusInfoPresent == 1) {
call.uusInfo = {
type: Buf.readUint32(),
dcs: Buf.readUint32(),
userData: null //XXX TODO byte array?!?
};
}
calls[call.callIndex] = call;
}
Phone.onCurrentCalls(calls);
};
RIL[REQUEST_DIAL] = function REQUEST_DIAL(length) {
Phone.onDial();
};
RIL[REQUEST_GET_IMSI] = function REQUEST_GET_IMSI(length) {
let imsi = Buf.readString();
Phone.onIMSI(imsi);
};
RIL[REQUEST_HANGUP] = function REQUEST_HANGUP(length) {
Phone.onHangUp();
};
RIL[REQUEST_HANGUP_WAITING_OR_BACKGROUND] = null;
RIL[REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND] = null;
RIL[REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE] = null;
RIL[REQUEST_SWITCH_HOLDING_AND_ACTIVE] = null;
RIL[REQUEST_CONFERENCE] = null;
RIL[REQUEST_UDUB] = function REQUEST_UDUB(length) {
Phone.onRejectCall();
};
RIL[REQUEST_LAST_CALL_FAIL_CAUSE] = null;
RIL[REQUEST_SIGNAL_STRENGTH] = function REQUEST_SIGNAL_STRENGTH() {
let strength = {
// Valid values are (0-31, 99) as defined in TS 27.007 8.5.
// For some reason we're getting int32s like [99, 4, 0, 0] and [99, 3, 0, 0]
// here, so let's strip of anything beyond the first byte.
gsmSignalStrength: Buf.readUint32() & 0xff,
// GSM bit error rate (0-7, 99) as defined in TS 27.007 8.5.
gsmBitErrorRate: Buf.readUint32(),
// The CDMA RSSI value.
cdmaDBM: Buf.readUint32(),
// The CDMA EC/IO.
cdmaECIO: Buf.readUint32(),
// The EVDO RSSI value.
evdoDBM: Buf.readUint32(),
// The EVDO EC/IO.
evdoECIO: Buf.readUint32(),
// Valid values are 0-8. 8 is the highest signal to noise ratio
evdoSNR: Buf.readUint32()
};
Phone.onSignalStrength(strength);
};
RIL[REQUEST_REGISTRATION_STATE] = function REQUEST_REGISTRATION_STATE(length) {
let state = Buf.readStringList();
Phone.onRegistrationState(state);
};
RIL[REQUEST_GPRS_REGISTRATION_STATE] = function REQUEST_GPRS_REGISTRATION_STATE(length) {
let state = Buf.readStringList();
Phone.onGPRSRegistrationState(state);
};
RIL[REQUEST_OPERATOR] = function REQUEST_OPERATOR(length) {
let operator = Buf.readStringList();
Phone.onOperator(operator);
};
RIL[REQUEST_RADIO_POWER] = null;
RIL[REQUEST_DTMF] = function REQUEST_DTMF() {
Phone.onSendTone();
};
RIL[REQUEST_SEND_SMS] = function REQUEST_SEND_SMS() {
let messageRef = Buf.readUint32();
let ackPDU = Buf.readString();
let errorCode = Buf.readUint32();
Phone.onSendSMS(messageRef, ackPDU, errorCode);
};
RIL[REQUEST_SEND_SMS_EXPECT_MORE] = null;
RIL[REQUEST_SETUP_DATA_CALL] = function REQUEST_SETUP_DATA_CALL() {
let [cid, ifname, ipaddr, dns, gw] = Buf.readStringList();
Phone.onSetupDataCall(Buf.lastSolicitedToken, cid, ifname, ipaddr, dns, gw);
};
RIL[REQUEST_SIM_IO] = null;
RIL[REQUEST_SEND_USSD] = null;
RIL[REQUEST_CANCEL_USSD] = null;
RIL[REQUEST_GET_CLIR] = null;
RIL[REQUEST_SET_CLIR] = null;
RIL[REQUEST_QUERY_CALL_FORWARD_STATUS] = null;
RIL[REQUEST_SET_CALL_FORWARD] = null;
RIL[REQUEST_QUERY_CALL_WAITING] = null;
RIL[REQUEST_SET_CALL_WAITING] = null;
RIL[REQUEST_SMS_ACKNOWLEDGE] = function REQUEST_SMS_ACKNOWLEDGE() {
Phone.onAcknowledgeSMS();
};
RIL[REQUEST_GET_IMEI] = function REQUEST_GET_IMEI() {
let imei = Buf.readString();
Phone.onIMEI(imei);
};
RIL[REQUEST_GET_IMEISV] = function REQUEST_GET_IMEISV() {
let imeiSV = Buf.readString();
Phone.onIMEISV(imeiSV);
};
RIL[REQUEST_ANSWER] = function REQUEST_ANSWER(length) {
Phone.onAnswerCall();
};
RIL[REQUEST_DEACTIVATE_DATA_CALL] = function REQUEST_DEACTIVATE_DATA_CALL() {
Phone.onDeactivateDataCall(Buf.lastSolicitedToken);
};
RIL[REQUEST_QUERY_FACILITY_LOCK] = null;
RIL[REQUEST_SET_FACILITY_LOCK] = null;
RIL[REQUEST_CHANGE_BARRING_PASSWORD] = null;
RIL[REQUEST_QUERY_NETWORK_SELECTION_MODE] = function REQUEST_QUERY_NETWORK_SELECTION_MODE() {
let response = Buf.readUint32List();
Phone.onNetworkSelectionMode(response);
};
RIL[REQUEST_SET_NETWORK_SELECTION_AUTOMATIC] = null;
RIL[REQUEST_SET_NETWORK_SELECTION_MANUAL] = null;
RIL[REQUEST_QUERY_AVAILABLE_NETWORKS] = null;
RIL[REQUEST_DTMF_START] = function REQUEST_DTMF_START() {
Phone.onStartTone();
};
RIL[REQUEST_DTMF_STOP] = function REQUEST_DTMF_STOP() {
Phone.onStopTone();
};
RIL[REQUEST_BASEBAND_VERSION] = function REQUEST_BASEBAND_VERSION() {
let version = Buf.readString();
Phone.onBasebandVersion(version);
};
RIL[REQUEST_SEPARATE_CONNECTION] = null;
RIL[REQUEST_SET_MUTE] = function REQUEST_SET_MUTE(length) {
Phone.onSetMute();
};
RIL[REQUEST_GET_MUTE] = null;
RIL[REQUEST_QUERY_CLIP] = null;
RIL[REQUEST_LAST_DATA_CALL_FAIL_CAUSE] = null;
RIL[REQUEST_DATA_CALL_LIST] = function REQUEST_DATA_CALL_LIST(length) {
let datacalls = [];
if (!length) {
return;
}
let num = Buf.readUint32();
for (let i = 0; i < num; i++) {
datacalls.push({
cid: Buf.readUint32().toString(),
active: Buf.readUint32(),
type: Buf.readString(),
apn: Buf.readString(),
address: Buf.readString()
});
}
Phone.onDataCallList(datacalls);
};
RIL[REQUEST_RESET_RADIO] = null;
RIL[REQUEST_OEM_HOOK_RAW] = null;
RIL[REQUEST_OEM_HOOK_STRINGS] = null;
