mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
2544 lines
78 KiB
JavaScript
2544 lines
78 KiB
JavaScript
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is RIL JS Worker.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* the Mozilla Foundation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2011
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Kyle Machulis <kyle@nonpolynomial.com>
|
|
* Philipp von Weitershausen <philipp@weitershausen.de>
|
|
* Fernando Jimenez <ferjmoreno@gmail.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
/**
|
|
* This file implements the RIL worker thread. It communicates with
|
|
* the main thread to provide a high-level API to the phone's RIL
|
|
* stack, and with the RIL IPC thread to communicate with the RIL
|
|
* device itself. These communication channels use message events as
|
|
* known from Web Workers:
|
|
*
|
|
* - postMessage()/"message" events for main thread communication
|
|
*
|
|
* - postRILMessage()/"RILMessageEvent" events for RIL IPC thread
|
|
* communication.
|
|
*
|
|
* The three objects in this file represent individual parts of this
|
|
* communication chain:
|
|
*
|
|
* - RILMessageEvent -> Buf -> RIL -> Phone -> postMessage()
|
|
* - "message" event -> Phone -> RIL -> Buf -> postRILMessage()
|
|
*
|
|
* Note: The code below is purposely lean on abstractions to be as lean in
|
|
* terms of object allocations. As a result, it may look more like C than
|
|
* JavaScript, and that's intended.
|
|
*/
|
|
|
|
"use strict";
|
|
|
|
importScripts("ril_consts.js");
|
|
|
|
let DEBUG = false;
|
|
|
|
const INT32_MAX = 2147483647;
|
|
const UINT8_SIZE = 1;
|
|
const UINT16_SIZE = 2;
|
|
const UINT32_SIZE = 4;
|
|
const PARCEL_SIZE_SIZE = UINT32_SIZE;
|
|
|
|
/**
|
|
* This object contains helpers buffering incoming data & deconstructing it
|
|
* into parcels as well as buffering outgoing data & constructing parcels.
|
|
* For that it maintains two buffers and corresponding uint8 views, indexes.
|
|
*
|
|
* The incoming buffer is a circular buffer where we store incoming data.
|
|
* As soon as a complete parcel is received, it is processed right away, so
|
|
* the buffer only needs to be large enough to hold one parcel.
|
|
*
|
|
* The outgoing buffer is to prepare outgoing parcels. The index is reset
|
|
* every time a parcel is sent.
|
|
*/
|
|
let Buf = {
|
|
|
|
INCOMING_BUFFER_LENGTH: 1024,
|
|
OUTGOING_BUFFER_LENGTH: 1024,
|
|
|
|
init: function init() {
|
|
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
|
|
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
|
|
|
|
this.incomingBytes = new Uint8Array(this.incomingBuffer);
|
|
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
|
|
|
|
// Track where incoming data is read from and written to.
|
|
this.incomingWriteIndex = 0;
|
|
this.incomingReadIndex = 0;
|
|
|
|
// Leave room for the parcel size for outgoing parcels.
|
|
this.outgoingIndex = PARCEL_SIZE_SIZE;
|
|
|
|
// How many bytes we've read for this parcel so far.
|
|
this.readIncoming = 0;
|
|
|
|
// Size of the incoming parcel. If this is zero, we're expecting a new
|
|
// parcel.
|
|
this.currentParcelSize = 0;
|
|
|
|
// This gets incremented each time we send out a parcel.
|
|
this.token = 1;
|
|
|
|
// Maps tokens we send out with requests to the request type, so that
|
|
// when we get a response parcel back, we know what request it was for.
|
|
this.tokenRequestMap = {};
|
|
|
|
// This is the token of last solicited response.
|
|
this.lastSolicitedToken = 0;
|
|
},
|
|
|
|
/**
|
|
* Grow the incoming buffer.
|
|
*
|
|
* @param min_size
|
|
* Minimum new size. The actual new size will be the the smallest
|
|
* power of 2 that's larger than this number.
|
|
*/
|
|
growIncomingBuffer: function growIncomingBuffer(min_size) {
|
|
if (DEBUG) {
|
|
debug("Current buffer of " + this.INCOMING_BUFFER_LENGTH +
|
|
" can't handle incoming " + min_size + " bytes.");
|
|
}
|
|
let oldBytes = this.incomingBytes;
|
|
this.INCOMING_BUFFER_LENGTH =
|
|
2 << Math.floor(Math.log(min_size)/Math.log(2));
|
|
if (DEBUG) debug("New incoming buffer size: " + this.INCOMING_BUFFER_LENGTH);
|
|
this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH);
|
|
this.incomingBytes = new Uint8Array(this.incomingBuffer);
|
|
if (this.incomingReadIndex <= this.incomingWriteIndex) {
|
|
// Read and write index are in natural order, so we can just copy
|
|
// the old buffer over to the bigger one without having to worry
|
|
// about the indexes.
|
|
this.incomingBytes.set(oldBytes, 0);
|
|
} else {
|
|
// The write index has wrapped around but the read index hasn't yet.
|
|
// Write whatever the read index has left to read until it would
|
|
// circle around to the beginning of the new buffer, and the rest
|
|
// behind that.
|
|
let head = oldBytes.subarray(this.incomingReadIndex);
|
|
let tail = oldBytes.subarray(0, this.incomingReadIndex);
|
|
this.incomingBytes.set(head, 0);
|
|
this.incomingBytes.set(tail, head.length);
|
|
this.incomingReadIndex = 0;
|
|
this.incomingWriteIndex += head.length;
|
|
}
|
|
if (DEBUG) {
|
|
debug("New incoming buffer size is " + this.INCOMING_BUFFER_LENGTH);
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Grow the outgoing buffer.
|
|
*
|
|
* @param min_size
|
|
* Minimum new size. The actual new size will be the the smallest
|
|
* power of 2 that's larger than this number.
|
|
*/
|
|
growOutgoingBuffer: function growOutgoingBuffer(min_size) {
|
|
if (DEBUG) {
|
|
debug("Current buffer of " + this.OUTGOING_BUFFER_LENGTH +
|
|
" is too small.");
|
|
}
|
|
let oldBytes = this.outgoingBytes;
|
|
this.OUTGOING_BUFFER_LENGTH =
|
|
2 << Math.floor(Math.log(min_size)/Math.log(2));
|
|
this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH);
|
|
this.outgoingBytes = new Uint8Array(this.outgoingBuffer);
|
|
this.outgoingBytes.set(oldBytes, 0);
|
|
if (DEBUG) {
|
|
debug("New outgoing buffer size is " + this.OUTGOING_BUFFER_LENGTH);
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Functions for reading data from the incoming buffer.
|
|
*
|
|
* These are all little endian, apart from readParcelSize();
|
|
*/
|
|
|
|
readUint8: function readUint8() {
|
|
let value = this.incomingBytes[this.incomingReadIndex];
|
|
this.incomingReadIndex = (this.incomingReadIndex + 1) %
|
|
this.INCOMING_BUFFER_LENGTH;
|
|
return value;
|
|
},
|
|
|
|
readUint16: function readUint16() {
|
|
return this.readUint8() | this.readUint8() << 8;
|
|
},
|
|
|
|
readUint32: function readUint32() {
|
|
return this.readUint8() | this.readUint8() << 8 |
|
|
this.readUint8() << 16 | this.readUint8() << 24;
|
|
},
|
|
|
|
readUint32List: function readUint32List() {
|
|
let length = this.readUint32();
|
|
let ints = [];
|
|
for (let i = 0; i < length; i++) {
|
|
ints.push(this.readUint32());
|
|
}
|
|
return ints;
|
|
},
|
|
|
|
readString: function readString() {
|
|
let string_len = this.readUint32();
|
|
if (string_len < 0 || string_len >= INT32_MAX) {
|
|
return null;
|
|
}
|
|
let s = "";
|
|
for (let i = 0; i < string_len; i++) {
|
|
s += String.fromCharCode(this.readUint16());
|
|
}
|
|
// Strings are \0\0 delimited, but that isn't part of the length. And
|
|
// if the string length is even, the delimiter is two characters wide.
|
|
// It's insane, I know.
|
|
let delimiter = this.readUint16();
|
|
if (!(string_len & 1)) {
|
|
delimiter |= this.readUint16();
|
|
}
|
|
if (DEBUG) {
|
|
if (delimiter != 0) {
|
|
debug("Something's wrong, found string delimiter: " + delimiter);
|
|
}
|
|
}
|
|
return s;
|
|
},
|
|
|
|
readStringList: function readStringList() {
|
|
let num_strings = this.readUint32();
|
|
let strings = [];
|
|
for (let i = 0; i < num_strings; i++) {
|
|
strings.push(this.readString());
|
|
}
|
|
return strings;
|
|
},
|
|
|
|
readParcelSize: function readParcelSize() {
|
|
return this.readUint8() << 24 | this.readUint8() << 16 |
|
|
this.readUint8() << 8 | this.readUint8();
|
|
},
|
|
|
|
/**
|
|
* Functions for writing data to the outgoing buffer.
|
|
*/
|
|
|
|
writeUint8: function writeUint8(value) {
|
|
if (this.outgoingIndex >= this.OUTGOING_BUFFER_LENGTH) {
|
|
this.growOutgoingBuffer(this.outgoingIndex + 1);
|
|
}
|
|
this.outgoingBytes[this.outgoingIndex] = value;
|
|
this.outgoingIndex++;
|
|
},
|
|
|
|
writeUint16: function writeUint16(value) {
|
|
this.writeUint8(value & 0xff);
|
|
this.writeUint8((value >> 8) & 0xff);
|
|
},
|
|
|
|
writeUint32: function writeUint32(value) {
|
|
this.writeUint8(value & 0xff);
|
|
this.writeUint8((value >> 8) & 0xff);
|
|
this.writeUint8((value >> 16) & 0xff);
|
|
this.writeUint8((value >> 24) & 0xff);
|
|
},
|
|
|
|
writeString: function writeString(value) {
|
|
if (value == null) {
|
|
this.writeUint32(-1);
|
|
return;
|
|
}
|
|
this.writeUint32(value.length);
|
|
for (let i = 0; i < value.length; i++) {
|
|
this.writeUint16(value.charCodeAt(i));
|
|
}
|
|
// Strings are \0\0 delimited, but that isn't part of the length. And
|
|
// if the string length is even, the delimiter is two characters wide.
|
|
// It's insane, I know.
|
|
this.writeUint16(0);
|
|
if (!(value.length & 1)) {
|
|
this.writeUint16(0);
|
|
}
|
|
},
|
|
|
|
writeStringList: function writeStringList(strings) {
|
|
this.writeUint32(strings.length);
|
|
for (let i = 0; i < strings.length; i++) {
|
|
this.writeString(strings[i]);
|
|
}
|
|
},
|
|
|
|
writeParcelSize: function writeParcelSize(value) {
|
|
/**
|
|
* Parcel size will always be the first thing in the parcel byte
|
|
* array, but the last thing written. Store the current index off
|
|
* to a temporary to be reset after we write the size.
|
|
*/
|
|
let currentIndex = this.outgoingIndex;
|
|
this.outgoingIndex = 0;
|
|
this.writeUint8((value >> 24) & 0xff);
|
|
this.writeUint8((value >> 16) & 0xff);
|
|
this.writeUint8((value >> 8) & 0xff);
|
|
this.writeUint8(value & 0xff);
|
|
this.outgoingIndex = currentIndex;
|
|
},
|
|
|
|
|
|
/**
|
|
* Parcel management
|
|
*/
|
|
|
|
/**
|
|
* Write incoming data to the circular buffer.
|
|
*
|
|
* @param incoming
|
|
* Uint8Array containing the incoming data.
|
|
*/
|
|
writeToIncoming: function writeToIncoming(incoming) {
|
|
// We don't have to worry about the head catching the tail since
|
|
// we process any backlog in parcels immediately, before writing
|
|
// new data to the buffer. So the only edge case we need to handle
|
|
// is when the incoming data is larger than the buffer size.
|
|
if (incoming.length > this.INCOMING_BUFFER_LENGTH) {
|
|
this.growIncomingBuffer(incoming.length);
|
|
}
|
|
|
|
// We can let the typed arrays do the copying if the incoming data won't
|
|
// wrap around the edges of the circular buffer.
|
|
let remaining = this.INCOMING_BUFFER_LENGTH - this.incomingWriteIndex;
|
|
if (remaining >= incoming.length) {
|
|
this.incomingBytes.set(incoming, this.incomingWriteIndex);
|
|
} else {
|
|
// The incoming data would wrap around it.
