mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
f9066d3992
--HG-- extra : rebase_source : 48b08dc174e49d26b80ac4e439f97c5e2fa65f58
321 lines
13 KiB
C++
321 lines
13 KiB
C++
/*
|
|
* Copyright (C) 2010 Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "HRTFElevation.h"
|
|
|
|
#include "speex/speex_resampler.h"
|
|
#include "mozilla/PodOperations.h"
|
|
#include "AudioSampleFormat.h"
|
|
|
|
#include "IRC_Composite_C_R0195-incl.cpp"
|
|
|
|
using namespace std;
|
|
using namespace mozilla;
|
|
|
|
namespace WebCore {
|
|
|
|
const int elevationSpacing = irc_composite_c_r0195_elevation_interval;
|
|
const int firstElevation = irc_composite_c_r0195_first_elevation;
|
|
const int numberOfElevations = MOZ_ARRAY_LENGTH(irc_composite_c_r0195);
|
|
|
|
const unsigned HRTFElevation::NumberOfTotalAzimuths = 360 / 15 * 8;
|
|
|
|
const int rawSampleRate = irc_composite_c_r0195_sample_rate;
|
|
|
|
// Number of frames in an individual impulse response.
|
|
const size_t ResponseFrameSize = 256;
|
|
|
|
size_t HRTFElevation::fftSizeForSampleRate(float sampleRate)
|
|
{
|
|
// The IRCAM HRTF impulse responses were 512 sample-frames @44.1KHz,
|
|
// but these have been truncated to 256 samples.
|
|
// An FFT-size of twice impulse response size is used (for convolution).
|
|
// So for sample rates of 44.1KHz an FFT size of 512 is good.
|
|
// We double the FFT-size only for sample rates at least double this.
|
|
// If the FFT size is too large then the impulse response will be padded
|
|
// with zeros without the fade-out provided by HRTFKernel.
|
|
MOZ_ASSERT(sampleRate > 1.0 && sampleRate < 1048576.0);
|
|
|
|
// This is the size if we were to use all raw response samples.
|
|
unsigned resampledLength =
|
|
floorf(ResponseFrameSize * sampleRate / rawSampleRate);
|
|
// Keep things semi-sane, with max FFT size of 1024 and minimum of 4.
|
|
// "size |= 3" ensures a minimum of 4 (with the size++ below) and sets the
|
|
// 2 least significant bits for rounding up to the next power of 2 below.
|
|
unsigned size = min(resampledLength, 1023U);
|
|
size |= 3;
|
|
// Round up to the next power of 2, making the FFT size no more than twice
|
|
// the impulse response length. This doubles size for values that are
|
|
// already powers of 2. This works by filling in 7 bits to right of the
|
|
// most significant bit. The most significant bit is no greater than
|
|
// 1 << 9, and the least significant 2 bits were already set above.
|
|
size |= (size >> 1);
|
|
size |= (size >> 2);
|
|
size |= (size >> 4);
|
|
size++;
|
|
MOZ_ASSERT((size & (size - 1)) == 0);
|
|
|
|
return size;
|
|
}
|
|
|
|
nsReturnRef<HRTFKernel> HRTFElevation::calculateKernelForAzimuthElevation(int azimuth, int elevation, SpeexResamplerState* resampler, float sampleRate)
|
|
{
|
|
int elevationIndex = (elevation - firstElevation) / elevationSpacing;
|
|
MOZ_ASSERT(elevationIndex >= 0 && elevationIndex <= numberOfElevations);
|
|
|
|
int numberOfAzimuths = irc_composite_c_r0195[elevationIndex].count;
|
|
int azimuthSpacing = 360 / numberOfAzimuths;
|
|
MOZ_ASSERT(numberOfAzimuths * azimuthSpacing == 360);
|
|
|
|
int azimuthIndex = azimuth / azimuthSpacing;
|
|
MOZ_ASSERT(azimuthIndex * azimuthSpacing == azimuth);
|
|
|
|
const int16_t (&impulse_response_data)[ResponseFrameSize] =
|
|
irc_composite_c_r0195[elevationIndex].azimuths[azimuthIndex];
|
|
|
|
// When libspeex_resampler is compiled with FIXED_POINT, samples in
|
|
// speex_resampler_process_float are rounded directly to int16_t, which
|
|
// only works well if the floats are in the range +/-32767. On such
|
|
// platforms it's better to resample before converting to float anyway.