RIL[REQUEST_SCREEN_STATE] = null;
RIL[REQUEST_SET_SUPP_SVC_NOTIFICATION] = null;
RIL[REQUEST_WRITE_SMS_TO_SIM] = null;
RIL[REQUEST_DELETE_SMS_ON_SIM] = null;
RIL[REQUEST_SET_BAND_MODE] = null;
RIL[REQUEST_QUERY_AVAILABLE_BAND_MODE] = null;
RIL[REQUEST_STK_GET_PROFILE] = null;
RIL[REQUEST_STK_SET_PROFILE] = null;
RIL[REQUEST_STK_SEND_ENVELOPE_COMMAND] = null;
RIL[REQUEST_STK_SEND_TERMINAL_RESPONSE] = null;
RIL[REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM] = null;
RIL[REQUEST_EXPLICIT_CALL_TRANSFER] = null;
RIL[REQUEST_SET_PREFERRED_NETWORK_TYPE] = null;
RIL[REQUEST_GET_PREFERRED_NETWORK_TYPE] = null;
RIL[REQUEST_GET_NEIGHBORING_CELL_IDS] = null;
RIL[REQUEST_SET_LOCATION_UPDATES] = null;
RIL[REQUEST_CDMA_SET_SUBSCRIPTION] = null;
RIL[REQUEST_CDMA_SET_ROAMING_PREFERENCE] = null;
RIL[REQUEST_CDMA_QUERY_ROAMING_PREFERENCE] = null;
RIL[REQUEST_SET_TTY_MODE] = null;
RIL[REQUEST_QUERY_TTY_MODE] = null;
RIL[REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE] = null;
RIL[REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE] = null;
RIL[REQUEST_CDMA_FLASH] = null;
RIL[REQUEST_CDMA_BURST_DTMF] = null;
RIL[REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY] = null;
RIL[REQUEST_CDMA_SEND_SMS] = null;
RIL[REQUEST_CDMA_SMS_ACKNOWLEDGE] = null;
RIL[REQUEST_GSM_GET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_GSM_SET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_GSM_SMS_BROADCAST_ACTIVATION] = null;
RIL[REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG] = null;
RIL[REQUEST_CDMA_SMS_BROADCAST_ACTIVATION] = null;
RIL[REQUEST_CDMA_SUBSCRIPTION] = null;
RIL[REQUEST_CDMA_WRITE_SMS_TO_RUIM] = null;
RIL[REQUEST_CDMA_DELETE_SMS_ON_RUIM] = null;
RIL[REQUEST_DEVICE_IDENTITY] = null;
RIL[REQUEST_EXIT_EMERGENCY_CALLBACK_MODE] = null;
RIL[REQUEST_GET_SMSC_ADDRESS] = function REQUEST_GET_SMSC_ADDRESS() {
let smsc = Buf.readString();
Phone.onGetSMSCAddress(smsc);
};
RIL[REQUEST_SET_SMSC_ADDRESS] = function REQUEST_SET_SMSC_ADDRESS() {
Phone.onSetSMSCAddress();
};
RIL[REQUEST_REPORT_SMS_MEMORY_STATUS] = null;
RIL[REQUEST_REPORT_STK_SERVICE_IS_RUNNING] = null;
RIL[UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED] = function UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED() {
let newState = Buf.readUint32();
Phone.onRadioStateChanged(newState);
};
RIL[UNSOLICITED_RESPONSE_CALL_STATE_CHANGED] = function UNSOLICITED_RESPONSE_CALL_STATE_CHANGED() {
Phone.onCallStateChanged();
};
RIL[UNSOLICITED_RESPONSE_NETWORK_STATE_CHANGED] = function UNSOLICITED_RESPONSE_NETWORK_STATE_CHANGED() {
Phone.onNetworkStateChanged();
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS] = function UNSOLICITED_RESPONSE_NEW_SMS(length) {
Phone.onNewSMS(length);
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT] = function UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT(length) {
let info = Buf.readStringList();
Phone.onNewSMSStatusReport(info);
};
RIL[UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM] = function UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM(length) {
let info = Buf.readUint32List();
Phone.onNewSMSOnSIM(message);
};
RIL[UNSOLICITED_ON_USSD] = null;
RIL[UNSOLICITED_ON_USSD_REQUEST] = null;
RIL[UNSOLICITED_NITZ_TIME_RECEIVED] = null;
RIL[UNSOLICITED_SIGNAL_STRENGTH] = function UNSOLICITED_SIGNAL_STRENGTH() {
this[REQUEST_SIGNAL_STRENGTH]();
};
RIL[UNSOLICITED_DATA_CALL_LIST_CHANGED] = null;
RIL[UNSOLICITED_SUPP_SVC_NOTIFICATION] = null;
RIL[UNSOLICITED_STK_SESSION_END] = null;
RIL[UNSOLICITED_STK_PROACTIVE_COMMAND] = null;
RIL[UNSOLICITED_STK_EVENT_NOTIFY] = null;
RIL[UNSOLICITED_STK_CALL_SETUP] = null;
RIL[UNSOLICITED_SIM_SMS_STORAGE_FULL] = null;
RIL[UNSOLICITED_SIM_REFRESH] = null;
RIL[UNSOLICITED_CALL_RING] = function UNSOLICITED_CALL_RING() {
let info;
let isCDMA = false; //XXX TODO hard-code this for now
if (isCDMA) {
info = {
isPresent: Buf.readUint32(),
signalType: Buf.readUint32(),
alertPitch: Buf.readUint32(),
signal: Buf.readUint32()
};
}
Phone.onCallRing(info);
};
RIL[UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED] = function UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED() {
Phone.onICCStatusChanged();
};
RIL[UNSOLICITED_RESPONSE_CDMA_NEW_SMS] = null;
RIL[UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS] = null;
RIL[UNSOLICITED_CDMA_RUIM_SMS_STORAGE_FULL] = null;
RIL[UNSOLICITED_RESTRICTED_STATE_CHANGED] = null;
RIL[UNSOLICITED_ENTER_EMERGENCY_CALLBACK_MODE] = null;
RIL[UNSOLICITED_CDMA_CALL_WAITING] = null;
RIL[UNSOLICITED_CDMA_OTA_PROVISION_STATUS] = null;
RIL[UNSOLICITED_CDMA_INFO_REC] = null;
RIL[UNSOLICITED_OEM_HOOK_RAW] = null;
RIL[UNSOLICITED_RINGBACK_TONE] = null;
RIL[UNSOLICITED_RESEND_INCALL_MUTE] = null;
/**
* This object represents the phone's state and functionality. It is
* essentially a state machine that's being acted upon from RIL and the
* mainthread via postMessage communication.