|
|
let head = incoming.subarray(0, remaining);
|
|
let tail = incoming.subarray(remaining);
|
|
this.incomingBytes.set(head, this.incomingWriteIndex);
|
|
this.incomingBytes.set(tail, 0);
|
|
}
|
|
this.incomingWriteIndex = (this.incomingWriteIndex + incoming.length) %
|
|
this.INCOMING_BUFFER_LENGTH;
|
|
},
|
|
|
|
/**
|
|
* Process incoming data.
|
|
*
|
|
* @param incoming
|
|
* Uint8Array containing the incoming data.
|
|
*/
|
|
processIncoming: function processIncoming(incoming) {
|
|
if (DEBUG) {
|
|
debug("Received " + incoming.length + " bytes.");
|
|
debug("Already read " + this.readIncoming);
|
|
}
|
|
|
|
this.writeToIncoming(incoming);
|
|
this.readIncoming += incoming.length;
|
|
while (true) {
|
|
if (!this.currentParcelSize) {
|
|
// We're expecting a new parcel.
|
|
if (this.readIncoming < PARCEL_SIZE_SIZE) {
|
|
// We don't know how big the next parcel is going to be, need more
|
|
// data.
|
|
if (DEBUG) debug("Next parcel size unknown, going to sleep.");
|
|
return;
|
|
}
|
|
this.currentParcelSize = this.readParcelSize();
|
|
if (DEBUG) debug("New incoming parcel of size " +
|
|
this.currentParcelSize);
|
|
// The size itself is not included in the size.
|
|
this.readIncoming -= PARCEL_SIZE_SIZE;
|
|
}
|
|
|
|
if (this.readIncoming < this.currentParcelSize) {
|
|
// We haven't read enough yet in order to be able to process a parcel.
|
|
if (DEBUG) debug("Read " + this.readIncoming + ", but parcel size is "
|
|
+ this.currentParcelSize + ". Going to sleep.");
|
|
return;
|
|
}
|
|
|
|
// Alright, we have enough data to process at least one whole parcel.
|
|
// Let's do that.
|
|
let expectedAfterIndex = (this.incomingReadIndex + this.currentParcelSize)
|
|
% this.INCOMING_BUFFER_LENGTH;
|
|
|
|
if (DEBUG) {
|
|
let parcel;
|
|
if (expectedAfterIndex < this.incomingReadIndex) {
|
|
let head = this.incomingBytes.subarray(this.incomingReadIndex);
|
|
let tail = this.incomingBytes.subarray(0, expectedAfterIndex);
|
|
parcel = Array.slice(head).concat(Array.slice(tail));
|
|
} else {
|
|
parcel = Array.slice(this.incomingBytes.subarray(
|
|
this.incomingReadIndex, expectedAfterIndex));
|
|
}
|
|
debug("Parcel (size " + this.currentParcelSize + "): " + parcel);
|
|
}
|
|
|
|
if (DEBUG) debug("We have at least one complete parcel.");
|
|
try {
|
|
this.processParcel();
|
|
} catch (ex) {
|
|
if (DEBUG) debug("Parcel handling threw " + ex + "\n" + ex.stack);
|
|
}
|
|
|
|
// Ensure that the whole parcel was consumed.
|
|
if (this.incomingReadIndex != expectedAfterIndex) {
|
|
if (DEBUG) {
|
|
debug("Parcel handler didn't consume whole parcel, " +
|
|
Math.abs(expectedAfterIndex - this.incomingReadIndex) +
|
|
" bytes left over");
|
|
}
|
|
this.incomingReadIndex = expectedAfterIndex;
|
|
}
|
|
this.readIncoming -= this.currentParcelSize;
|
|
this.currentParcelSize = 0;
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Process one parcel.
|
|
*/
|
|
|
|
processParcel: function processParcel() {
|
|
let response_type = this.readUint32();
|
|
let length = this.readIncoming - UINT32_SIZE;
|
|
|
|
let request_type;
|
|
if (response_type == RESPONSE_TYPE_SOLICITED) {
|
|
let token = this.readUint32();
|
|
let error = this.readUint32();
|
|
length -= 2 * UINT32_SIZE;
|
|
request_type = this.tokenRequestMap[token];
|
|
if (error) {
|
|
//TODO
|
|
debug("Received error " + error + " for solicited parcel type " +
|
|
request_type);
|
|
return;
|
|
}
|
|
debug("Solicited response for request type " + request_type +
|
|
", token " + token);
|
|
delete this.tokenRequestMap[token];
|
|
this.lastSolicitedToken = token;
|
|
} else if (response_type == RESPONSE_TYPE_UNSOLICITED) {
|
|
request_type = this.readUint32();
|
|
length -= UINT32_SIZE;
|
|
debug("Unsolicited response for request type " + request_type);
|
|
} else {
|
|
debug("Unknown response type: " + response_type);
|
|
return;
|
|
}
|
|
|
|
RIL.handleParcel(request_type, length);
|
|
},
|
|
|
|
/**
|
|
* Start a new outgoing parcel.
|
|
*
|
|
* @param type
|
|
* Integer specifying the request type.
|
|
*/
|
|
newParcel: function newParcel(type) {
|
|
// We're going to leave room for the parcel size at the beginning.
|
|
this.outgoingIndex = PARCEL_SIZE_SIZE;
|
|
this.writeUint32(type);
|
|
let token = this.token;
|
|
this.writeUint32(token);
|
|
this.tokenRequestMap[token] = type;
|
|
this.token++;
|
|
return token;
|
|
},
|
|
|
|
/**
|
|
* Communication with the RIL IPC thread.
|
|
*/
|
|
|
|
sendParcel: function sendParcel() {
|
|
// Compute the size of the parcel and write it to the front of the parcel
|
|
// where we left room for it. Note that he parcel size does not include
|
|
// the size itself.
|
|
let parcelSize = this.outgoingIndex - PARCEL_SIZE_SIZE;
|
|
this.writeParcelSize(parcelSize);
|
|
|
|
// This assumes that postRILMessage will make a copy of the ArrayBufferView
|
|
// right away!
|
|
let parcel = this.outgoingBytes.subarray(0, this.outgoingIndex);
|
|
debug("Outgoing parcel: " + Array.slice(parcel));
|
|
postRILMessage(parcel);
|
|
this.outgoingIndex = PARCEL_SIZE_SIZE;
|
|
},
|
|
|
|
simpleRequest: function simpleRequest(type) {
|
|
this.newParcel(type);
|
|
this.sendParcel();
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Provide a high-level API representing the RIL's capabilities. This is
|
|
* where parcels are sent and received from and translated into API calls.
|
|
* For the most part, this object is pretty boring as it simply translates
|
|
* between method calls and RIL parcels. Somebody's gotta do the job...
|
|
*/
|
|
let RIL = {
|
|
|
|
/**
|
|
* Retrieve the ICC's status.
|
|
*
|
|
* Response will call Phone.onICCStatus().
|
|
*/
|
|
getICCStatus: function getICCStatus() {
|
|
Buf.simpleRequest(REQUEST_GET_SIM_STATUS);
|
|
},
|
|
|
|
/**
|
|
* Enter a PIN to unlock the ICC.
|
|
*
|
|
* @param pin
|
|
* String containing the PIN.
|
|
*
|
|
* Response will call Phone.onEnterICCPIN().
|
|
*/
|
|
enterICCPIN: function enterICCPIN(pin) {
|
|
Buf.newParcel(REQUEST_ENTER_SIM_PIN);
|
|
Buf.writeUint32(1);
|
|
Buf.writeString(pin);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Change the current ICC PIN number
|
|
*
|
|
* @param oldPin
|
|
* String containing the old PIN value
|
|
* @param newPin
|
|
* String containing the new PIN value
|
|
*
|
|
* Response will call Phone.onChangeICCPIN().
|
|
*/
|
|
changeICCPIN: function changeICCPIN(oldPin, newPin) {
|
|
Buf.newParcel(REQUEST_CHANGE_SIM_PIN);
|
|
Buf.writeUint32(2);
|
|
Buf.writeString(oldPin);
|
|
Buf.writeString(newPin);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Supplies SIM PUK and a new PIN to unlock the ICC
|
|
*
|
|
* @param puk
|
|
* String containing the PUK value.
|
|
* @param newPin
|
|
* String containing the new PIN value.
|
|
*
|
|
* Response will call Phone.onEnterICCPUK().
|
|
*/
|
|
enterICCPUK: function enterICCPUK(puk, newPin) {
|
|
Buf.newParcel(REQUEST_ENTER_SIM_PUK);
|
|
Buf.writeUint32(2);
|
|
Buf.writeString(puk);
|
|
Buf.writeString(newPin);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Request the phone's radio power to be switched on or off.
|
|
*
|
|
* @param on
|
|
* Boolean indicating the desired power state.
|
|
*/
|
|
setRadioPower: function setRadioPower(on) {
|
|
Buf.newParcel(REQUEST_RADIO_POWER);
|
|
Buf.writeUint32(1);
|
|
Buf.writeUint32(on ? 1 : 0);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Set screen state.
|
|
*
|
|
* @param on
|
|
* Boolean indicating whether the screen should be on or off.
|
|
*/
|
|
setScreenState: function setScreenState(on) {
|
|
Buf.newParcel(REQUEST_SCREEN_STATE);
|
|
Buf.writeUint32(1);
|
|
Buf.writeUint32(on ? 1 : 0);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
getRegistrationState: function getRegistrationState() {
|
|
Buf.simpleRequest(REQUEST_REGISTRATION_STATE);
|
|
},
|
|
|
|
getGPRSRegistrationState: function getGPRSRegistrationState() {
|
|
Buf.simpleRequest(REQUEST_GPRS_REGISTRATION_STATE);
|
|
},
|
|
|
|
getOperator: function getOperator() {
|
|
Buf.simpleRequest(REQUEST_OPERATOR);
|
|
},
|
|
|
|
getNetworkSelectionMode: function getNetworkSelectionMode() {
|
|
Buf.simpleRequest(REQUEST_QUERY_NETWORK_SELECTION_MODE);
|
|
},
|
|
|
|
/**
|
|
* Get current calls.
|
|
*/
|
|
getCurrentCalls: function getCurrentCalls() {
|
|
Buf.simpleRequest(REQUEST_GET_CURRENT_CALLS);
|
|
},
|
|
|
|
/**
|
|
* Get the signal strength.
|
|
*/
|
|
getSignalStrength: function getSignalStrength() {
|
|
Buf.simpleRequest(REQUEST_SIGNAL_STRENGTH);
|
|
},
|
|
|
|
getIMEI: function getIMEI() {
|
|
Buf.simpleRequest(REQUEST_GET_IMEI);
|
|
},
|
|
|
|
getIMEISV: function getIMEISV() {
|
|
Buf.simpleRequest(REQUEST_GET_IMEISV);
|
|
},
|
|
|
|
getDeviceIdentity: function getDeviceIdentity() {
|
|
Buf.simpleRequest(REQUEST_GET_DEVICE_IDENTITY);
|
|
},
|
|
|
|
/**
|
|
* Dial the phone.
|
|
*
|
|
* @param address
|
|
* String containing the address (number) to dial.
|
|
* @param clirMode
|
|
* Integer doing something XXX TODO
|
|
* @param uusInfo
|
|
* Integer doing something XXX TODO
|
|
*/
|
|
dial: function dial(address, clirMode, uusInfo) {
|
|
let token = Buf.newParcel(REQUEST_DIAL);
|
|
Buf.writeString(address);
|
|
Buf.writeUint32(clirMode || 0);
|
|
Buf.writeUint32(uusInfo || 0);
|
|
// TODO Why do we need this extra 0? It was put it in to make this
|
|
// match the format of the binary message.
|
|
Buf.writeUint32(0);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Hang up the phone.
|
|
*
|
|
* @param callIndex
|
|
* Call index (1-based) as reported by REQUEST_GET_CURRENT_CALLS.
|
|
*/
|
|
hangUp: function hangUp(callIndex) {
|
|
Buf.newParcel(REQUEST_HANGUP);
|
|
Buf.writeUint32(1);
|
|
Buf.writeUint32(callIndex);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Mute or unmute the radio.
|
|
*
|
|
* @param mute
|
|
* Boolean to indicate whether to mute or unmute the radio.
|
|
*/
|
|
setMute: function setMute(mute) {
|
|
Buf.newParcel(REQUEST_SET_MUTE);
|
|
Buf.writeUint32(1);
|
|
Buf.writeUint32(mute ? 1 : 0);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Answer an incoming call.
|
|
*/
|
|
answerCall: function answerCall() {
|
|
Buf.simpleRequest(REQUEST_ANSWER);
|
|
},
|
|
|
|
/**
|
|
* Reject an incoming call.
|
|
*/
|
|
rejectCall: function rejectCall() {
|
|
Buf.simpleRequest(REQUEST_UDUB);
|
|
},
|
|
|
|
/**
|
|
* Send an SMS.
