mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
210 lines
5.6 KiB
C++
210 lines
5.6 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/FastBernoulliTrial.h"
|
|
|
|
#include <math.h>
|
|
|
|
// Note that because we always provide FastBernoulliTrial with a fixed
|
|
// pseudorandom seed in these tests, the results here are completely
|
|
// deterministic.
|
|
//
|
|
// A non-optimized version of this test runs in .009s on my laptop. Using larger
|
|
// sample sizes lets us meet tighter bounds on the counts.
|
|
|
|
static void
|
|
TestProportions()
|
|
{
|
|
mozilla::FastBernoulliTrial bernoulli(1.0,
|
|
698079309544035222ULL,
|
|
6012389156611637584ULL);
|
|
|
|
for (size_t i = 0; i < 100; i++)
|
|
MOZ_RELEASE_ASSERT(bernoulli.trial());
|
|
|
|
{
|
|
bernoulli.setProbability(0.5);
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 1000; i++)
|
|
count += bernoulli.trial();
|
|
MOZ_RELEASE_ASSERT(count == 496);
|
|
}
|
|
|
|
{
|
|
bernoulli.setProbability(0.001);
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 1000; i++)
|
|
count += bernoulli.trial();
|
|
MOZ_RELEASE_ASSERT(count == 2);
|
|
}
|
|
|
|
{
|
|
bernoulli.setProbability(0.85);
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 1000; i++)
|
|
count += bernoulli.trial();
|
|
MOZ_RELEASE_ASSERT(count == 852);
|
|
}
|
|
|
|
bernoulli.setProbability(0.0);
|
|
for (size_t i = 0; i < 100; i++)
|
|
MOZ_RELEASE_ASSERT(!bernoulli.trial());
|
|
}
|
|
|
|
static void
|
|
TestHarmonics()
|
|
{
|
|
mozilla::FastBernoulliTrial bernoulli(0.1,
|
|
698079309544035222ULL,
|
|
6012389156611637584ULL);
|
|
|
|
const size_t n = 100000;
|
|
bool trials[n];
|
|
for (size_t i = 0; i < n; i++)
|
|
trials[i] = bernoulli.trial();
|
|
|
|
// For each harmonic and phase, check that the proportion sampled is
|
|
// within acceptable bounds.
|
|
for (size_t harmonic = 1; harmonic < 20; harmonic++) {
|
|
size_t expected = n / harmonic / 10;
|
|
size_t low_expected = expected * 85 / 100;
|
|
size_t high_expected = expected * 115 / 100;
|
|
|
|
for (size_t phase = 0; phase < harmonic; phase++) {
|
|
size_t count = 0;
|
|
for (size_t i = phase; i < n; i += harmonic)
|
|
count += trials[i];
|
|
|
|
MOZ_RELEASE_ASSERT(low_expected <= count && count <= high_expected);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
TestTrialN()
|
|
{
|
|
mozilla::FastBernoulliTrial bernoulli(0.01,
|
|
0x67ff17e25d855942ULL,
|
|
0x74f298193fe1c5b1ULL);
|
|
|
|
{
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 10000; i++)
|
|
count += bernoulli.trial(1);
|
|
|
|
// Expected value: 0.01 * 10000 == 100
|
|
MOZ_RELEASE_ASSERT(count == 97);
|
|
}
|
|
|
|
{
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 10000; i++)
|
|
count += bernoulli.trial(3);
|
|
|
|
// Expected value: (1 - (1 - 0.01) ** 3) == 0.0297,
|
|
// 0.0297 * 10000 == 297
|
|
MOZ_RELEASE_ASSERT(count == 304);
|
|
}
|
|
|
|
{
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 10000; i++)
|
|
count += bernoulli.trial(10);
|
|
|
|
// Expected value: (1 - (1 - 0.01) ** 10) == 0.0956,
|
|
// 0.0956 * 10000 == 956
|
|
MOZ_RELEASE_ASSERT(count == 936);
|
|
}
|
|
|
|
{
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 10000; i++)
|
|
count += bernoulli.trial(100);
|
|
|
|
// Expected value: (1 - (1 - 0.01) ** 100) == 0.6339
|
|
// 0.6339 * 10000 == 6339
|
|
MOZ_RELEASE_ASSERT(count == 6372);
|
|
}
|
|
|
|
{
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < 10000; i++)
|
|
count += bernoulli.trial(1000);
|
|
|
|
// Expected value: (1 - (1 - 0.01) ** 1000) == 0.9999
|
|
// 0.9999 * 10000 == 9999
|
|
MOZ_RELEASE_ASSERT(count == 9998);
|
|
}
|
|
}
|
|
|
|
static void
|
|
TestChangeProbability()
|
|
{
|
|
mozilla::FastBernoulliTrial bernoulli(1.0,
|
|
0x67ff17e25d855942ULL,
|
|
0x74f298193fe1c5b1ULL);
|
|
|
|
// Establish a very high skip count.
|
|
bernoulli.setProbability(0.0);
|
|
|
|
// This should re-establish a zero skip count.
|
|
bernoulli.setProbability(1.0);
|
|
|
|
// So this should return true.
|
|
MOZ_RELEASE_ASSERT(bernoulli.trial());
|
|
}
|
|
|
|
static void
|
|
TestCuspProbabilities()
|
|
{
|
|
/*
|
|
* FastBernoulliTrial takes care to avoid screwing up on edge cases. The
|
|
* checks here all look pretty dumb, but they exercise paths in the code that
|
|
* could exhibit undefined behavior if coded naïvely.
|
|
*/
|
|
|
|
/*
|
|
* This should not be perceptibly different from 1; for 64-bit doubles, this
|
|
* is a one in ten trillion chance of the trial not succeeding. Overflows
|
|
* converting doubles to size_t skip counts may change this, though.
|
|
*/
|
|
mozilla::FastBernoulliTrial bernoulli(nextafter(1, 0),
|
|
0x67ff17e25d855942ULL,
|
|
0x74f298193fe1c5b1ULL);
|
|
|
|
for (size_t i = 0; i < 1000; i++)
|
|
MOZ_RELEASE_ASSERT(bernoulli.trial());
|
|
|
|
/*
|
|
* This should not be perceptibly different from 0; for 64-bit doubles,
|
|
* the FastBernoulliTrial will actually treat this as exactly zero.
|
|
*/
|
|
bernoulli.setProbability(nextafter(0, 1));
|
|
for (size_t i = 0; i < 1000; i++)
|
|
MOZ_RELEASE_ASSERT(!bernoulli.trial());
|
|
|
|
/*
|
|
* This should be a vanishingly low probability which FastBernoulliTrial does
|
|
* *not* treat as exactly zero.
|
|
*/
|
|
bernoulli.setProbability(1 - nextafter(1, 0));
|
|
for (size_t i = 0; i < 1000; i++)
|
|
MOZ_RELEASE_ASSERT(!bernoulli.trial());
|
|
}
|
|
|
|
int
|
|
main()
|
|
{
|
|
TestProportions();
|
|
TestHarmonics();
|
|
TestTrialN();
|
|
TestChangeProbability();
|
|
TestCuspProbabilities();
|
|
|
|
return 0;
|
|
}
|