*/
let Phone = {
//XXX TODO beware, this is just demo code. It's still missing
// communication with the UI thread.
/**
* One of the RADIO_STATE_* constants.
*/
radioState: RADIO_STATE_UNAVAILABLE,
/**
* Strings
*/
IMEI: null,
IMEISV: null,
IMSI: null,
SMSC: null,
/**
* List of strings identifying the network operator.
*/
operator: null,
/**
* String containing the baseband version.
*/
basebandVersion: null,
/**
* Network selection mode. 0 for automatic, 1 for manual selection.
*/
networkSelectionMode: null,
/**
* ICC status. Keeps a reference of the data response to the
* getICCStatus request.
*/
iccStatus: null,
/**
* Card state
*/
cardState: null,
/**
* Active calls
*/
currentCalls: {},
/**
* Mute or unmute the radio.
*/
_muted: true,
/**
* Existing data calls.
*/
currentDataCalls: {},
/**
* Tracks active requests to the RIL concerning 3G data calls.
*/
activeDataRequests: {},
get muted() {
return this._muted;
},
set muted(val) {
val = Boolean(val);
if (this._muted != val) {
RIL.setMute(val);
this._muted = val;
}
},
_handleChangedCallState: function _handleChangedCallState(changedCall) {
let message = {type: "callStateChange",
call: {callIndex: changedCall.callIndex,
state: changedCall.state,
number: changedCall.number,
name: changedCall.name}};
this.sendDOMMessage(message);
},
_handleDisconnectedCall: function _handleDisconnectedCall(disconnectedCall) {
let message = {type: "callDisconnected",
call: {callIndex: disconnectedCall.callIndex}};
this.sendDOMMessage(message);
},
/**
* Handlers for messages from the RIL. They all begin with on* and are called
* from RIL object.
*/
onRadioStateChanged: function onRadioStateChanged(newState) {
debug("Radio state changed from " + this.radioState + " to " + newState);
if (this.radioState == newState) {
// No change in state, return.
return;
}
let gsm = newState == RADIO_STATE_SIM_NOT_READY ||
newState == RADIO_STATE_SIM_LOCKED_OR_ABSENT ||
newState == RADIO_STATE_SIM_READY;
let cdma = newState == RADIO_STATE_RUIM_NOT_READY ||
newState == RADIO_STATE_RUIM_READY ||
newState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT ||
newState == RADIO_STATE_NV_NOT_READY ||
newState == RADIO_STATE_NV_READY;
// Figure out state transitions and send out more RIL requests as necessary
// as well as events to the main thread.
if (this.radioState == RADIO_STATE_UNAVAILABLE &&
newState != RADIO_STATE_UNAVAILABLE) {
// The radio became available, let's get its info.
if (gsm) {
RIL.getIMEI();
RIL.getIMEISV();
}
if (cdma) {
RIL.getDeviceIdentity();
}
Buf.simpleRequest(REQUEST_BASEBAND_VERSION);
RIL.setScreenState(true);
this.sendDOMMessage({
type: "radiostatechange",
radioState: (newState == RADIO_STATE_OFF) ?
DOM_RADIOSTATE_OFF : DOM_RADIOSTATE_READY
});
//XXX TODO For now, just turn the radio on if it's off. for the real
// deal we probably want to do the opposite: start with a known state
// when we boot up and let the UI layer control the radio power.
if (newState == RADIO_STATE_OFF) {
RIL.setRadioPower(true);
}
}
if (newState == RADIO_STATE_UNAVAILABLE) {
// The radio is no longer available, we need to deal with any
// remaining pending requests.
//TODO do that
this.sendDOMMessage({type: "radiostatechange",
radioState: DOM_RADIOSTATE_UNAVAILABLE});
}
if (newState == RADIO_STATE_SIM_READY ||
newState == RADIO_STATE_RUIM_READY ||
newState == RADIO_STATE_NV_READY) {
// The ICC has become available. Get all the things.
RIL.getICCStatus();
this.requestNetworkInfo();
RIL.getSignalStrength();
RIL.getSMSCAddress();
this.sendDOMMessage({type: "cardstatechange",
cardState: DOM_CARDSTATE_READY});
}
if (newState == RADIO_STATE_SIM_LOCKED_OR_ABSENT ||
newState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT) {
RIL.getICCStatus();
this.sendDOMMessage({type: "cardstatechange",
cardState: DOM_CARDSTATE_UNAVAILABLE});
}
let wasOn = this.radioState != RADIO_STATE_OFF &&
this.radioState != RADIO_STATE_UNAVAILABLE;
let isOn = newState != RADIO_STATE_OFF &&
newState != RADIO_STATE_UNAVAILABLE;
if (!wasOn && isOn) {
//TODO
}
if (wasOn && !isOn) {
//TODO
}
this.radioState = newState;
},
onCurrentCalls: function onCurrentCalls(newCalls) {
// Go through the calls we currently have on file and see if any of them
// changed state. Remove them from the newCalls map as we deal with them
// so that only new calls remain in the map after we're done.
for each (let currentCall in this.currentCalls) {
let newCall;
if (newCalls) {
newCall = newCalls[currentCall.callIndex];
delete newCalls[currentCall.callIndex];
}
if (newCall) {
// Call is still valid.