|
|
*
|
|
* @param smscPDU
|
|
* String containing the SMSC PDU in hex format.
|
|
* @param address
|
|
* String containing the recipients address.
|
|
* @param body
|
|
* String containing the message body.
|
|
* @param dcs
|
|
* Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET
|
|
* constants.
|
|
* @param bodyLengthInOctets
|
|
* Byte length of the message body when encoded with the given DCS.
|
|
*/
|
|
sendSMS: function sendSMS(smscPDU, address, body, dcs, bodyLengthInOctets) {
|
|
let token = Buf.newParcel(REQUEST_SEND_SMS);
|
|
//TODO we want to map token to the input values so that on the
|
|
// response from the RIL device we know which SMS request was successful
|
|
// or not. Maybe we should build that functionality into newParcel() and
|
|
// handle it within tokenRequestMap[].
|
|
Buf.writeUint32(2);
|
|
Buf.writeString(smscPDU);
|
|
GsmPDUHelper.writeMessage(address, body, dcs, bodyLengthInOctets);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Acknowledge the receipt and handling of an SMS.
|
|
*
|
|
* @param success
|
|
* Boolean indicating whether the message was successfuly handled.
|
|
* @param cause
|
|
* SMS_* constant indicating the reason for unsuccessful handling.
|
|
*/
|
|
acknowledgeSMS: function acknowledgeSMS(success, cause) {
|
|
let token = Buf.newParcel(REQUEST_SMS_ACKNOWLEDGE);
|
|
Buf.writeUint32(2);
|
|
Buf.writeUint32(success ? 1 : 0);
|
|
Buf.writeUint32(cause);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Start a DTMF Tone.
|
|
*
|
|
* @param dtmfChar
|
|
* DTMF signal to send, 0-9, *, +
|
|
*/
|
|
startTone: function startTone(dtmfChar) {
|
|
Buf.newParcel(REQUEST_DTMF_START);
|
|
Buf.writeString(dtmfChar);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
stopTone: function stopTone() {
|
|
Buf.simpleRequest(REQUEST_DTMF_STOP);
|
|
},
|
|
|
|
sendTone: function sendTone(dtmfChar) {
|
|
Buf.newParcel(REQUEST_DTMF);
|
|
Buf.writeString(dtmfChar);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Get the Short Message Service Center address.
|
|
*/
|
|
getSMSCAddress: function getSMSCAddress() {
|
|
Buf.simpleRequest(REQUEST_GET_SMSC_ADDRESS);
|
|
},
|
|
|
|
/**
|
|
* Set the Short Message Service Center address.
|
|
*
|
|
* @param smsc
|
|
* Short Message Service Center address in PDU format.
|
|
*/
|
|
setSMSCAddress: function setSMSCAddress(smsc) {
|
|
Buf.newParcel(REQUEST_SET_SMSC_ADDRESS);
|
|
Buf.writeString(smsc);
|
|
Buf.sendParcel();
|
|
},
|
|
|
|
/**
|
|
* Setup a data call.
|
|
*
|
|
* @param radioTech
|
|
* Integer to indicate radio technology.
|
|
* DATACALL_RADIOTECHONLOGY_CDMA => CDMA.
|
|
* DATACALL_RADIOTECHONLOGY_GSM => GSM.
|
|
* @param apn
|
|
* String containing the name of the APN to connect to.
|
|
* @param user
|
|
* String containing the username for the APN.
|
|
* @param passwd
|
|
* String containing the password for the APN.
|
|
* @param chappap
|
|
* Integer containing CHAP/PAP auth type.
|
|
* DATACALL_AUTH_NONE => PAP and CHAP is never performed.
|
|
* DATACALL_AUTH_PAP => PAP may be performed.
|
|
* DATACALL_AUTH_CHAP => CHAP may be performed.
|
|
* DATACALL_AUTH_PAP_OR_CHAP => PAP / CHAP may be performed.
|
|
* @param pdptype
|
|
* String containing PDP type to request. ("IP", "IPV6", ...)
|
|
*/
|
|
setupDataCall: function (radioTech, apn, user, passwd, chappap, pdptype) {
|
|
let token = Buf.newParcel(REQUEST_SETUP_DATA_CALL);
|
|
Buf.writeUint32(7);
|
|
Buf.writeString(radioTech.toString());
|
|
Buf.writeString(DATACALL_PROFILE_DEFAULT.toString());
|
|
Buf.writeString(apn);
|
|
Buf.writeString(user);
|
|
Buf.writeString(passwd);
|
|
Buf.writeString(chappap.toString());
|
|
Buf.writeString(pdptype);
|
|
Buf.sendParcel();
|
|
return token;
|
|
},
|
|
|
|
/**
|
|
* Deactivate a data call.
|
|
*
|
|
* @param cid
|
|
* String containing CID.
|
|
* @param reason
|
|
* One of DATACALL_DEACTIVATE_* constants.
|
|
*/
|
|
deactivateDataCall: function (cid, reason) {
|
|
let token = Buf.newParcel(REQUEST_DEACTIVATE_DATA_CALL);
|
|
Buf.writeUint32(2);
|
|
Buf.writeString(cid);
|
|
Buf.writeString(reason);
|
|
Buf.sendParcel();
|
|
return token;
|
|
},
|
|
|
|
/**
|
|
* Get a list of data calls.
|
|
*/
|
|
getDataCallList: function getDataCallList() {
|
|
Buf.simpleRequest(REQUEST_DATA_CALL_LIST);
|
|
},
|
|
|
|
/**
|
|
* Get failure casue code for the most recently failed PDP context.
|
|
*/
|
|
getFailCauseCode: function getFailCauseCode() {
|
|
Buf.simpleRequest(REQUEST_LAST_CALL_FAIL_CAUSE);
|
|
},
|
|
|
|
/**
|
|
* Handle incoming requests from the RIL. We find the method that
|
|
* corresponds to the request type. Incidentally, the request type
|
|
* _is_ the method name, so that's easy.
|
|
*/
|
|
|
|
handleParcel: function handleParcel(request_type, length) {
|
|
let method = this[request_type];
|
|
if (typeof method == "function") {
|
|
debug("Handling parcel as " + method.name);
|
|
method.call(this, length);
|
|
}
|
|
}
|
|
};
|
|
|
|
RIL[REQUEST_GET_SIM_STATUS] = function REQUEST_GET_SIM_STATUS() {
|
|
let iccStatus = {
|
|
cardState: Buf.readUint32(), // CARD_STATE_*
|
|
universalPINState: Buf.readUint32(), // PINSTATE_*
|
|
gsmUmtsSubscriptionAppIndex: Buf.readUint32(),
|
|
setCdmaSubscriptionAppIndex: Buf.readUint32(),
|
|
apps: []
|
|
};
|
|
|
|
let apps_length = Buf.readUint32();
|
|
if (apps_length > CARD_MAX_APPS) {
|
|
apps_length = CARD_MAX_APPS;
|
|
}
|
|
|
|
for (let i = 0 ; i < apps_length ; i++) {
|
|
iccStatus.apps.push({
|
|
app_type: Buf.readUint32(), // APPTYPE_*
|
|
app_state: Buf.readUint32(), // CARD_APP_STATE_*
|
|
perso_substate: Buf.readUint32(), // PERSOSUBSTATE_*
|
|
aid: Buf.readString(),
|
|
app_label: Buf.readString(),
|
|
pin1_replaced: Buf.readUint32(),
|
|
pin1: Buf.readUint32(),
|
|
pin2: Buf.readUint32()
|
|
});
|
|
}
|
|
Phone.onICCStatus(iccStatus);
|
|
};
|
|
RIL[REQUEST_ENTER_SIM_PIN] = function REQUEST_ENTER_SIM_PIN() {
|
|
let response = Buf.readUint32List();
|
|
Phone.onEnterICCPIN(response);
|
|
};
|
|
RIL[REQUEST_ENTER_SIM_PUK] = function REQUEST_ENTER_SIM_PUK() {
|
|
let response = Buf.readUint32List();
|
|
Phone.onEnterICCPUK(response);
|
|
};
|
|
RIL[REQUEST_ENTER_SIM_PIN2] = null;
|
|
RIL[REQUEST_ENTER_SIM_PUK2] = null;
|
|
RIL[REQUEST_CHANGE_SIM_PIN] = function REQUEST_CHANGE_SIM_PIN() {
|
|
Phone.onChangeICCPIN();
|
|
};
|
|
RIL[REQUEST_CHANGE_SIM_PIN2] = null;
|
|
RIL[REQUEST_ENTER_NETWORK_DEPERSONALIZATION] = null;
|
|
RIL[REQUEST_GET_CURRENT_CALLS] = function REQUEST_GET_CURRENT_CALLS(length) {
|
|
let calls_length = 0;
|
|
// The RIL won't even send us the length integer if there are no active calls.
|
|
// So only read this integer if the parcel actually has it.
|
|
if (length) {
|
|
calls_length = Buf.readUint32();
|
|
}
|
|
if (!calls_length) {
|
|
Phone.onCurrentCalls(null);
|
|
return;
|
|
}
|
|
|
|
let calls = {};
|
|
for (let i = 0; i < calls_length; i++) {
|
|
let call = {
|
|
state: Buf.readUint32(), // CALL_STATE_*
|
|
callIndex: Buf.readUint32(), // GSM index (1-based)
|
|
toa: Buf.readUint32(),
|
|
isMpty: Boolean(Buf.readUint32()),
|
|
isMT: Boolean(Buf.readUint32()),
|
|
als: Buf.readUint32(),
|
|
isVoice: Boolean(Buf.readUint32()),
|
|
isVoicePrivacy: Boolean(Buf.readUint32()),
|
|
somethingOrOther: Buf.readUint32(), //XXX TODO whatziz? not in ril.h, but it's in the output...
|
|
number: Buf.readString(), //TODO munge with TOA
|
|
numberPresentation: Buf.readUint32(), // CALL_PRESENTATION_*
|
|
name: Buf.readString(),
|
|
namePresentation: Buf.readUint32(),
|
|
uusInfo: null
|
|
};
|
|
let uusInfoPresent = Buf.readUint32();
|
|
if (uusInfoPresent == 1) {
|
|
call.uusInfo = {
|
|
type: Buf.readUint32(),
|
|
dcs: Buf.readUint32(),
|
|
userData: null //XXX TODO byte array?!?
|
|
};
|
|
}
|
|
calls[call.callIndex] = call;
|
|
}
|
|
Phone.onCurrentCalls(calls);
|
|
};
|
|
RIL[REQUEST_DIAL] = function REQUEST_DIAL(length) {
|
|
Phone.onDial();
|
|
};
|
|
RIL[REQUEST_GET_IMSI] = function REQUEST_GET_IMSI(length) {
|
|
let imsi = Buf.readString();
|
|
Phone.onIMSI(imsi);
|
|
};
|
|
RIL[REQUEST_HANGUP] = function REQUEST_HANGUP(length) {
|
|
Phone.onHangUp();
|
|
};
|
|
RIL[REQUEST_HANGUP_WAITING_OR_BACKGROUND] = null;
|
|
RIL[REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND] = null;
|
|
RIL[REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE] = null;
|
|
RIL[REQUEST_SWITCH_HOLDING_AND_ACTIVE] = null;
|
|
RIL[REQUEST_CONFERENCE] = null;
|
|
RIL[REQUEST_UDUB] = function REQUEST_UDUB(length) {
|
|
Phone.onRejectCall();
|
|
};
|
|
RIL[REQUEST_LAST_CALL_FAIL_CAUSE] = null;
|
|
RIL[REQUEST_SIGNAL_STRENGTH] = function REQUEST_SIGNAL_STRENGTH() {
|
|
let strength = {
|
|
// Valid values are (0-31, 99) as defined in TS 27.007 8.5.
|
|
// For some reason we're getting int32s like [99, 4, 0, 0] and [99, 3, 0, 0]
|
|
// here, so let's strip of anything beyond the first byte.
|
|
gsmSignalStrength: Buf.readUint32() & 0xff,
|
|
// GSM bit error rate (0-7, 99) as defined in TS 27.007 8.5.
|
|
gsmBitErrorRate: Buf.readUint32(),
|
|
// The CDMA RSSI value.
|
|
cdmaDBM: Buf.readUint32(),
|
|
// The CDMA EC/IO.
|
|
cdmaECIO: Buf.readUint32(),
|
|
// The EVDO RSSI value.
|
|
evdoDBM: Buf.readUint32(),
|
|
// The EVDO EC/IO.