|
|
#ifdef MOZ_SAMPLE_TYPE_S16
|
|
# define RESAMPLER_PROCESS speex_resampler_process_int
|
|
const int16_t* response = impulse_response_data;
|
|
const int16_t* resampledResponse;
|
|
#else
|
|
# define RESAMPLER_PROCESS speex_resampler_process_float
|
|
float response[ResponseFrameSize];
|
|
ConvertAudioSamples(impulse_response_data, response, ResponseFrameSize);
|
|
float* resampledResponse;
|
|
#endif
|
|
|
|
// Note that depending on the fftSize returned by the panner, we may be truncating the impulse response.
|
|
const size_t resampledResponseLength = fftSizeForSampleRate(sampleRate) / 2;
|
|
|
|
nsAutoTArray<AudioDataValue, 2 * ResponseFrameSize> resampled;
|
|
if (sampleRate == rawSampleRate) {
|
|
resampledResponse = response;
|
|
MOZ_ASSERT(resampledResponseLength == ResponseFrameSize);
|
|
} else {
|
|
resampled.SetLength(resampledResponseLength);
|
|
resampledResponse = resampled.Elements();
|
|
speex_resampler_skip_zeros(resampler);
|
|
|
|
// Feed the input buffer into the resampler.
|
|
spx_uint32_t in_len = ResponseFrameSize;
|
|
spx_uint32_t out_len = resampled.Length();
|
|
RESAMPLER_PROCESS(resampler, 0, response, &in_len,
|
|
resampled.Elements(), &out_len);
|
|
|
|
if (out_len < resampled.Length()) {
|
|
// The input should have all been processed.
|
|
MOZ_ASSERT(in_len == ResponseFrameSize);
|
|
// Feed in zeros get the data remaining in the resampler.
|
|
spx_uint32_t out_index = out_len;
|
|
in_len = speex_resampler_get_input_latency(resampler);
|
|
nsAutoTArray<AudioDataValue, 256> zeros;
|
|
zeros.SetLength(in_len);
|
|
PodZero(zeros.Elements(), in_len);
|
|
out_len = resampled.Length() - out_index;
|
|
RESAMPLER_PROCESS(resampler, 0,
|
|
zeros.Elements(), &in_len,
|
|
resampled.Elements() + out_index, &out_len);
|
|
out_index += out_len;
|
|
// There may be some uninitialized samples remaining for very low
|
|
// sample rates.
|
|
PodZero(resampled.Elements() + out_index,
|
|
resampled.Length() - out_index);
|
|
}
|
|
|
|
speex_resampler_reset_mem(resampler);
|
|
}
|
|
|
|
#ifdef MOZ_SAMPLE_TYPE_S16
|
|
nsAutoTArray<float, 2 * ResponseFrameSize> floatArray;
|
|
floatArray.SetLength(resampledResponseLength);
|
|
float *floatResponse = floatArray.Elements();
|
|
ConvertAudioSamples(resampledResponse,
|
|
floatResponse, resampledResponseLength);
|
|
#else
|
|
float *floatResponse = resampledResponse;
|
|
#endif
|
|
#undef RESAMPLER_PROCESS
|
|
|
|
return HRTFKernel::create(floatResponse, resampledResponseLength, sampleRate);
|
|
}
|
|
|
|
// The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
|
|
//
|
|
// Here's how it goes:
|
|
static int maxElevations[] = {
|
|
// Azimuth
|
|
//
|
|
90, // 0
|
|
45, // 15
|
|
60, // 30
|
|
45, // 45
|
|
75, // 60
|
|
45, // 75
|
|
60, // 90
|
|
45, // 105
|
|
75, // 120
|
|
45, // 135
|
|
60, // 150
|
|
45, // 165
|
|
75, // 180
|
|
45, // 195
|
|
60, // 210
|
|
45, // 225
|
|
75, // 240
|
|
45, // 255
|
|
60, // 270
|
|
45, // 285
|
|
75, // 300
|
|
45, // 315
|
|
60, // 330
|
|
45 // 345
|
|
};
|
|
|
|
nsReturnRef<HRTFElevation> HRTFElevation::createBuiltin(int elevation, float sampleRate)
|
|
{
|
|
if (elevation < firstElevation ||
|
|
elevation > firstElevation + numberOfElevations * elevationSpacing ||
|
|
(elevation / elevationSpacing) * elevationSpacing != elevation)
|
|
return nsReturnRef<HRTFElevation>();
|
|
|
|
// Spacing, in degrees, between every azimuth loaded from resource.
|
|
// Some elevations do not have data for all these intervals.
|
|
// See maxElevations.