if (newCall.state != currentCall.state) {
// State has changed.
currentCall.state = newCall.state;
this._handleChangedCallState(currentCall);
}
}
else {
// Call is no longer reported by the radio. Remove from our map and
// send disconnected state change.
delete this.currentCalls[currentCall.callIndex];
this._handleDisconnectedCall(currentCall);
}
}
// Go through any remaining calls that are new to us.
for each (let newCall in newCalls) {
if (newCall.isVoice) {
// Format international numbers appropriately.
if (newCall.number &&
newCall.toa == TOA_INTERNATIONAL &&
newCall.number[0] != "+") {
newCall.number = "+" + newCall.number;
}
// Add to our map.
this.currentCalls[newCall.callIndex] = newCall;
this._handleChangedCallState(newCall);
}
}
// Update our mute status. If there is anything in our currentCalls map then
// we know it's a voice call and we should leave audio on.
this.muted = Object.getOwnPropertyNames(this.currentCalls).length == 0;
},
onCallStateChanged: function onCallStateChanged() {
RIL.getCurrentCalls();
},
onCallRing: function onCallRing(info) {
// For now we don't need to do anything here because we'll also get a
// call state changed notification.
},
onNetworkStateChanged: function onNetworkStateChanged() {
debug("Network state changed, re-requesting phone state.");
this.requestNetworkInfo();
},
onICCStatus: function onICCStatus(iccStatus) {
if (DEBUG) {
debug("iccStatus: " + JSON.stringify(iccStatus));
}
this.iccStatus = iccStatus;
if ((!iccStatus) || (iccStatus.cardState == CARD_STATE_ABSENT)) {
if (DEBUG) debug("ICC absent");
if (this.cardState == DOM_CARDSTATE_ABSENT) {
return;
}
this.cardState = DOM_CARDSTATE_ABSENT;
this.sendDOMMessage({type: "cardstatechange",
cardState: this.cardState});
return;
}
if ((this.radioState == RADIO_STATE_OFF) ||
(this.radioState == RADIO_STATE_UNAVAILABLE) ||
(this.radioState == RADIO_STATE_SIM_NOT_READY) ||
(this.radioState == RADIO_STATE_RUIM_NOT_READY) ||
(this.radioState == RADIO_STATE_NV_NOT_READY) ||
(this.radioState == RADIO_STATE_NV_READY)) {
if (DEBUG) debug("ICC not ready");
if (this.cardState == DOM_CARDSTATE_NOT_READY) {
return;
}
this.cardState = DOM_CARDSTATE_NOT_READY;
this.sendDOMMessage({type: "cardstatechange",
cardState: this.cardState});
return;
}
if ((this.radioState == RADIO_STATE_SIM_LOCKED_OR_ABSENT) ||
(this.radioState == RADIO_STATE_SIM_READY) ||
(this.radioState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT) ||
(this.radioState == RADIO_STATE_RUIM_READY)) {
let app = iccStatus.apps[iccStatus.gsmUmtsSubscriptionAppIndex];
if (!app) {
if (DEBUG) {
debug("Subscription application is not present in iccStatus.");
}
if (this.cardState == DOM_CARDSTATE_ABSENT) {
return;
}
this.cardState = DOM_CARDSTATE_ABSENT;
this.sendDOMMessage({type: "cardstatechange",
cardState: this.cardState});
return;
}
let newCardState;
switch (app.app_state) {
case CARD_APP_STATE_PIN:
newCardState = DOM_CARDSTATE_PIN_REQUIRED;
break;
case CARD_APP_STATE_PUK:
newCardState = DOM_CARDSTATE_PUK_REQUIRED;
break;
case CARD_APP_STATE_SUBSCRIPTION_PERSO:
newCardState = DOM_CARDSTATE_NETWORK_LOCKED;
break;
case CARD_APP_STATE_READY:
newCardState = DOM_CARDSTATE_READY;
break;
case CARD_APP_STATE_UNKNOWN:
case CARD_APP_STATE_DETECTED:
default:
newCardState = DOM_CARDSTATE_NOT_READY;
}
if (this.cardState == newCardState) {
return;
}
this.cardState = newCardState;
this.sendDOMMessage({type: "cardstatechange",
cardState: this.cardState});
}
},
onICCStatusChanged: function onICCStatusChanged() {
RIL.getICCStatus();
},
onEnterICCPIN: function onEnterICCPIN(response) {
if (DEBUG) debug("REQUEST_ENTER_SIM_PIN returned " + response);
//TODO
},
onChangeICCPIN: function onChangeICCPIN() {
if (DEBUG) debug("REQUEST_CHANGE_SIM_PIN");
//TODO
},
onEnterICCPUK: function onEnterICCPUK(response) {
if (DEBUG) debug("REQUEST_ENTER_SIM_PUK returned " + response);
//TODO
},
onNetworkSelectionMode: function onNetworkSelectionMode(mode) {
this.networkSelectionMode = mode[0];
},
onBasebandVersion: function onBasebandVersion(version) {
this.basebandVersion = version;
},
onIMSI: function onIMSI(imsi) {
this.IMSI = imsi;
},
onIMEI: function onIMEI(imei) {
this.IMEI = imei;
},
onIMEISV: function onIMEISV(imeiSV) {
this.IMEISV = imeiSV;
},
onRegistrationState: function onRegistrationState(newState) {
this.registrationState = newState;
},
onGPRSRegistrationState: function onGPRSRegistrationState(newState) {
this.gprsRegistrationState = newState;
},
onOperator: function onOperator(operator) {
if (operator.length < 3) {
if (DEBUG) debug("Expected at least 3 strings for operator.");
}
if (!this.operator ||
this.operator.alphaLong != operator[0] ||
this.operator.alphaShort != operator[1] ||
this.operator.numeric != operator[2]) {
this.operator = {alphaLong: operator[0],
alphaShort: operator[1],
numeric: operator[2]};
this.sendDOMMessage({type: "operatorchange",
operator: this.operator});
}
},
onSignalStrength: function onSignalStrength(strength) {
debug("Signal strength " + JSON.stringify(strength));
this.sendDOMMessage({type: "signalstrengthchange",
signalStrength: strength});
},
onDial: function onDial() {
},
onHangUp: function onHangUp() {
},
onAnswerCall: function onAnswerCall() {
},
onRejectCall: function onRejectCall() {
},
onSetMute: function onSetMute() {
},
onSendTone: function onSendTone() {
},
onStartTone: function onStartTone() {
},
onStopTone: function onStopTone() {
},
onGetSMSCAddress: function onGetSMSCAddress(smsc) {
this.SMSC = smsc;
},
onSetSMSCAddress: function onSetSMSCAddress() {
},
onSendSMS: function onSendSMS(messageRef, ackPDU, errorCode) {
//TODO
},
onNewSMS: function onNewSMS(payloadLength) {
if (!payloadLength) {
if (DEBUG) debug("Received empty SMS!");
//TODO: should we acknowledge the SMS here? maybe only after multiple
//failures.