|
|
evdoECIO: Buf.readUint32(),
|
|
// Valid values are 0-8. 8 is the highest signal to noise ratio
|
|
evdoSNR: Buf.readUint32()
|
|
};
|
|
Phone.onSignalStrength(strength);
|
|
};
|
|
RIL[REQUEST_REGISTRATION_STATE] = function REQUEST_REGISTRATION_STATE(length) {
|
|
let state = Buf.readStringList();
|
|
Phone.onRegistrationState(state);
|
|
};
|
|
RIL[REQUEST_GPRS_REGISTRATION_STATE] = function REQUEST_GPRS_REGISTRATION_STATE(length) {
|
|
let state = Buf.readStringList();
|
|
Phone.onGPRSRegistrationState(state);
|
|
};
|
|
RIL[REQUEST_OPERATOR] = function REQUEST_OPERATOR(length) {
|
|
let operator = Buf.readStringList();
|
|
Phone.onOperator(operator);
|
|
};
|
|
RIL[REQUEST_RADIO_POWER] = null;
|
|
RIL[REQUEST_DTMF] = function REQUEST_DTMF() {
|
|
Phone.onSendTone();
|
|
};
|
|
RIL[REQUEST_SEND_SMS] = function REQUEST_SEND_SMS() {
|
|
let messageRef = Buf.readUint32();
|
|
let ackPDU = Buf.readString();
|
|
let errorCode = Buf.readUint32();
|
|
Phone.onSendSMS(messageRef, ackPDU, errorCode);
|
|
};
|
|
RIL[REQUEST_SEND_SMS_EXPECT_MORE] = null;
|
|
RIL[REQUEST_SETUP_DATA_CALL] = function REQUEST_SETUP_DATA_CALL() {
|
|
let [cid, ifname, ipaddr, dns, gw] = Buf.readStringList();
|
|
Phone.onSetupDataCall(Buf.lastSolicitedToken, cid, ifname, ipaddr, dns, gw);
|
|
};
|
|
RIL[REQUEST_SIM_IO] = null;
|
|
RIL[REQUEST_SEND_USSD] = null;
|
|
RIL[REQUEST_CANCEL_USSD] = null;
|
|
RIL[REQUEST_GET_CLIR] = null;
|
|
RIL[REQUEST_SET_CLIR] = null;
|
|
RIL[REQUEST_QUERY_CALL_FORWARD_STATUS] = null;
|
|
RIL[REQUEST_SET_CALL_FORWARD] = null;
|
|
RIL[REQUEST_QUERY_CALL_WAITING] = null;
|
|
RIL[REQUEST_SET_CALL_WAITING] = null;
|
|
RIL[REQUEST_SMS_ACKNOWLEDGE] = function REQUEST_SMS_ACKNOWLEDGE() {
|
|
Phone.onAcknowledgeSMS();
|
|
};
|
|
RIL[REQUEST_GET_IMEI] = function REQUEST_GET_IMEI() {
|
|
let imei = Buf.readString();
|
|
Phone.onIMEI(imei);
|
|
};
|
|
RIL[REQUEST_GET_IMEISV] = function REQUEST_GET_IMEISV() {
|
|
let imeiSV = Buf.readString();
|
|
Phone.onIMEISV(imeiSV);
|
|
};
|
|
RIL[REQUEST_ANSWER] = function REQUEST_ANSWER(length) {
|
|
Phone.onAnswerCall();
|
|
};
|
|
RIL[REQUEST_DEACTIVATE_DATA_CALL] = function REQUEST_DEACTIVATE_DATA_CALL() {
|
|
Phone.onDeactivateDataCall(Buf.lastSolicitedToken);
|
|
};
|
|
RIL[REQUEST_QUERY_FACILITY_LOCK] = null;
|
|
RIL[REQUEST_SET_FACILITY_LOCK] = null;
|
|
RIL[REQUEST_CHANGE_BARRING_PASSWORD] = null;
|
|
RIL[REQUEST_QUERY_NETWORK_SELECTION_MODE] = function REQUEST_QUERY_NETWORK_SELECTION_MODE() {
|
|
let response = Buf.readUint32List();
|
|
Phone.onNetworkSelectionMode(response);
|
|
};
|
|
RIL[REQUEST_SET_NETWORK_SELECTION_AUTOMATIC] = null;
|
|
RIL[REQUEST_SET_NETWORK_SELECTION_MANUAL] = null;
|
|
RIL[REQUEST_QUERY_AVAILABLE_NETWORKS] = null;
|
|
RIL[REQUEST_DTMF_START] = function REQUEST_DTMF_START() {
|
|
Phone.onStartTone();
|
|
};
|
|
RIL[REQUEST_DTMF_STOP] = function REQUEST_DTMF_STOP() {
|
|
Phone.onStopTone();
|
|
};
|
|
RIL[REQUEST_BASEBAND_VERSION] = function REQUEST_BASEBAND_VERSION() {
|
|
let version = Buf.readString();
|
|
Phone.onBasebandVersion(version);
|
|
};
|
|
RIL[REQUEST_SEPARATE_CONNECTION] = null;
|
|
RIL[REQUEST_SET_MUTE] = function REQUEST_SET_MUTE(length) {
|
|
Phone.onSetMute();
|
|
};
|
|
RIL[REQUEST_GET_MUTE] = null;
|
|
RIL[REQUEST_QUERY_CLIP] = null;
|
|
RIL[REQUEST_LAST_DATA_CALL_FAIL_CAUSE] = null;
|
|
RIL[REQUEST_DATA_CALL_LIST] = function REQUEST_DATA_CALL_LIST(length) {
|
|
let datacalls = [];
|
|
|
|
if (!length) {
|
|
return;
|
|
}
|
|
|
|
let num = Buf.readUint32();
|
|
for (let i = 0; i < num; i++) {
|
|
datacalls.push({
|
|
cid: Buf.readUint32().toString(),
|
|
active: Buf.readUint32(),
|
|
type: Buf.readString(),
|
|
apn: Buf.readString(),
|
|
address: Buf.readString()
|
|
});
|
|
}
|
|
|
|
Phone.onDataCallList(datacalls);
|
|
};
|
|
RIL[REQUEST_RESET_RADIO] = null;
|
|
RIL[REQUEST_OEM_HOOK_RAW] = null;
|
|
RIL[REQUEST_OEM_HOOK_STRINGS] = null;
|
|
RIL[REQUEST_SCREEN_STATE] = null;
|
|
RIL[REQUEST_SET_SUPP_SVC_NOTIFICATION] = null;
|
|
RIL[REQUEST_WRITE_SMS_TO_SIM] = null;
|
|
RIL[REQUEST_DELETE_SMS_ON_SIM] = null;
|
|
RIL[REQUEST_SET_BAND_MODE] = null;
|
|
RIL[REQUEST_QUERY_AVAILABLE_BAND_MODE] = null;
|
|
RIL[REQUEST_STK_GET_PROFILE] = null;
|
|
RIL[REQUEST_STK_SET_PROFILE] = null;
|
|
RIL[REQUEST_STK_SEND_ENVELOPE_COMMAND] = null;
|
|
RIL[REQUEST_STK_SEND_TERMINAL_RESPONSE] = null;
|
|
RIL[REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM] = null;
|
|
RIL[REQUEST_EXPLICIT_CALL_TRANSFER] = null;
|
|
RIL[REQUEST_SET_PREFERRED_NETWORK_TYPE] = null;
|
|
RIL[REQUEST_GET_PREFERRED_NETWORK_TYPE] = null;
|
|
RIL[REQUEST_GET_NEIGHBORING_CELL_IDS] = null;
|
|
RIL[REQUEST_SET_LOCATION_UPDATES] = null;
|
|
RIL[REQUEST_CDMA_SET_SUBSCRIPTION] = null;
|
|
RIL[REQUEST_CDMA_SET_ROAMING_PREFERENCE] = null;
|
|
RIL[REQUEST_CDMA_QUERY_ROAMING_PREFERENCE] = null;
|
|
RIL[REQUEST_SET_TTY_MODE] = null;
|
|
RIL[REQUEST_QUERY_TTY_MODE] = null;
|
|
RIL[REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE] = null;
|
|
RIL[REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE] = null;
|
|
RIL[REQUEST_CDMA_FLASH] = null;
|
|
RIL[REQUEST_CDMA_BURST_DTMF] = null;
|
|
RIL[REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY] = null;
|
|
RIL[REQUEST_CDMA_SEND_SMS] = null;
|
|
RIL[REQUEST_CDMA_SMS_ACKNOWLEDGE] = null;
|
|
RIL[REQUEST_GSM_GET_BROADCAST_SMS_CONFIG] = null;
|
|
RIL[REQUEST_GSM_SET_BROADCAST_SMS_CONFIG] = null;
|
|
RIL[REQUEST_GSM_SMS_BROADCAST_ACTIVATION] = null;
|
|
RIL[REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG] = null;
|
|
RIL[REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG] = null;
|
|
RIL[REQUEST_CDMA_SMS_BROADCAST_ACTIVATION] = null;
|
|
RIL[REQUEST_CDMA_SUBSCRIPTION] = null;
|
|
RIL[REQUEST_CDMA_WRITE_SMS_TO_RUIM] = null;
|
|
RIL[REQUEST_CDMA_DELETE_SMS_ON_RUIM] = null;
|
|
RIL[REQUEST_DEVICE_IDENTITY] = null;
|
|
RIL[REQUEST_EXIT_EMERGENCY_CALLBACK_MODE] = null;
|
|
RIL[REQUEST_GET_SMSC_ADDRESS] = function REQUEST_GET_SMSC_ADDRESS() {
|
|
let smsc = Buf.readString();
|
|
Phone.onGetSMSCAddress(smsc);
|
|
};
|
|
RIL[REQUEST_SET_SMSC_ADDRESS] = function REQUEST_SET_SMSC_ADDRESS() {
|
|
Phone.onSetSMSCAddress();
|
|
};
|
|
RIL[REQUEST_REPORT_SMS_MEMORY_STATUS] = null;
|
|
RIL[REQUEST_REPORT_STK_SERVICE_IS_RUNNING] = null;
|
|
RIL[UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED] = function UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED() {
|
|
let newState = Buf.readUint32();
|
|
Phone.onRadioStateChanged(newState);
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_CALL_STATE_CHANGED] = function UNSOLICITED_RESPONSE_CALL_STATE_CHANGED() {
|
|
Phone.onCallStateChanged();
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_NETWORK_STATE_CHANGED] = function UNSOLICITED_RESPONSE_NETWORK_STATE_CHANGED() {
|
|
Phone.onNetworkStateChanged();
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_NEW_SMS] = function UNSOLICITED_RESPONSE_NEW_SMS(length) {
|
|
Phone.onNewSMS(length);
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT] = function UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT(length) {
|
|
let info = Buf.readStringList();
|
|
Phone.onNewSMSStatusReport(info);
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM] = function UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM(length) {
|
|
let info = Buf.readUint32List();
|
|
Phone.onNewSMSOnSIM(message);
|
|
};
|
|
RIL[UNSOLICITED_ON_USSD] = null;
|
|
RIL[UNSOLICITED_ON_USSD_REQUEST] = null;
|
|
RIL[UNSOLICITED_NITZ_TIME_RECEIVED] = null;
|
|
RIL[UNSOLICITED_SIGNAL_STRENGTH] = function UNSOLICITED_SIGNAL_STRENGTH() {
|
|
this[REQUEST_SIGNAL_STRENGTH]();
|
|
};
|
|
RIL[UNSOLICITED_DATA_CALL_LIST_CHANGED] = null;
|
|
RIL[UNSOLICITED_SUPP_SVC_NOTIFICATION] = null;
|
|
RIL[UNSOLICITED_STK_SESSION_END] = null;
|
|
RIL[UNSOLICITED_STK_PROACTIVE_COMMAND] = null;
|
|
RIL[UNSOLICITED_STK_EVENT_NOTIFY] = null;
|
|
RIL[UNSOLICITED_STK_CALL_SETUP] = null;
|
|
RIL[UNSOLICITED_SIM_SMS_STORAGE_FULL] = null;
|
|
RIL[UNSOLICITED_SIM_REFRESH] = null;
|
|
RIL[UNSOLICITED_CALL_RING] = function UNSOLICITED_CALL_RING() {
|
|
let info;
|
|
let isCDMA = false; //XXX TODO hard-code this for now
|
|
if (isCDMA) {
|
|
info = {
|
|
isPresent: Buf.readUint32(),
|
|
signalType: Buf.readUint32(),
|
|
alertPitch: Buf.readUint32(),
|
|
signal: Buf.readUint32()
|
|
};
|
|
}
|
|
Phone.onCallRing(info);
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED] = function UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED() {
|
|
Phone.onICCStatusChanged();
|
|
};
|
|
RIL[UNSOLICITED_RESPONSE_CDMA_NEW_SMS] = null;
|
|
RIL[UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS] = null;
|
|
RIL[UNSOLICITED_CDMA_RUIM_SMS_STORAGE_FULL] = null;
|
|
RIL[UNSOLICITED_RESTRICTED_STATE_CHANGED] = null;
|
|
RIL[UNSOLICITED_ENTER_EMERGENCY_CALLBACK_MODE] = null;
|
|
RIL[UNSOLICITED_CDMA_CALL_WAITING] = null;
|
|
RIL[UNSOLICITED_CDMA_OTA_PROVISION_STATUS] = null;
|
|
RIL[UNSOLICITED_CDMA_INFO_REC] = null;
|
|
RIL[UNSOLICITED_OEM_HOOK_RAW] = null;
|
|
RIL[UNSOLICITED_RINGBACK_TONE] = null;
|
|
RIL[UNSOLICITED_RESEND_INCALL_MUTE] = null;
|
|
|
|
|
|
/**
|
|
* This object represents the phone's state and functionality. It is
|
|
* essentially a state machine that's being acted upon from RIL and the
|
|
* mainthread via postMessage communication.