|
|
static const unsigned AzimuthSpacing = 15;
|
|
static const unsigned NumberOfRawAzimuths = 360 / AzimuthSpacing;
|
|
static_assert(AzimuthSpacing * NumberOfRawAzimuths == 360,
|
|
"Not a multiple");
|
|
static const unsigned InterpolationFactor =
|
|
NumberOfTotalAzimuths / NumberOfRawAzimuths;
|
|
static_assert(NumberOfTotalAzimuths ==
|
|
NumberOfRawAzimuths * InterpolationFactor, "Not a multiple");
|
|
|
|
HRTFKernelList kernelListL;
|
|
kernelListL.SetLength(NumberOfTotalAzimuths);
|
|
|
|
SpeexResamplerState* resampler = sampleRate == rawSampleRate ? nullptr :
|
|
speex_resampler_init(1, rawSampleRate, sampleRate,
|
|
SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
|
|
|
|
// Load convolution kernels from HRTF files.
|
|
int interpolatedIndex = 0;
|
|
for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
|
|
// Don't let elevation exceed maximum for this azimuth.
|
|
int maxElevation = maxElevations[rawIndex];
|
|
int actualElevation = min(elevation, maxElevation);
|
|
|
|
kernelListL[interpolatedIndex] = calculateKernelForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, resampler, sampleRate);
|
|
|
|
interpolatedIndex += InterpolationFactor;
|
|
}
|
|
|
|
if (resampler)
|
|
speex_resampler_destroy(resampler);
|
|
|
|
// Now go back and interpolate intermediate azimuth values.
|
|
for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
|
|
int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
|
|
|
|
// Create the interpolated convolution kernels and delays.
|
|
for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
|
|
float x = float(jj) / float(InterpolationFactor); // interpolate from 0 -> 1
|
|
|
|
kernelListL[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL[i], kernelListL[j], x);
|
|
}
|
|
}
|
|
|
|
return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, elevation, sampleRate));
|
|
}
|
|
|
|
nsReturnRef<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, float x, float sampleRate)
|
|
{
|
|
MOZ_ASSERT(hrtfElevation1 && hrtfElevation2);
|
|
if (!hrtfElevation1 || !hrtfElevation2)
|
|
return nsReturnRef<HRTFElevation>();
|
|
|
|
MOZ_ASSERT(x >= 0.0 && x < 1.0);
|
|
|
|
HRTFKernelList kernelListL;
|
|
kernelListL.SetLength(NumberOfTotalAzimuths);
|
|
|
|
const HRTFKernelList& kernelListL1 = hrtfElevation1->kernelListL();
|
|
const HRTFKernelList& kernelListL2 = hrtfElevation2->kernelListL();
|
|
|
|
// Interpolate kernels of corresponding azimuths of the two elevations.
|
|
for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
|
|
kernelListL[i] = HRTFKernel::createInterpolatedKernel(kernelListL1[i], kernelListL2[i], x);
|
|
}
|
|
|
|
// Interpolate elevation angle.
|
|
double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
|
|
|
|
return nsReturnRef<HRTFElevation>(new HRTFElevation(&kernelListL, static_cast<int>(angle), sampleRate));
|
|
}
|
|
|
|
void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
|
|
{
|
|
bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
|
|
MOZ_ASSERT(checkAzimuthBlend);
|
|
if (!checkAzimuthBlend)
|
|
azimuthBlend = 0.0;
|
|
|
|
unsigned numKernels = m_kernelListL.Length();
|
|
|
|
bool isIndexGood = azimuthIndex < numKernels;
|
|
MOZ_ASSERT(isIndexGood);
|
|
if (!isIndexGood) {
|
|
kernelL = 0;
|
|
kernelR = 0;
|
|
return;
|
|
}
|
|
|
|
// Return the left and right kernels,
|
|
// using symmetry to produce the right kernel.
|
|
kernelL = m_kernelListL[azimuthIndex];
|
|
int azimuthIndexR = (numKernels - azimuthIndex) % numKernels;
|
|
kernelR = m_kernelListL[azimuthIndexR];
|
|
|
|
frameDelayL = kernelL->frameDelay();
|
|
frameDelayR = kernelR->frameDelay();
|
|
|
|
int azimuthIndex2L = (azimuthIndex + 1) % numKernels;
|
|
double frameDelay2L = m_kernelListL[azimuthIndex2L]->frameDelay();
|
|
int azimuthIndex2R = (numKernels - azimuthIndex2L) % numKernels;
|
|
double frameDelay2R = m_kernelListL[azimuthIndex2R]->frameDelay();
|
|
|
|
// Linearly interpolate delays.
|
|
frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
|
|
frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
|
|
}
|
|
|
|
} // namespace WebCore
|