return;
}
// An SMS is a string, but we won't read it as such, so let's read the
// string length and then defer to PDU parsing helper.
let messageStringLength = Buf.readUint32();
if (DEBUG) debug("Got new SMS, length " + messageStringLength);
let message = GsmPDUHelper.readMessage();
if (DEBUG) debug(message);
// Read string delimiters. See Buf.readString().
let delimiter = Buf.readUint16();
if (!(messageStringLength & 1)) {
delimiter |= Buf.readUint16();
}
if (DEBUG) {
if (delimiter != 0) {
debug("Something's wrong, found string delimiter: " + delimiter);
}
}
message.type = "sms-received";
this.sendDOMMessage(message);
//TODO: this might be a lie? do we want to wait for the mainthread to
// report back?
RIL.acknowledgeSMS(true, SMS_HANDLED);
},
onNewSMSStatusReport: function onNewSMSStatusReport(info) {
//TODO
},
onNewSMSOnSIM: function onNewSMSOnSIM(info) {
//TODO
},
onAcknowledgeSMS: function onAcknowledgeSMS() {
},
onSetupDataCall: function onSetupDataCall(token, cid, ifname, ipaddr,
dns, gw) {
let options = this.activeDataRequests[token];
delete this.activeDataRequests[token];
this.currentDataCalls[cid] = {
state: GECKO_DATACALL_STATE_CONNECTED,
cid: cid,
apn: options.apn,
ifname: ifname,
ipaddr: ipaddr,
dns: dns,
gw: gw,
};
this.sendDOMMessage({type: "datacallstatechange",
state: GECKO_DATACALL_STATE_CONNECTED,
cid: cid,
apn: options.apn,
ifname: ifname,
ipaddr: ipaddr,
dns: dns,
gateway: gw});
},
onDeactivateDataCall: function onDeactivateDataCall(token) {
let options = this.activeDataRequests[token];
delete this.activeDataRequests[token];
let cid = options.cid;
if (!(cid in this.currentDataCalls)) {
return;
}
let apn = this.currentDataCalls[cid].apn;
delete this.currentDataCalls[cid];
this.sendDOMMessage({type: "datacallstatechange",
state: GECKO_DATACALL_STATE_DISCONNECTED,
cid: cid,
apn: apn});
},
onDataCallList: function onDataCallList(datacalls) {
let currentDataCalls = this.currentDataCalls;
// Sync content of currentDataCalls and data call list.
for each (let datacall in datacalls) {
let {cid, apn} = datacall;
if (datacall.active != DATACALL_INACTIVE) {
// XXX: This should be followed up.
// datacall.active == DATACALL_ACTIVE_DOWN(1) for my device
if (!(cid in currentDataCalls)) {
let datacall = {state: GECKO_DATACALL_STATE_CONNECTED,
cid: cid,
apn: apn,
ipaddr: datacall.address};
currentDataCalls[cid] = datacall;
this.sendDOMMessage({type: "datacallstatechange",
state: GECKO_DATACALL_STATE_CONNECTED,
cid: cid,
apn: apn});
}
} else { // datacall.active == DATACALL_INACTIVE
if (cid in currentDataCalls) {
delete currentDataCalls[cid];
this.sendDOMMessage({type: "datacallstatechange",
state: GECKO_DATACALL_STATE_DISCONNECTED,
cid: cid,
apn: apn});
}
}
}
let datacall_list = [];
for each (let datacall in this.currentDataCalls) {
datacall_list.push(datacall);
}
this.sendDOMMessage({type: "datacalllist",
datacalls: datacall_list});
},
/**
* Outgoing requests to the RIL. These can be triggered from the
* main thread via messages that look like this:
*
* {type: "methodName",
* extra: "parameters",
* go: "here"}
*
* So if one of the following methods takes arguments, it takes only one,
* an object, which then contains all of the parameters as attributes.
* The "@param" documentation is to be interpreted accordingly.
*/
/**
* Request various states about the network.
*/
requestNetworkInfo: function requestNetworkInfo() {
if (DEBUG) debug("Requesting phone state");
RIL.getRegistrationState();
RIL.getGPRSRegistrationState(); //TODO only GSM
RIL.getOperator();
RIL.getNetworkSelectionMode();
},
/**
* Get a list of current voice calls.
*/
enumerateCalls: function enumerateCalls() {
if (DEBUG) debug("Sending all current calls");
let calls = [];
for each (let call in this.currentCalls) {
calls.push(call);
}
this.sendDOMMessage({type: "enumerateCalls", calls: calls});
},
/**
* Dial the phone.
*
* @param number
* String containing the number to dial.
*/
dial: function dial(options) {
RIL.dial(options.number, 0, 0);
},
/**
* Send DTMF Tone
*
* @param dtmfChar
* String containing the DTMF signal to send.
*/
sendTone: function sendTone(options) {
RIL.sendTone(options.dtmfChar);
},
/**
* Start DTMF Tone
*
* @param dtmfChar
* String containing the DTMF signal to send.
*/
startTone: function startTone(options) {
RIL.startTone(options.dtmfChar);
},
/**
* Stop DTMF Tone
*/
stopTone: function stopTone() {
RIL.stopTone();
},
/**
* Hang up a call.
*
* @param callIndex
* Call index of the call to hang up.
*/
hangUp: function hangUp(options) {
//TODO need to check whether call is holding/waiting/background
// and then use REQUEST_HANGUP_WAITING_OR_BACKGROUND
RIL.hangUp(options.callIndex);
},
/**
* Answer an incoming call.
*
* @param callIndex
* Call index of the call to answer.
*/
answerCall: function answerCall(options) {
// Check for races. Since we dispatched the incoming call notification the
// incoming call may have changed. The main thread thinks that it is
// answering the call with the given index, so only answer if that is still
// incoming.
let call = this.currentCalls[options.callIndex];
if (call && call.state == CALL_STATE_INCOMING) {
RIL.answerCall();
}
},
/**
* Reject an incoming call.