|
|
*/
|
|
let Phone = {
|
|
|
|
//XXX TODO beware, this is just demo code. It's still missing
|
|
// communication with the UI thread.
|
|
|
|
/**
|
|
* One of the RADIO_STATE_* constants.
|
|
*/
|
|
radioState: RADIO_STATE_UNAVAILABLE,
|
|
|
|
/**
|
|
* Strings
|
|
*/
|
|
IMEI: null,
|
|
IMEISV: null,
|
|
IMSI: null,
|
|
SMSC: null,
|
|
|
|
/**
|
|
* List of strings identifying the network operator.
|
|
*/
|
|
operator: null,
|
|
|
|
/**
|
|
* String containing the baseband version.
|
|
*/
|
|
basebandVersion: null,
|
|
|
|
/**
|
|
* Network selection mode. 0 for automatic, 1 for manual selection.
|
|
*/
|
|
networkSelectionMode: null,
|
|
|
|
/**
|
|
* ICC status. Keeps a reference of the data response to the
|
|
* getICCStatus request.
|
|
*/
|
|
iccStatus: null,
|
|
|
|
/**
|
|
* Card state
|
|
*/
|
|
cardState: null,
|
|
|
|
/**
|
|
* Active calls
|
|
*/
|
|
currentCalls: {},
|
|
|
|
/**
|
|
* Mute or unmute the radio.
|
|
*/
|
|
_muted: true,
|
|
|
|
/**
|
|
* Existing data calls.
|
|
*/
|
|
currentDataCalls: {},
|
|
|
|
/**
|
|
* Tracks active requests to the RIL concerning 3G data calls.
|
|
*/
|
|
activeDataRequests: {},
|
|
|
|
get muted() {
|
|
return this._muted;
|
|
},
|
|
|
|
set muted(val) {
|
|
val = Boolean(val);
|
|
if (this._muted != val) {
|
|
RIL.setMute(val);
|
|
this._muted = val;
|
|
}
|
|
},
|
|
|
|
_handleChangedCallState: function _handleChangedCallState(changedCall) {
|
|
let message = {type: "callStateChange",
|
|
call: {callIndex: changedCall.callIndex,
|
|
state: changedCall.state,
|
|
number: changedCall.number,
|
|
name: changedCall.name}};
|
|
this.sendDOMMessage(message);
|
|
},
|
|
|
|
_handleDisconnectedCall: function _handleDisconnectedCall(disconnectedCall) {
|
|
let message = {type: "callDisconnected",
|
|
call: {callIndex: disconnectedCall.callIndex}};
|
|
this.sendDOMMessage(message);
|
|
},
|
|
|
|
/**
|
|
* Handlers for messages from the RIL. They all begin with on* and are called
|
|
* from RIL object.
|
|
*/
|
|
|
|
onRadioStateChanged: function onRadioStateChanged(newState) {
|
|
debug("Radio state changed from " + this.radioState + " to " + newState);
|
|
if (this.radioState == newState) {
|
|
// No change in state, return.
|
|
return;
|
|
}
|
|
|
|
let gsm = newState == RADIO_STATE_SIM_NOT_READY ||
|
|
newState == RADIO_STATE_SIM_LOCKED_OR_ABSENT ||
|
|
newState == RADIO_STATE_SIM_READY;
|
|
let cdma = newState == RADIO_STATE_RUIM_NOT_READY ||
|
|
newState == RADIO_STATE_RUIM_READY ||
|
|
newState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT ||
|
|
newState == RADIO_STATE_NV_NOT_READY ||
|
|
newState == RADIO_STATE_NV_READY;
|
|
|
|
// Figure out state transitions and send out more RIL requests as necessary
|
|
// as well as events to the main thread.
|
|
|
|
if (this.radioState == RADIO_STATE_UNAVAILABLE &&
|
|
newState != RADIO_STATE_UNAVAILABLE) {
|
|
// The radio became available, let's get its info.
|
|
if (gsm) {
|
|
RIL.getIMEI();
|
|
RIL.getIMEISV();
|
|
}
|
|
if (cdma) {
|
|
RIL.getDeviceIdentity();
|
|
}
|
|
Buf.simpleRequest(REQUEST_BASEBAND_VERSION);
|
|
RIL.setScreenState(true);
|
|
this.sendDOMMessage({
|
|
type: "radiostatechange",
|
|
radioState: (newState == RADIO_STATE_OFF) ?
|
|
DOM_RADIOSTATE_OFF : DOM_RADIOSTATE_READY
|
|
});
|
|
|
|
//XXX TODO For now, just turn the radio on if it's off. for the real
|
|
// deal we probably want to do the opposite: start with a known state
|
|
// when we boot up and let the UI layer control the radio power.
|
|
if (newState == RADIO_STATE_OFF) {
|
|
RIL.setRadioPower(true);
|
|
}
|
|
}
|
|
|
|
if (newState == RADIO_STATE_UNAVAILABLE) {
|
|
// The radio is no longer available, we need to deal with any
|
|
// remaining pending requests.
|
|
//TODO do that
|
|
|
|
this.sendDOMMessage({type: "radiostatechange",
|
|
radioState: DOM_RADIOSTATE_UNAVAILABLE});
|
|
}
|
|
|
|
if (newState == RADIO_STATE_SIM_READY ||
|
|
newState == RADIO_STATE_RUIM_READY ||
|
|
newState == RADIO_STATE_NV_READY) {
|
|
// The ICC has become available. Get all the things.
|
|
RIL.getICCStatus();
|
|
this.requestNetworkInfo();
|
|
RIL.getSignalStrength();
|
|
RIL.getSMSCAddress();
|
|
this.sendDOMMessage({type: "cardstatechange",
|
|
cardState: DOM_CARDSTATE_READY});
|
|
}
|
|
if (newState == RADIO_STATE_SIM_LOCKED_OR_ABSENT ||
|
|
newState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT) {
|
|
RIL.getICCStatus();
|
|
this.sendDOMMessage({type: "cardstatechange",
|
|
cardState: DOM_CARDSTATE_UNAVAILABLE});
|
|
}
|
|
|
|
let wasOn = this.radioState != RADIO_STATE_OFF &&
|
|
this.radioState != RADIO_STATE_UNAVAILABLE;
|
|
let isOn = newState != RADIO_STATE_OFF &&
|
|
newState != RADIO_STATE_UNAVAILABLE;
|
|
if (!wasOn && isOn) {
|
|
//TODO
|
|
}
|
|
if (wasOn && !isOn) {
|
|
//TODO
|
|
}
|
|
|
|
this.radioState = newState;
|
|
},
|
|
|
|
onCurrentCalls: function onCurrentCalls(newCalls) {
|
|
// Go through the calls we currently have on file and see if any of them
|
|
// changed state. Remove them from the newCalls map as we deal with them
|
|
// so that only new calls remain in the map after we're done.
|
|
for each (let currentCall in this.currentCalls) {
|
|
let newCall;
|
|
if (newCalls) {
|
|
newCall = newCalls[currentCall.callIndex];
|
|
delete newCalls[currentCall.callIndex];
|
|
}
|
|
|
|
if (newCall) {
|
|
// Call is still valid.
|
|
if (newCall.state != currentCall.state) {
|
|
// State has changed.
|
|
currentCall.state = newCall.state;
|
|
this._handleChangedCallState(currentCall);
|
|
}
|
|
}
|
|
else {
|
|
// Call is no longer reported by the radio. Remove from our map and
|
|
// send disconnected state change.
|
|
delete this.currentCalls[currentCall.callIndex];
|
|
this._handleDisconnectedCall(currentCall);
|
|
}
|
|
}
|
|
|
|
// Go through any remaining calls that are new to us.
|
|
for each (let newCall in newCalls) {
|
|
if (newCall.isVoice) {
|
|
// Format international numbers appropriately.
|
|
if (newCall.number &&
|
|
newCall.toa == TOA_INTERNATIONAL &&
|
|
newCall.number[0] != "+") {
|
|
newCall.number = "+" + newCall.number;
|
|
}
|
|
// Add to our map.
|
|
this.currentCalls[newCall.callIndex] = newCall;
|
|
this._handleChangedCallState(newCall);
|
|
}
|
|
}
|
|
|
|
// Update our mute status. If there is anything in our currentCalls map then
|
|
// we know it's a voice call and we should leave audio on.
|
|
this.muted = Object.getOwnPropertyNames(this.currentCalls).length == 0;
|
|
},
|
|
|
|
onCallStateChanged: function onCallStateChanged() {
|
|
RIL.getCurrentCalls();
|
|
},
|
|
|
|
onCallRing: function onCallRing(info) {
|
|
// For now we don't need to do anything here because we'll also get a
|
|
// call state changed notification.