*
* @param callIndex
* Call index of the call to reject.
*/
rejectCall: function rejectCall(options) {
// Check for races. Since we dispatched the incoming call notification the
// incoming call may have changed. The main thread thinks that it is
// rejecting the call with the given index, so only reject if that is still
// incoming.
let call = this.currentCalls[options.callIndex];
if (call && call.state == CALL_STATE_INCOMING) {
RIL.rejectCall();
}
},
/**
* Send an SMS.
*
* @param number
* String containing the recipient number.
* @param body
* String containing the message text.
*/
sendSMS: function sendSMS(options) {
// Get the SMS Center address
if (!this.SMSC) {
//TODO: we shouldn't get here, but if we do, we might want to hold on
// to the message and retry once we know the SMSC... or just notify an
// error to the mainthread and let them deal with retrying?
if (DEBUG) {
debug("Cannot send the SMS. Need to get the SMSC address first.");
}
return;
}
//TODO: verify values on 'options'
//TODO: the data encoding and length in octets should eventually be
// computed on the mainthread and passed down to us.
RIL.sendSMS(this.SMSC, options.number, options.body,
PDU_DCS_MSG_CODING_7BITS_ALPHABET, //TODO: hard-coded for now,
Math.ceil(options.body.length * 7 / 8)); //TODO: ditto
},
/**
* Setup a data call (PDP).
*/
setupDataCall: function setupDataCall(options) {
if (DEBUG) debug("setupDataCall: " + JSON.stringify(options));
let token = RIL.setupDataCall(options.radioTech, options.apn,
options.user, options.passwd,
options.chappap, options.reason);
this.activeDataRequests[token] = options;
this.sendDOMMessage({type: "datacallstatechange",
state: GECKO_DATACALL_STATE_CONNECTING,
apn: options.apn});
},
/**
* Deactivate a data call (PDP).
*/
deactivateDataCall: function deactivateDataCall(options) {
if (!(options.cid in this.currentDataCalls)) {
return;
}
let datacall = this.currentDataCalls[options.cid];
datacall.state = GECKO_DATACALL_STATE_DISCONNECTING;
let token = RIL.deactivateDataCall(options.cid, options.reason);
this.activeDataRequests[token] = options;
this.sendDOMMessage({type: "datacallstatechange",
state: GECKO_DATACALL_STATE_DISCONNECTING,
cid: options.cid,
apn: datacall.apn});
},
/**
* Get the list of data calls.
*/
getDataCallList: function getDataCallList(options) {
RIL.getDataCallList();
},
/**
* Get failure cause code for the last failed PDP context.
*/
getFailCauseCode: function getFailCauseCode(options) {
RIL.getFailCauseCode();
},
/**
* Handle incoming messages from the main UI thread.
*
* @param message
* Object containing the message. Messages are supposed
*/
handleDOMMessage: function handleMessage(message) {
if (DEBUG) debug("Received DOM message " + JSON.stringify(message));
let method = this[message.type];
if (typeof method != "function") {
if (DEBUG) {
debug("Don't know what to do with message " + JSON.stringify(message));
}
return;
}
method.call(this, message);
},
/**
* Send messages to the main UI thread.
*/
sendDOMMessage: function sendDOMMessage(message) {
postMessage(message, "*");
}
};
/**
* This object exposes the functionality to parse and serialize PDU strings
*
* A PDU is a string containing a series of hexadecimally encoded octets
* or nibble-swapped binary-coded decimals (BCDs). It contains not only the
* message text but information about the sender, the SMS service center,
* timestamp, etc.
*/
let GsmPDUHelper = {
/**
* Read one character (2 bytes) from a RIL string and decode as hex.
*
* @return the nibble as a number.
*/
readHexNibble: function readHexNibble() {
let nibble = Buf.readUint16();
if (nibble >= 48 && nibble <= 57) {
nibble -= 48; // ASCII '0'..'9'
} else if (nibble >= 65 && nibble <= 70) {
nibble -= 55; // ASCII 'A'..'F'
} else if (nibble >= 97 && nibble <= 102) {
nibble -= 87; // ASCII 'a'..'f'
} else {
throw "Found invalid nibble during PDU parsing: " +
String.fromCharCode(nibble);
}
return nibble;
},
/**
* Encode a nibble as one hex character in a RIL string (2 bytes).
*
* @param nibble
* The nibble to encode (represented as a number)
*/
writeHexNibble: function writeHexNibble(nibble) {
nibble &= 0x0f;
if (nibble < 10) {
nibble += 48; // ASCII '0'
} else {
nibble += 55; // ASCII 'A'
}
Buf.writeUint16(nibble);
},
/**
* Read a hex-encoded octet (two nibbles).
*
* @return the octet as a number.
*/
readHexOctet: function readHexOctet() {
return (this.readHexNibble() << 4) | this.readHexNibble();
},
/**
* Write an octet as two hex-encoded nibbles.
*
* @param octet
* The octet (represented as a number) to encode.
*/
writeHexOctet: function writeHexOctet(octet) {
this.writeHexNibble(octet >> 4);
this.writeHexNibble(octet);
},
/**
* Convert an octet (number) to a BCD number.
*
* Any nibbles that are not in the BCD range count as 0.
*
* @param octet
* The octet (a number, as returned by getOctet())
*
* @return the corresponding BCD number.
*/
octetToBCD: function octetToBCD(octet) {
return ((octet & 0xf0) <= 0x90) * ((octet >> 4) & 0x0f) +
((octet & 0x0f) <= 0x09) * (octet & 0x0f) * 10;
},
/**
* Read a *swapped nibble* binary coded decimal (BCD)
*
* @param length
* Number of nibble *pairs* to read.
*
* @return the decimal as a number.
*/
readSwappedNibbleBCD: function readSwappedNibbleBCD(length) {
let number = 0;
for (let i = 0; i < length; i++) {
let octet = this.readHexOctet();
// If the first nibble is an "F" , only the second nibble is to be taken
// into account.
if ((octet & 0xf0) == 0xf0) {
number *= 10;
number += octet & 0x0f;
continue;
}
number *= 100;
number += this.octetToBCD(octet);
}
return number;
},
/**
* Write numerical data as swapped nibble BCD.