|
|
},
|
|
|
|
onNetworkStateChanged: function onNetworkStateChanged() {
|
|
debug("Network state changed, re-requesting phone state.");
|
|
this.requestNetworkInfo();
|
|
},
|
|
|
|
onICCStatus: function onICCStatus(iccStatus) {
|
|
if (DEBUG) {
|
|
debug("iccStatus: " + JSON.stringify(iccStatus));
|
|
}
|
|
this.iccStatus = iccStatus;
|
|
|
|
if ((!iccStatus) || (iccStatus.cardState == CARD_STATE_ABSENT)) {
|
|
if (DEBUG) debug("ICC absent");
|
|
if (this.cardState == DOM_CARDSTATE_ABSENT) {
|
|
return;
|
|
}
|
|
this.cardState = DOM_CARDSTATE_ABSENT;
|
|
this.sendDOMMessage({type: "cardstatechange",
|
|
cardState: this.cardState});
|
|
return;
|
|
}
|
|
|
|
if ((this.radioState == RADIO_STATE_OFF) ||
|
|
(this.radioState == RADIO_STATE_UNAVAILABLE) ||
|
|
(this.radioState == RADIO_STATE_SIM_NOT_READY) ||
|
|
(this.radioState == RADIO_STATE_RUIM_NOT_READY) ||
|
|
(this.radioState == RADIO_STATE_NV_NOT_READY) ||
|
|
(this.radioState == RADIO_STATE_NV_READY)) {
|
|
if (DEBUG) debug("ICC not ready");
|
|
if (this.cardState == DOM_CARDSTATE_NOT_READY) {
|
|
return;
|
|
}
|
|
this.cardState = DOM_CARDSTATE_NOT_READY;
|
|
this.sendDOMMessage({type: "cardstatechange",
|
|
cardState: this.cardState});
|
|
return;
|
|
}
|
|
|
|
if ((this.radioState == RADIO_STATE_SIM_LOCKED_OR_ABSENT) ||
|
|
(this.radioState == RADIO_STATE_SIM_READY) ||
|
|
(this.radioState == RADIO_STATE_RUIM_LOCKED_OR_ABSENT) ||
|
|
(this.radioState == RADIO_STATE_RUIM_READY)) {
|
|
let app = iccStatus.apps[iccStatus.gsmUmtsSubscriptionAppIndex];
|
|
if (!app) {
|
|
if (DEBUG) {
|
|
debug("Subscription application is not present in iccStatus.");
|
|
}
|
|
if (this.cardState == DOM_CARDSTATE_ABSENT) {
|
|
return;
|
|
}
|
|
this.cardState = DOM_CARDSTATE_ABSENT;
|
|
this.sendDOMMessage({type: "cardstatechange",
|
|
cardState: this.cardState});
|
|
return;
|
|
}
|
|
|
|
let newCardState;
|
|
switch (app.app_state) {
|
|
case CARD_APP_STATE_PIN:
|
|
newCardState = DOM_CARDSTATE_PIN_REQUIRED;
|
|
break;
|
|
case CARD_APP_STATE_PUK:
|
|
newCardState = DOM_CARDSTATE_PUK_REQUIRED;
|
|
break;
|
|
case CARD_APP_STATE_SUBSCRIPTION_PERSO:
|
|
newCardState = DOM_CARDSTATE_NETWORK_LOCKED;
|
|
break;
|
|
case CARD_APP_STATE_READY:
|
|
newCardState = DOM_CARDSTATE_READY;
|
|
break;
|
|
case CARD_APP_STATE_UNKNOWN:
|
|
case CARD_APP_STATE_DETECTED:
|
|
default:
|
|
newCardState = DOM_CARDSTATE_NOT_READY;
|
|
}
|
|
|
|
if (this.cardState == newCardState) {
|
|
return;
|
|
}
|
|
this.cardState = newCardState;
|
|
this.sendDOMMessage({type: "cardstatechange",
|
|
cardState: this.cardState});
|
|
}
|
|
},
|
|
|
|
onICCStatusChanged: function onICCStatusChanged() {
|
|
RIL.getICCStatus();
|
|
},
|
|
|
|
onEnterICCPIN: function onEnterICCPIN(response) {
|
|
if (DEBUG) debug("REQUEST_ENTER_SIM_PIN returned " + response);
|
|
//TODO
|
|
},
|
|
|
|
onChangeICCPIN: function onChangeICCPIN() {
|
|
if (DEBUG) debug("REQUEST_CHANGE_SIM_PIN");
|
|
//TODO
|
|
},
|
|
|
|
onEnterICCPUK: function onEnterICCPUK(response) {
|
|
if (DEBUG) debug("REQUEST_ENTER_SIM_PUK returned " + response);
|
|
//TODO
|
|
},
|
|
|
|
onNetworkSelectionMode: function onNetworkSelectionMode(mode) {
|
|
this.networkSelectionMode = mode[0];
|
|
},
|
|
|
|
onBasebandVersion: function onBasebandVersion(version) {
|
|
this.basebandVersion = version;
|
|
},
|
|
|
|
onIMSI: function onIMSI(imsi) {
|
|
this.IMSI = imsi;
|
|
},
|
|
|
|
onIMEI: function onIMEI(imei) {
|
|
this.IMEI = imei;
|
|
},
|
|
|
|
onIMEISV: function onIMEISV(imeiSV) {
|
|
this.IMEISV = imeiSV;
|
|
},
|
|
|
|
onRegistrationState: function onRegistrationState(newState) {
|
|
this.registrationState = newState;
|
|
},
|
|
|
|
onGPRSRegistrationState: function onGPRSRegistrationState(newState) {
|
|
this.gprsRegistrationState = newState;
|
|
},
|
|
|
|
onOperator: function onOperator(operator) {
|
|
if (operator.length < 3) {
|
|
if (DEBUG) debug("Expected at least 3 strings for operator.");
|
|
}
|
|
if (!this.operator ||
|
|
this.operator.alphaLong != operator[0] ||
|
|
this.operator.alphaShort != operator[1] ||
|
|
this.operator.numeric != operator[2]) {
|
|
this.operator = {alphaLong: operator[0],
|
|
alphaShort: operator[1],
|
|
numeric: operator[2]};
|
|
this.sendDOMMessage({type: "operatorchange",
|
|
operator: this.operator});
|
|
}
|
|
},
|
|
|
|
onSignalStrength: function onSignalStrength(strength) {
|
|
debug("Signal strength " + JSON.stringify(strength));
|
|
this.sendDOMMessage({type: "signalstrengthchange",
|
|
signalStrength: strength});
|
|
},
|
|
|
|
onDial: function onDial() {
|
|
},
|
|
|
|
onHangUp: function onHangUp() {
|
|
},
|
|
|
|
onAnswerCall: function onAnswerCall() {
|
|
},
|
|
|
|
onRejectCall: function onRejectCall() {
|
|
},
|
|
|
|
onSetMute: function onSetMute() {
|
|
},
|
|
|
|
onSendTone: function onSendTone() {
|
|
},
|
|
|
|
onStartTone: function onStartTone() {
|
|
},
|
|
|
|
onStopTone: function onStopTone() {
|
|
},
|
|
|
|
onGetSMSCAddress: function onGetSMSCAddress(smsc) {
|
|
this.SMSC = smsc;
|
|
},
|
|
|
|
onSetSMSCAddress: function onSetSMSCAddress() {
|
|
},
|
|
|
|
onSendSMS: function onSendSMS(messageRef, ackPDU, errorCode) {
|
|
//TODO
|
|
},
|
|
|
|
onNewSMS: function onNewSMS(payloadLength) {
|
|
if (!payloadLength) {
|
|
if (DEBUG) debug("Received empty SMS!");
|
|
//TODO: should we acknowledge the SMS here? maybe only after multiple
|
|
//failures.
|
|
return;
|
|
}
|
|
// An SMS is a string, but we won't read it as such, so let's read the
|
|
// string length and then defer to PDU parsing helper.
|
|
let messageStringLength = Buf.readUint32();
|
|
if (DEBUG) debug("Got new SMS, length " + messageStringLength);
|
|
let message = GsmPDUHelper.readMessage();
|
|
if (DEBUG) debug(message);
|
|
|
|
// Read string delimiters. See Buf.readString().
|
|
let delimiter = Buf.readUint16();
|
|
if (!(messageStringLength & 1)) {
|
|
delimiter |= Buf.readUint16();
|
|
}
|
|
if (DEBUG) {
|
|
if (delimiter != 0) {
|
|
debug("Something's wrong, found string delimiter: " + delimiter);
|
|
}
|
|
}
|
|
|
|
message.type = "sms-received";
|
|
this.sendDOMMessage(message);
|
|
|
|
//TODO: this might be a lie? do we want to wait for the mainthread to
|
|
// report back?
|
|
RIL.acknowledgeSMS(true, SMS_HANDLED);
|
|
},
|
|
|
|
onNewSMSStatusReport: function onNewSMSStatusReport(info) {
|
|
//TODO
|
|
},
|
|
|
|
onNewSMSOnSIM: function onNewSMSOnSIM(info) {
|
|
//TODO
|
|
},
|
|
|
|
onAcknowledgeSMS: function onAcknowledgeSMS() {
|
|
},
|
|
|
|
onSetupDataCall: function onSetupDataCall(token, cid, ifname, ipaddr,
|
|
dns, gw) {
|
|
let options = this.activeDataRequests[token];
|
|
delete this.activeDataRequests[token];
|
|
|
|
this.currentDataCalls[cid] = {
|
|
state: GECKO_DATACALL_STATE_CONNECTED,
|
|
cid: cid,
|
|
apn: options.apn,
|
|
ifname: ifname,
|
|
ipaddr: ipaddr,
|
|
dns: dns,
|
|
gw: gw,
|
|
};
|
|
this.sendDOMMessage({type: "datacallstatechange",
|
|
state: GECKO_DATACALL_STATE_CONNECTED,
|
|
cid: cid,
|
|
apn: options.apn,
|
|
ifname: ifname,
|
|
ipaddr: ipaddr,
|
|
dns: dns,
|
|
gateway: gw});
|
|
},
|
|
|
|
onDeactivateDataCall: function onDeactivateDataCall(token) {
|
|
let options = this.activeDataRequests[token];
|
|
delete this.activeDataRequests[token];
|
|
|
|
let cid = options.cid;
|
|
if (!(cid in this.currentDataCalls)) {
|
|
return;
|
|
}
|
|
|
|
let apn = this.currentDataCalls[cid].apn;
|
|
delete this.currentDataCalls[cid];
|
|
this.sendDOMMessage({type: "datacallstatechange",
|
|
state: GECKO_DATACALL_STATE_DISCONNECTED,
|
|
cid: cid,
|
|
apn: apn});
|
|
},
|
|
|
|
onDataCallList: function onDataCallList(datacalls) {
|
|
let currentDataCalls = this.currentDataCalls;
|
|
|
|
// Sync content of currentDataCalls and data call list.
|
|
for each (let datacall in datacalls) {
|
|
let {cid, apn} = datacall;
|
|
|
|
if (datacall.active != DATACALL_INACTIVE) {
|
|
// XXX: This should be followed up.
|
|
// datacall.active == DATACALL_ACTIVE_DOWN(1) for my device
|
|
if (!(cid in currentDataCalls)) {
|
|
let datacall = {state: GECKO_DATACALL_STATE_CONNECTED,
|
|
cid: cid,
|
|
apn: apn,
|
|
ipaddr: datacall.address};
|
|
currentDataCalls[cid] = datacall;
|
|
|
|
this.sendDOMMessage({type: "datacallstatechange",
|
|
state: GECKO_DATACALL_STATE_CONNECTED,
|
|
cid: cid,
|
|
apn: apn});
|
|
}
|
|
} else { // datacall.active == DATACALL_INACTIVE
|
|
if (cid in currentDataCalls) {
|
|
delete currentDataCalls[cid];
|
|
this.sendDOMMessage({type: "datacallstatechange",
|
|
state: GECKO_DATACALL_STATE_DISCONNECTED,
|
|
cid: cid,
|
|
apn: apn});
|
|
}
|
|
}
|
|
}
|
|
|
|
let datacall_list = [];
|
|
for each (let datacall in this.currentDataCalls) {
|
|
datacall_list.push(datacall);
|
|
}
|
|
this.sendDOMMessage({type: "datacalllist",
|
|
datacalls: datacall_list});
|
|
},
|
|
|
|
/**
|
|
* Outgoing requests to the RIL. These can be triggered from the
|
|
* main thread via messages that look like this:
|
|
*
|
|
* {type: "methodName",
|
|
* extra: "parameters",
|
|
* go: "here"}
|
|
*
|
|
* So if one of the following methods takes arguments, it takes only one,
|
|
* an object, which then contains all of the parameters as attributes.
|
|
* The "@param" documentation is to be interpreted accordingly.
|
|
*/
|
|
|
|
/**
|
|
* Request various states about the network.
|
|
*/
|
|
requestNetworkInfo: function requestNetworkInfo() {
|
|
if (DEBUG) debug("Requesting phone state");
|
|
RIL.getRegistrationState();
|
|
RIL.getGPRSRegistrationState(); //TODO only GSM
|
|
RIL.getOperator();
|
|
RIL.getNetworkSelectionMode();
|
|
},
|
|
|
|
/**
|
|
* Get a list of current voice calls.
|
|
*/
|
|
enumerateCalls: function enumerateCalls() {
|
|
if (DEBUG) debug("Sending all current calls");
|
|
let calls = [];
|
|
for each (let call in this.currentCalls) {
|
|
calls.push(call);
|
|
}
|
|
this.sendDOMMessage({type: "enumerateCalls", calls: calls});
|
|
},
|
|
|
|
/**
|
|
* Dial the phone.
|
|
*
|
|
* @param number
|
|
* String containing the number to dial.
|
|
*/
|
|
dial: function dial(options) {
|
|
RIL.dial(options.number, 0, 0);
|
|
},
|
|
|
|
/**
|
|
* Send DTMF Tone
|
|
*
|
|
* @param dtmfChar
|
|
* String containing the DTMF signal to send.
|
|
*/
|
|
sendTone: function sendTone(options) {
|
|
RIL.sendTone(options.dtmfChar);
|
|
},
|
|
|
|
/**
|
|
* Start DTMF Tone
|
|
*
|
|
* @param dtmfChar
|
|
* String containing the DTMF signal to send.
|
|
*/
|
|
startTone: function startTone(options) {
|
|
RIL.startTone(options.dtmfChar);
|
|
},
|
|
|
|
/**
|
|
* Stop DTMF Tone
|
|
*/
|
|
stopTone: function stopTone() {
|
|
RIL.stopTone();
|
|
},
|
|
|
|
/**
|
|
* Hang up a call.
|
|
*
|
|
* @param callIndex
|
|
* Call index of the call to hang up.
|
|
*/
|
|
hangUp: function hangUp(options) {
|
|
//TODO need to check whether call is holding/waiting/background
|
|
// and then use REQUEST_HANGUP_WAITING_OR_BACKGROUND
|
|
RIL.hangUp(options.callIndex);
|
|
},
|
|
|
|
/**
|
|
* Answer an incoming call.
|
|
*
|
|
* @param callIndex
|
|
* Call index of the call to answer.
|
|
*/
|
|
answerCall: function answerCall(options) {
|
|
// Check for races. Since we dispatched the incoming call notification the
|
|
// incoming call may have changed. The main thread thinks that it is
|
|
// answering the call with the given index, so only answer if that is still
|
|
// incoming.