*
* @param data
* Data to write (as a string or a number)
*/
writeSwappedNibbleBCD: function writeSwappedNibbleBCD(data) {
data = data.toString();
if (data.length % 2) {
data += "F";
}
for (let i = 0; i < data.length; i += 2) {
Buf.writeUint16(data.charCodeAt(i + 1));
Buf.writeUint16(data.charCodeAt(i));
}
},
/**
* Read user data, convert to septets, look up relevant characters in a
* 7-bit alphabet, and construct string.
*
* @param length
* Number of septets to read (*not* octets)
*
* @return a string.
*
* TODO: support other alphabets
* TODO: support escape chars
*/
readSeptetsToString: function readSeptetsToString(length) {
let ret = "";
let byteLength = Math.ceil(length * 7 / 8);
let leftOver = 0;
for (let i = 0; i < byteLength; i++) {
let octet = this.readHexOctet();
let shift = (i % 7);
let leftOver_mask = (0xff << (7 - shift)) & 0xff;
let septet_mask = (0xff >> (shift + 1));
let septet = ((octet & septet_mask) << shift) | leftOver;
ret += PDU_ALPHABET_7BIT_DEFAULT[septet];
leftOver = (octet & leftOver_mask) >> (7 - shift);
// Every 7th byte we have a whole septet left over that we can apply.
if (shift == 6) {
ret += PDU_ALPHABET_7BIT_DEFAULT[leftOver];
leftOver = 0;
}
}
if (ret.length != length) {
ret = ret.slice(0, length);
}
return ret;
},
writeStringAsSeptets: function writeStringAsSeptets(message) {
let right = 0;
for (let i = 0; i < message.length + 1; i++) {
let shift = (i % 8);
let septet;
if (i < message.length) {
septet = PDU_ALPHABET_7BIT_DEFAULT.indexOf(message[i]);
} else {
septet = 0;
}
if (septet == -1) {
if (DEBUG) debug("Fffff, " + message[i] + " not in 7 bit alphabet!");
septet = 0;
}
if (shift == 0) {
// We're at the beginning of a cycle, but we need two septet values
// to make an octet. So we're going to have to sit this one out.
right = septet;
continue;
}
let left_mask = 0xff >> (8 - shift);
let right_mask = (0xff << shift) & 0xff;
let left = (septet & left_mask) << (8 - shift);
let octet = left | right;
this.writeHexOctet(left | right);
right = (septet & right_mask) >> shift;
}
},
/**
* Read user data and decode as a UCS2 string.
*
* @param length
* XXX TODO
*
* @return a string.
*/
readUCS2String: function readUCS2String(length) {
//TODO bug 712804
},
/**
* Write user data as a UCS2 string.
*
* @param message
* Message string to encode as UCS2 in hex-encoded octets.
*/
writeUCS2String: function writeUCS2String(message) {
//TODO bug 712804
},
/**
* User data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit
* (UCS2) data.
*
* TODO: This function currently supports only the default alphabet.
*/
readUserData: function readUserData(length, codingScheme) {
if (DEBUG) {
debug("Reading " + length + " bytes of user data.");
debug("Coding scheme: " + codingScheme);
}
// 7 bit is the default fallback encoding.
let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
switch (codingScheme & 0xC0) {
case 0x0:
// bits 7..4 = 00xx
switch (codingScheme & 0x0C) {
case 0x4:
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
break;
case 0x8:
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
break;
}
break;
case 0xC0:
// bits 7..4 = 11xx
switch (codingScheme & 0x30) {
case 0x20:
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
break;
case 0x30:
if (!codingScheme & 0x04) {
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
}
break;
}
break;
default:
// Falling back to default encoding.
break;
}
if (DEBUG) debug("PDU: message encoding is " + encoding + " bit.");
switch (encoding) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
// 7 bit encoding allows 140 octets, which means 160 characters
// ((140x8) / 7 = 160 chars)
if (length > PDU_MAX_USER_DATA_7BIT) {
if (DEBUG) debug("PDU error: user data is too long: " + length);
return null;
}
return this.readSeptetsToString(length);
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
// Unsupported.
return null;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
return this.readUCS2String(length);
}
return null;
},
/**
* Read and decode a PDU-encoded message from the stream.
*
* TODO: add some basic sanity checks like:
* - do we have the minimum number of chars available
*/
readMessage: function readMessage() {
// An empty message object. This gets filled below and then returned.
let msg = {
SMSC: null,
reference: null,
sender: null,
body: null,
validity: null,
timestamp: null
};
// SMSC info
let smscLength = this.readHexOctet();
if (smscLength > 0) {
let smscTypeOfAddress = this.readHexOctet();
// Subtract the type-of-address octet we just read from the length.
msg.SMSC = this.readSwappedNibbleBCD(smscLength - 1).toString();
if ((smscTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
msg.SMSC = '+' + msg.SMSC;
}
}
// First octet of this SMS-DELIVER or SMS-SUBMIT message
let firstOctet = this.readHexOctet();
// if the sms is of SMS-SUBMIT type it would contain a TP-MR
let isSmsSubmit = firstOctet & PDU_MTI_SMS_SUBMIT;
if (isSmsSubmit) {
msg.reference = this.readHexOctet(); // TP-Message-Reference
}
// - Sender Address info -
// Address length
let senderAddressLength = this.readHexOctet();
if (senderAddressLength <= 0) {
if (DEBUG) debug("PDU error: invalid sender address length: " + senderAddressLength);
return null;
}
// Type-of-Address
let senderTypeOfAddress = this.readHexOctet();
if (senderAddressLength % 2 == 1) {
senderAddressLength += 1;
}
if (DEBUG) debug("PDU: Going to read sender address: " + senderAddressLength);
msg.sender = this.readSwappedNibbleBCD(senderAddressLength / 2).toString();
if (msg.sender.length <= 0) {
if (DEBUG) debug("PDU error: no sender number provided");
return null;
}
if ((senderTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
msg.sender = '+' + msg.sender;
}
// - TP-Protocolo-Identifier -
let protocolIdentifier = this.readHexOctet();
// - TP-Data-Coding-Scheme -
let dataCodingScheme = this.readHexOctet();
// SMS of SMS-SUBMIT type contains a TP-Service-Center-Time-Stamp field
// SMS of SMS-DELIVER type contains a TP-Validity-Period octet
if (isSmsSubmit) {
// - TP-Validity-Period -
// The Validity Period octet is optional. Depends on the SMS-SUBMIT
// first octet
// Validity Period Format. Bit4 and Bit3 specify the TP-VP field
// according to this table:
// bit4 bit3
// 0 0 : TP-VP field not present
// 1 0 : TP-VP field present. Relative format (one octet)
// 0 1 : TP-VP field present. Enhanced format (7 octets)
// 1 1 : TP-VP field present. Absolute format (7 octets)
if (firstOctet & (PDU_VPF_ABSOLUTE | PDU_VPF_RELATIVE | PDU_VPF_ENHANCED)) {
msg.validity = this.readHexOctet();
}
//TODO: check validity period
} else {
// - TP-Service-Center-Time-Stamp -
let year = this.readSwappedNibbleBCD(1) + PDU_TIMESTAMP_YEAR_OFFSET;
let month = this.readSwappedNibbleBCD(1) - 1;
let day = this.readSwappedNibbleBCD(1) - 1;
let hour = this.readSwappedNibbleBCD(1) - 1;
let minute = this.readSwappedNibbleBCD(1) - 1;
let second = this.readSwappedNibbleBCD(1) - 1;
msg.timestamp = Date.UTC(year, month, day, hour, minute, second);
// If the most significant bit of the least significant nibble is 1,
// the timezone offset is negative (fourth bit from the right => 0x08).