|
|
let call = this.currentCalls[options.callIndex];
|
|
if (call && call.state == CALL_STATE_INCOMING) {
|
|
RIL.answerCall();
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Reject an incoming call.
|
|
*
|
|
* @param callIndex
|
|
* Call index of the call to reject.
|
|
*/
|
|
rejectCall: function rejectCall(options) {
|
|
// Check for races. Since we dispatched the incoming call notification the
|
|
// incoming call may have changed. The main thread thinks that it is
|
|
// rejecting the call with the given index, so only reject if that is still
|
|
// incoming.
|
|
let call = this.currentCalls[options.callIndex];
|
|
if (call && call.state == CALL_STATE_INCOMING) {
|
|
RIL.rejectCall();
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Send an SMS.
|
|
*
|
|
* @param number
|
|
* String containing the recipient number.
|
|
* @param body
|
|
* String containing the message text.
|
|
*/
|
|
sendSMS: function sendSMS(options) {
|
|
// Get the SMS Center address
|
|
if (!this.SMSC) {
|
|
//TODO: we shouldn't get here, but if we do, we might want to hold on
|
|
// to the message and retry once we know the SMSC... or just notify an
|
|
// error to the mainthread and let them deal with retrying?
|
|
if (DEBUG) {
|
|
debug("Cannot send the SMS. Need to get the SMSC address first.");
|
|
}
|
|
return;
|
|
}
|
|
//TODO: verify values on 'options'
|
|
//TODO: the data encoding and length in octets should eventually be
|
|
// computed on the mainthread and passed down to us.
|
|
RIL.sendSMS(this.SMSC, options.number, options.body,
|
|
PDU_DCS_MSG_CODING_7BITS_ALPHABET, //TODO: hard-coded for now,
|
|
Math.ceil(options.body.length * 7 / 8)); //TODO: ditto
|
|
},
|
|
|
|
/**
|
|
* Setup a data call (PDP).
|
|
*/
|
|
setupDataCall: function setupDataCall(options) {
|
|
if (DEBUG) debug("setupDataCall: " + JSON.stringify(options));
|
|
|
|
let token = RIL.setupDataCall(options.radioTech, options.apn,
|
|
options.user, options.passwd,
|
|
options.chappap, options.reason);
|
|
this.activeDataRequests[token] = options;
|
|
this.sendDOMMessage({type: "datacallstatechange",
|
|
state: GECKO_DATACALL_STATE_CONNECTING,
|
|
apn: options.apn});
|
|
},
|
|
|
|
/**
|
|
* Deactivate a data call (PDP).
|
|
*/
|
|
deactivateDataCall: function deactivateDataCall(options) {
|
|
if (!(options.cid in this.currentDataCalls)) {
|
|
return;
|
|
}
|
|
|
|
let datacall = this.currentDataCalls[options.cid];
|
|
datacall.state = GECKO_DATACALL_STATE_DISCONNECTING;
|
|
|
|
let token = RIL.deactivateDataCall(options.cid, options.reason);
|
|
this.activeDataRequests[token] = options;
|
|
this.sendDOMMessage({type: "datacallstatechange",
|
|
state: GECKO_DATACALL_STATE_DISCONNECTING,
|
|
cid: options.cid,
|
|
apn: datacall.apn});
|
|
},
|
|
|
|
/**
|
|
* Get the list of data calls.
|
|
*/
|
|
getDataCallList: function getDataCallList(options) {
|
|
RIL.getDataCallList();
|
|
},
|
|
|
|
/**
|
|
* Get failure cause code for the last failed PDP context.
|
|
*/
|
|
getFailCauseCode: function getFailCauseCode(options) {
|
|
RIL.getFailCauseCode();
|
|
},
|
|
|
|
/**
|
|
* Handle incoming messages from the main UI thread.
|
|
*
|
|
* @param message
|
|
* Object containing the message. Messages are supposed
|
|
*/
|
|
handleDOMMessage: function handleMessage(message) {
|
|
if (DEBUG) debug("Received DOM message " + JSON.stringify(message));
|
|
let method = this[message.type];
|
|
if (typeof method != "function") {
|
|
if (DEBUG) {
|
|
debug("Don't know what to do with message " + JSON.stringify(message));
|
|
}
|
|
return;
|
|
}
|
|
method.call(this, message);
|
|
},
|
|
|
|
/**
|
|
* Send messages to the main UI thread.
|
|
*/
|
|
sendDOMMessage: function sendDOMMessage(message) {
|
|
postMessage(message, "*");
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* This object exposes the functionality to parse and serialize PDU strings
|
|
*
|
|
* A PDU is a string containing a series of hexadecimally encoded octets
|
|
* or nibble-swapped binary-coded decimals (BCDs). It contains not only the
|
|
* message text but information about the sender, the SMS service center,
|
|
* timestamp, etc.
|
|
*/
|
|
let GsmPDUHelper = {
|
|
|
|
/**
|
|
* Read one character (2 bytes) from a RIL string and decode as hex.
|
|
*
|
|
* @return the nibble as a number.
|
|
*/
|
|
readHexNibble: function readHexNibble() {
|
|
let nibble = Buf.readUint16();
|
|
if (nibble >= 48 && nibble <= 57) {
|
|
nibble -= 48; // ASCII '0'..'9'
|
|
} else if (nibble >= 65 && nibble <= 70) {
|
|
nibble -= 55; // ASCII 'A'..'F'
|
|
} else if (nibble >= 97 && nibble <= 102) {
|
|
nibble -= 87; // ASCII 'a'..'f'
|
|
} else {
|
|
throw "Found invalid nibble during PDU parsing: " +
|
|
String.fromCharCode(nibble);
|
|
}
|
|
return nibble;
|
|
},
|
|
|
|
/**
|
|
* Encode a nibble as one hex character in a RIL string (2 bytes).
|
|
*
|
|
* @param nibble
|
|
* The nibble to encode (represented as a number)
|
|
*/
|
|
writeHexNibble: function writeHexNibble(nibble) {
|
|
nibble &= 0x0f;
|
|
if (nibble < 10) {
|
|
nibble += 48; // ASCII '0'
|
|
} else {
|
|
nibble += 55; // ASCII 'A'
|
|
}
|
|
Buf.writeUint16(nibble);
|
|
},
|
|
|
|
/**
|
|
* Read a hex-encoded octet (two nibbles).
|
|
*
|
|
* @return the octet as a number.
|
|
*/
|
|
readHexOctet: function readHexOctet() {
|
|
return (this.readHexNibble() << 4) | this.readHexNibble();
|
|
},
|
|
|
|
/**
|
|
* Write an octet as two hex-encoded nibbles.
|
|
*
|
|
* @param octet
|
|
* The octet (represented as a number) to encode.
|
|
*/
|
|
writeHexOctet: function writeHexOctet(octet) {
|
|
this.writeHexNibble(octet >> 4);
|
|
this.writeHexNibble(octet);
|
|
},
|
|
|
|
/**
|
|
* Convert an octet (number) to a BCD number.
|
|
*
|
|
* Any nibbles that are not in the BCD range count as 0.
|
|
*
|
|
* @param octet
|
|
* The octet (a number, as returned by getOctet())
|
|
*
|
|
* @return the corresponding BCD number.
|
|
*/
|
|
octetToBCD: function octetToBCD(octet) {
|
|
return ((octet & 0xf0) <= 0x90) * ((octet >> 4) & 0x0f) +
|
|
((octet & 0x0f) <= 0x09) * (octet & 0x0f) * 10;
|
|
},
|
|
|
|
/**
|
|
* Read a *swapped nibble* binary coded decimal (BCD)
|
|
*
|
|
* @param length
|
|
* Number of nibble *pairs* to read.
|
|
*
|
|
* @return the decimal as a number.
|
|
*/
|
|
readSwappedNibbleBCD: function readSwappedNibbleBCD(length) {
|
|
let number = 0;
|
|
for (let i = 0; i < length; i++) {
|
|
let octet = this.readHexOctet();
|
|
// If the first nibble is an "F" , only the second nibble is to be taken
|
|
// into account.
|
|
if ((octet & 0xf0) == 0xf0) {
|
|
number *= 10;
|
|
number += octet & 0x0f;
|
|
continue;
|
|
}
|
|
number *= 100;
|
|
number += this.octetToBCD(octet);
|
|
}
|
|
return number;
|
|
},
|
|
|
|
/**
|
|
* Write numerical data as swapped nibble BCD.
|
|
*
|
|
* @param data
|
|
* Data to write (as a string or a number)
|
|
*/
|
|
writeSwappedNibbleBCD: function writeSwappedNibbleBCD(data) {
|
|
data = data.toString();
|
|
if (data.length % 2) {
|
|
data += "F";
|
|
}
|
|
for (let i = 0; i < data.length; i += 2) {
|
|
Buf.writeUint16(data.charCodeAt(i + 1));
|
|
Buf.writeUint16(data.charCodeAt(i));
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Read user data, convert to septets, look up relevant characters in a
|
|
* 7-bit alphabet, and construct string.
|
|
*
|
|
* @param length
|
|
* Number of septets to read (*not* octets)
|
|
*
|
|
* @return a string.
|
|
*
|
|
* TODO: support other alphabets
|
|
* TODO: support escape chars
|
|
*/
|
|
readSeptetsToString: function readSeptetsToString(length) {
|
|
let ret = "";
|
|
let byteLength = Math.ceil(length * 7 / 8);
|
|
|
|
let leftOver = 0;
|
|
for (let i = 0; i < byteLength; i++) {
|
|
let octet = this.readHexOctet();
|
|
let shift = (i % 7);
|
|
let leftOver_mask = (0xff << (7 - shift)) & 0xff;
|
|
let septet_mask = (0xff >> (shift + 1));
|
|
|
|
let septet = ((octet & septet_mask) << shift) | leftOver;
|
|
ret += PDU_ALPHABET_7BIT_DEFAULT[septet];
|
|
leftOver = (octet & leftOver_mask) >> (7 - shift);
|
|
|
|
// Every 7th byte we have a whole septet left over that we can apply.
|
|
if (shift == 6) {
|
|
ret += PDU_ALPHABET_7BIT_DEFAULT[leftOver];
|
|
leftOver = 0;
|
|
}
|
|
}
|
|
if (ret.length != length) {
|
|
ret = ret.slice(0, length);
|
|
}
|
|
return ret;
|
|
},
|
|
|
|
writeStringAsSeptets: function writeStringAsSeptets(message) {
|
|
let right = 0;
|
|
for (let i = 0; i < message.length + 1; i++) {
|
|
let shift = (i % 8);
|
|
let septet;
|
|
if (i < message.length) {
|
|
septet = PDU_ALPHABET_7BIT_DEFAULT.indexOf(message[i]);
|
|
} else {
|
|
septet = 0;
|
|
}
|
|
if (septet == -1) {
|
|
if (DEBUG) debug("Fffff, " + message[i] + " not in 7 bit alphabet!");
|
|
septet = 0;
|
|
}
|
|
if (shift == 0) {
|
|
// We're at the beginning of a cycle, but we need two septet values
|
|
// to make an octet. So we're going to have to sit this one out.
|
|
right = septet;
|
|
continue;
|
|
}
|
|
|
|
let left_mask = 0xff >> (8 - shift);
|
|
let right_mask = (0xff << shift) & 0xff;
|
|
let left = (septet & left_mask) << (8 - shift);
|
|
let octet = left | right;
|
|
this.writeHexOctet(left | right);
|
|
right = (septet & right_mask) >> shift;
|
|
}
|
|
},
|
|
|
|
/**
|
|
* Read user data and decode as a UCS2 string.
|
|
*
|
|
* @param length
|
|
* XXX TODO
|
|
*
|
|
* @return a string.
|
|
*/
|
|
readUCS2String: function readUCS2String(length) {
|
|
//TODO bug 712804
|
|
},
|
|
|
|
/**
|
|
* Write user data as a UCS2 string.
|
|
*
|
|
* @param message
|
|
* Message string to encode as UCS2 in hex-encoded octets.
|
|
*/
|
|
writeUCS2String: function writeUCS2String(message) {
|
|
//TODO bug 712804
|
|
},
|
|
|
|
/**
|
|
* User data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit
|
|
* (UCS2) data.
|
|
*
|
|
* TODO: This function currently supports only the default alphabet.
|
|
*/
|
|
readUserData: function readUserData(length, codingScheme) {
|
|
if (DEBUG) {
|
|
debug("Reading " + length + " bytes of user data.");
|
|
debug("Coding scheme: " + codingScheme);
|
|
}
|
|
// 7 bit is the default fallback encoding.