let tzOctet = this.readHexOctet();
let tzOffset = this.octetToBCD(tzOctet & ~0x08) * 15 * 60 * 1000;
if (tzOctet & 0x08) {
msg.timestamp -= tzOffset;
} else {
msg.timestamp += tzOffset;
}
}
// - TP-User-Data-Length -
let userDataLength = this.readHexOctet();
// - TP-User-Data -
if (userDataLength > 0) {
msg.body = this.readUserData(userDataLength, dataCodingScheme);
}
return msg;
},
/**
* Serialize a SMS-SUBMIT PDU message and write it to the output stream.
*
* This method expects that a data coding scheme has been chosen already
* and that the length of the user data payload in that encoding is known,
* too. Both go hand in hand together anyway.
*
* @param address
* String containing the address (number) of the SMS receiver
* @param userData
* String containing the message to be sent as user data
* @param dcs
* Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET
* constants.
* @param userDataLengthInOctets
* Byte length of the user data when encoded with the given DCS.
*/
writeMessage: function writeMessage(address,
userData,
dcs,
userDataLengthInOctets) {
// SMS-SUBMIT Format:
//
// PDU Type - 1 octet
// Message Reference - 1 octet
// DA - Destination Address - 2 to 12 octets
// PID - Protocol Identifier - 1 octet
// DCS - Data Coding Scheme - 1 octet
// VP - Validity Period - 0, 1 or 7 octets
// UDL - User Data Length - 1 octet
// UD - User Data - 140 octets
let addressFormat = PDU_TOA_ISDN; // 81
if (address[0] == '+') {
addressFormat = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91
address = address.substring(1);
}
//TODO validity is unsupported for now
let validity = 0;
let pduOctetLength = 4 + // PDU Type, Message Ref, address length + format
Math.ceil(address.length / 2) +
3 + // PID, DCS, UDL
userDataLengthInOctets;
if (validity) {
//TODO: add more to pduOctetLength
}
// Start the string. Since octets are represented in hex, we will need
// twice as many characters as octets.
Buf.writeUint32(pduOctetLength * 2);
// - PDU-TYPE-
// +--------+----------+---------+---------+--------+---------+
// | RP (1) | UDHI (1) | SRR (1) | VPF (2) | RD (1) | MTI (2) |
// +--------+----------+---------+---------+--------+---------+
// RP: 0 Reply path parameter is not set
// 1 Reply path parameter is set
// UDHI: 0 The UD Field contains only the short message
// 1 The beginning of the UD field contains a header in addition
// of the short message
// SRR: 0 A status report is not requested
// 1 A status report is requested
// VPF: bit4 bit3
// 0 0 VP field is not present
// 0 1 Reserved
// 1 0 VP field present an integer represented (relative)
// 1 1 VP field present a semi-octet represented (absolute)
// RD: Instruct the SMSC to accept(0) or reject(1) an SMS-SUBMIT
// for a short message still held in the SMSC which has the same
// MR and DA as a previously submitted short message from the
// same OA
// MTI: bit1 bit0 Message Type
// 0 0 SMS-DELIVER (SMSC ==> MS)
// 0 1 SMS-SUBMIT (MS ==> SMSC)
// PDU type. MTI is set to SMS-SUBMIT
let firstOctet = PDU_MTI_SMS_SUBMIT;
// Validity period
if (validity) {
//TODO: not supported yet, OR with one of PDU_VPF_*
}
let udhi = ""; //TODO: for now this is unsupported
if (udhi) {
firstOctet |= PDU_UDHI;
}
this.writeHexOctet(firstOctet);
// Message reference 00
this.writeHexOctet(0x00);
// - Destination Address -
this.writeHexOctet(address.length);
this.writeHexOctet(addressFormat);
this.writeSwappedNibbleBCD(address);
// - Protocol Identifier -
this.writeHexOctet(0x00);
// - Data coding scheme -
// For now it assumes bits 7..4 = 1111 except for the 16 bits use case
this.writeHexOctet(dcs);
// - Validity Period -
if (validity) {
this.writeHexOctet(validity);
}
// - User Data -
let userDataLength = userData.length;
if (dcs == PDU_DCS_MSG_CODING_16BITS_ALPHABET) {
userDataLength = userData.length * 2;
}
this.writeHexOctet(userDataLength);
switch (dcs) {
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
this.writeStringAsSeptets(userData);
break;
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
// Unsupported.
break;
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
this.writeUCS2String(userData);
break;
}
// End of the string. The string length is always even by definition, so
// we write two \0 delimiters.
Buf.writeUint16(0);
Buf.writeUint16(0);
}
};
/**
* Global stuff.
*/
if (!this.debug) {
// Debugging stub that goes nowhere.
this.debug = function debug(message) {
dump("RIL Worker: " + message + "\n");
};
}
// Initialize buffers. This is a separate function so that unit tests can
// re-initialize the buffers at will.
Buf.init();
function onRILMessage(data) {
Buf.processIncoming(data);
};
onmessage = function onmessage(event) {
Phone.handleDOMMessage(event.data);
};
onerror = function onerror(event) {
debug("RIL Worker error" + event.message + "\n");
};