|
|
let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET;
|
|
switch (codingScheme & 0xC0) {
|
|
case 0x0:
|
|
// bits 7..4 = 00xx
|
|
switch (codingScheme & 0x0C) {
|
|
case 0x4:
|
|
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
|
|
break;
|
|
case 0x8:
|
|
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
|
|
break;
|
|
}
|
|
break;
|
|
case 0xC0:
|
|
// bits 7..4 = 11xx
|
|
switch (codingScheme & 0x30) {
|
|
case 0x20:
|
|
encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET;
|
|
break;
|
|
case 0x30:
|
|
if (!codingScheme & 0x04) {
|
|
encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
// Falling back to default encoding.
|
|
break;
|
|
}
|
|
|
|
if (DEBUG) debug("PDU: message encoding is " + encoding + " bit.");
|
|
switch (encoding) {
|
|
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
|
|
// 7 bit encoding allows 140 octets, which means 160 characters
|
|
// ((140x8) / 7 = 160 chars)
|
|
if (length > PDU_MAX_USER_DATA_7BIT) {
|
|
if (DEBUG) debug("PDU error: user data is too long: " + length);
|
|
return null;
|
|
}
|
|
return this.readSeptetsToString(length);
|
|
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
|
|
// Unsupported.
|
|
return null;
|
|
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
|
|
return this.readUCS2String(length);
|
|
}
|
|
return null;
|
|
},
|
|
|
|
/**
|
|
* Read and decode a PDU-encoded message from the stream.
|
|
*
|
|
* TODO: add some basic sanity checks like:
|
|
* - do we have the minimum number of chars available
|
|
*/
|
|
readMessage: function readMessage() {
|
|
// An empty message object. This gets filled below and then returned.
|
|
let msg = {
|
|
SMSC: null,
|
|
reference: null,
|
|
sender: null,
|
|
body: null,
|
|
validity: null,
|
|
timestamp: null
|
|
};
|
|
|
|
// SMSC info
|
|
let smscLength = this.readHexOctet();
|
|
if (smscLength > 0) {
|
|
let smscTypeOfAddress = this.readHexOctet();
|
|
// Subtract the type-of-address octet we just read from the length.
|
|
msg.SMSC = this.readSwappedNibbleBCD(smscLength - 1).toString();
|
|
if ((smscTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
|
|
msg.SMSC = '+' + msg.SMSC;
|
|
}
|
|
}
|
|
|
|
// First octet of this SMS-DELIVER or SMS-SUBMIT message
|
|
let firstOctet = this.readHexOctet();
|
|
// if the sms is of SMS-SUBMIT type it would contain a TP-MR
|
|
let isSmsSubmit = firstOctet & PDU_MTI_SMS_SUBMIT;
|
|
if (isSmsSubmit) {
|
|
msg.reference = this.readHexOctet(); // TP-Message-Reference
|
|
}
|
|
|
|
// - Sender Address info -
|
|
// Address length
|
|
let senderAddressLength = this.readHexOctet();
|
|
if (senderAddressLength <= 0) {
|
|
if (DEBUG) debug("PDU error: invalid sender address length: " + senderAddressLength);
|
|
return null;
|
|
}
|
|
// Type-of-Address
|
|
let senderTypeOfAddress = this.readHexOctet();
|
|
if (senderAddressLength % 2 == 1) {
|
|
senderAddressLength += 1;
|
|
}
|
|
if (DEBUG) debug("PDU: Going to read sender address: " + senderAddressLength);
|
|
msg.sender = this.readSwappedNibbleBCD(senderAddressLength / 2).toString();
|
|
if (msg.sender.length <= 0) {
|
|
if (DEBUG) debug("PDU error: no sender number provided");
|
|
return null;
|
|
}
|
|
if ((senderTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) {
|
|
msg.sender = '+' + msg.sender;
|
|
}
|
|
|
|
// - TP-Protocolo-Identifier -
|
|
let protocolIdentifier = this.readHexOctet();
|
|
|
|
// - TP-Data-Coding-Scheme -
|
|
let dataCodingScheme = this.readHexOctet();
|
|
|
|
// SMS of SMS-SUBMIT type contains a TP-Service-Center-Time-Stamp field
|
|
// SMS of SMS-DELIVER type contains a TP-Validity-Period octet
|
|
if (isSmsSubmit) {
|
|
// - TP-Validity-Period -
|
|
// The Validity Period octet is optional. Depends on the SMS-SUBMIT
|
|
// first octet
|
|
// Validity Period Format. Bit4 and Bit3 specify the TP-VP field
|
|
// according to this table:
|
|
// bit4 bit3
|
|
// 0 0 : TP-VP field not present
|
|
// 1 0 : TP-VP field present. Relative format (one octet)
|
|
// 0 1 : TP-VP field present. Enhanced format (7 octets)
|
|
// 1 1 : TP-VP field present. Absolute format (7 octets)
|
|
if (firstOctet & (PDU_VPF_ABSOLUTE | PDU_VPF_RELATIVE | PDU_VPF_ENHANCED)) {
|
|
msg.validity = this.readHexOctet();
|
|
}
|
|
//TODO: check validity period
|
|
} else {
|
|
// - TP-Service-Center-Time-Stamp -
|
|
let year = this.readSwappedNibbleBCD(1) + PDU_TIMESTAMP_YEAR_OFFSET;
|
|
let month = this.readSwappedNibbleBCD(1) - 1;
|
|
let day = this.readSwappedNibbleBCD(1) - 1;
|
|
let hour = this.readSwappedNibbleBCD(1) - 1;
|
|
let minute = this.readSwappedNibbleBCD(1) - 1;
|
|
let second = this.readSwappedNibbleBCD(1) - 1;
|
|
msg.timestamp = Date.UTC(year, month, day, hour, minute, second);
|
|
|
|
// If the most significant bit of the least significant nibble is 1,
|
|
// the timezone offset is negative (fourth bit from the right => 0x08).
|
|
let tzOctet = this.readHexOctet();
|
|
let tzOffset = this.octetToBCD(tzOctet & ~0x08) * 15 * 60 * 1000;
|
|
if (tzOctet & 0x08) {
|
|
msg.timestamp -= tzOffset;
|
|
} else {
|
|
msg.timestamp += tzOffset;
|
|
}
|
|
}
|
|
|
|
// - TP-User-Data-Length -
|
|
let userDataLength = this.readHexOctet();
|
|
|
|
// - TP-User-Data -
|
|
if (userDataLength > 0) {
|
|
msg.body = this.readUserData(userDataLength, dataCodingScheme);
|
|
}
|
|
|
|
return msg;
|
|
},
|
|
|
|
/**
|
|
* Serialize a SMS-SUBMIT PDU message and write it to the output stream.
|
|
*
|
|
* This method expects that a data coding scheme has been chosen already
|
|
* and that the length of the user data payload in that encoding is known,
|
|
* too. Both go hand in hand together anyway.
|
|
*
|
|
* @param address
|
|
* String containing the address (number) of the SMS receiver
|
|
* @param userData
|
|
* String containing the message to be sent as user data
|
|
* @param dcs
|
|
* Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET
|
|
* constants.
|
|
* @param userDataLengthInOctets
|
|
* Byte length of the user data when encoded with the given DCS.
|
|
*/
|
|
writeMessage: function writeMessage(address,
|
|
userData,
|
|
dcs,
|
|
userDataLengthInOctets) {
|
|
// SMS-SUBMIT Format:
|
|
//
|
|
// PDU Type - 1 octet
|
|
// Message Reference - 1 octet
|
|
// DA - Destination Address - 2 to 12 octets
|
|
// PID - Protocol Identifier - 1 octet
|
|
// DCS - Data Coding Scheme - 1 octet
|
|
// VP - Validity Period - 0, 1 or 7 octets
|
|
// UDL - User Data Length - 1 octet
|
|
// UD - User Data - 140 octets
|
|
|
|
let addressFormat = PDU_TOA_ISDN; // 81
|
|
if (address[0] == '+') {
|
|
addressFormat = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91
|
|
address = address.substring(1);
|
|
}
|
|
//TODO validity is unsupported for now
|
|
let validity = 0;
|
|
|
|
let pduOctetLength = 4 + // PDU Type, Message Ref, address length + format
|
|
Math.ceil(address.length / 2) +
|
|
3 + // PID, DCS, UDL
|
|
userDataLengthInOctets;
|
|
if (validity) {
|
|
//TODO: add more to pduOctetLength
|
|
}
|
|
|
|
// Start the string. Since octets are represented in hex, we will need
|
|
// twice as many characters as octets.
|
|
Buf.writeUint32(pduOctetLength * 2);
|
|
|
|
// - PDU-TYPE-
|
|
|
|
// +--------+----------+---------+---------+--------+---------+
|
|
// | RP (1) | UDHI (1) | SRR (1) | VPF (2) | RD (1) | MTI (2) |
|
|
// +--------+----------+---------+---------+--------+---------+
|
|
// RP: 0 Reply path parameter is not set
|
|
// 1 Reply path parameter is set
|
|
// UDHI: 0 The UD Field contains only the short message
|
|
// 1 The beginning of the UD field contains a header in addition
|
|
// of the short message
|
|
// SRR: 0 A status report is not requested
|
|
// 1 A status report is requested
|
|
// VPF: bit4 bit3
|
|
// 0 0 VP field is not present
|
|
// 0 1 Reserved
|
|
// 1 0 VP field present an integer represented (relative)
|
|
// 1 1 VP field present a semi-octet represented (absolute)
|
|
// RD: Instruct the SMSC to accept(0) or reject(1) an SMS-SUBMIT
|
|
// for a short message still held in the SMSC which has the same
|
|
// MR and DA as a previously submitted short message from the
|
|
// same OA
|
|
// MTI: bit1 bit0 Message Type
|
|
// 0 0 SMS-DELIVER (SMSC ==> MS)
|
|
// 0 1 SMS-SUBMIT (MS ==> SMSC)
|
|
|
|
// PDU type. MTI is set to SMS-SUBMIT
|
|
let firstOctet = PDU_MTI_SMS_SUBMIT;
|
|
|
|
// Validity period
|
|
if (validity) {
|
|
//TODO: not supported yet, OR with one of PDU_VPF_*
|
|
}
|
|
let udhi = ""; //TODO: for now this is unsupported
|
|
if (udhi) {
|
|
firstOctet |= PDU_UDHI;
|
|
}
|
|
this.writeHexOctet(firstOctet);
|
|
|
|
// Message reference 00
|
|
this.writeHexOctet(0x00);
|
|
|
|
// - Destination Address -
|
|
this.writeHexOctet(address.length);
|
|
this.writeHexOctet(addressFormat);
|
|
this.writeSwappedNibbleBCD(address);
|
|
|
|
// - Protocol Identifier -
|
|
this.writeHexOctet(0x00);
|
|
|
|
// - Data coding scheme -
|
|
// For now it assumes bits 7..4 = 1111 except for the 16 bits use case
|
|
this.writeHexOctet(dcs);
|
|
|
|
// - Validity Period -
|
|
if (validity) {
|
|
this.writeHexOctet(validity);
|
|
}
|
|
|
|
// - User Data -
|
|
let userDataLength = userData.length;
|
|
if (dcs == PDU_DCS_MSG_CODING_16BITS_ALPHABET) {
|
|
userDataLength = userData.length * 2;
|
|
}
|
|
this.writeHexOctet(userDataLength);
|
|
switch (dcs) {
|
|
case PDU_DCS_MSG_CODING_7BITS_ALPHABET:
|
|
this.writeStringAsSeptets(userData);
|
|
break;
|
|
case PDU_DCS_MSG_CODING_8BITS_ALPHABET:
|
|
// Unsupported.
|
|
break;
|
|
case PDU_DCS_MSG_CODING_16BITS_ALPHABET:
|
|
this.writeUCS2String(userData);
|
|
break;
|
|
}
|
|
|
|
// End of the string. The string length is always even by definition, so
|
|
// we write two \0 delimiters.
|
|
Buf.writeUint16(0);
|
|
Buf.writeUint16(0);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Global stuff.
|
|
*/
|
|
|
|
if (!this.debug) {
|
|
// Debugging stub that goes nowhere.
|
|
this.debug = function debug(message) {
|
|
dump("RIL Worker: " + message + "\n");
|
|
};
|
|
}
|
|
|
|
// Initialize buffers. This is a separate function so that unit tests can
|
|
// re-initialize the buffers at will.
|
|
Buf.init();
|
|
|
|
function onRILMessage(data) {
|
|
Buf.processIncoming(data);
|
|
};
|
|
|
|
onmessage = function onmessage(event) {
|
|
Phone.handleDOMMessage(event.data);
|
|
};
|
|
|
|
onerror = function onerror(event) {
|
|
debug("RIL Worker error" + event.message + "\n");
|
|
};
|