gecko/dom/media/MediaDecoderStateMachine.cpp

3167 lines
110 KiB
C++

/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef XP_WIN
// Include Windows headers required for enabling high precision timers.
#include "windows.h"
#include "mmsystem.h"
#endif
#include "mozilla/DebugOnly.h"
#include <stdint.h>
#include "MediaDecoderStateMachine.h"
#include "MediaTimer.h"
#include "AudioSink.h"
#include "nsTArray.h"
#include "MediaDecoder.h"
#include "MediaDecoderReader.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/mozalloc.h"
#include "VideoUtils.h"
#include "TimeUnits.h"
#include "nsDeque.h"
#include "AudioSegment.h"
#include "VideoSegment.h"
#include "ImageContainer.h"
#include "nsComponentManagerUtils.h"
#include "nsITimer.h"
#include "nsContentUtils.h"
#include "MediaShutdownManager.h"
#include "SharedThreadPool.h"
#include "MediaTaskQueue.h"
#include "nsIEventTarget.h"
#include "prenv.h"
#include "mozilla/Preferences.h"
#include "gfx2DGlue.h"
#include "nsPrintfCString.h"
#include "DOMMediaStream.h"
#include "DecodedStream.h"
#include "mozilla/Logging.h"
#include <algorithm>
namespace mozilla {
using namespace mozilla::dom;
using namespace mozilla::layers;
using namespace mozilla::media;
#define NS_DispatchToMainThread(...) CompileError_UseAbstractThreadDispatchInstead
// avoid redefined macro in unified build
#undef LOG
#undef DECODER_LOG
#undef VERBOSE_LOG
#define LOG(m, l, x, ...) \
MOZ_LOG(m, l, ("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__))
#define DECODER_LOG(x, ...) \
LOG(gMediaDecoderLog, LogLevel::Debug, x, ##__VA_ARGS__)
#define VERBOSE_LOG(x, ...) \
LOG(gMediaDecoderLog, LogLevel::Verbose, x, ##__VA_ARGS__)
#define SAMPLE_LOG(x, ...) \
LOG(gMediaSampleLog, LogLevel::Debug, x, ##__VA_ARGS__)
// Somehow MSVC doesn't correctly delete the comma before ##__VA_ARGS__
// when __VA_ARGS__ expands to nothing. This is a workaround for it.
#define DECODER_WARN_HELPER(a, b) NS_WARNING b
#define DECODER_WARN(x, ...) \
DECODER_WARN_HELPER(0, (nsPrintfCString("Decoder=%p " x, mDecoder.get(), ##__VA_ARGS__).get()))
// Certain constants get stored as member variables and then adjusted by various
// scale factors on a per-decoder basis. We want to make sure to avoid using these
// constants directly, so we put them in a namespace.
namespace detail {
// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const uint32_t LOW_AUDIO_USECS = 300000;
// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
const int64_t AMPLE_AUDIO_USECS = 1000000;
} // namespace detail
// When we're only playing audio and we don't have a video stream, we divide
// AMPLE_AUDIO_USECS and LOW_AUDIO_USECS by the following value. This reduces
// the amount of decoded audio we buffer, reducing our memory usage. We only
// need to decode far ahead when we're decoding video using software decoding,
// as otherwise a long video decode could cause an audio underrun.
const int64_t NO_VIDEO_AMPLE_AUDIO_DIVISOR = 8;
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 2;
// Threshold in usecs that used to check if we are low on decoded video.
// If the last video frame's end time |mDecodedVideoEndTime| is more than
// |LOW_VIDEO_THRESHOLD_USECS*mPlaybackRate| after the current clock in
// Advanceframe(), the video decode is lagging, and we skip to next keyframe.
static const int32_t LOW_VIDEO_THRESHOLD_USECS = 60000;
// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;
namespace detail {
// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
"LOW_DATA_THRESHOLD_USECS is too small");
} // namespace detail
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 60000;
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
// normal buffering mode. This exists so that if the decode-ahead exhausts the
// downloaded data while decode/playback is just starting up (for example
// after a seek while the media is still playing, or when playing a media
// as soon as it's load started), we won't necessarily stop for 30s and wait
// for buffering. We may actually be able to playback in this case, so exit
// buffering early and try to play. If it turns out we can't play, we'll fall
// back to buffering normally.
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;
namespace detail {
// If we're quick buffering, we'll remain in buffering mode while we have less than
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
// quick buffering in a timely fashion, as the decode pauses when it
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
// QUICK_BUFFERING_LOW_DATA_USECS.
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
"QUICK_BUFFERING_LOW_DATA_USECS is too large");
} // namespace detail
static TimeDuration UsecsToDuration(int64_t aUsecs) {
return TimeDuration::FromMicroseconds(aUsecs);
}
static int64_t DurationToUsecs(TimeDuration aDuration) {
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
}
static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
static const uint32_t SCARCE_VIDEO_QUEUE_SIZE = 1;
static const uint32_t VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE = 9999;
static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueHWAccelSize = MIN_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueSendToCompositorSize = VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE;
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
MediaDecoderReader* aReader,
bool aRealTime) :
mDecoder(aDecoder),
mTaskQueue(new MediaTaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
/* aSupportsTailDispatch = */ true)),
mWatchManager(this, mTaskQueue),
mProducerID(ImageContainer::AllocateProducerID()),
mRealTime(aRealTime),
mDispatchedStateMachine(false),
mDelayedScheduler(this),
mState(DECODER_STATE_DECODING_NONE, "MediaDecoderStateMachine::mState"),
mPlayDuration(0),
mBuffered(mTaskQueue, TimeIntervals(), "MediaDecoderStateMachine::mBuffered (Mirror)"),
mDuration(mTaskQueue, NullableTimeUnit(), "MediaDecoderStateMachine::mDuration (Canonical"),
mCurrentFrameID(0),
mEstimatedDuration(mTaskQueue, NullableTimeUnit(),
"MediaDecoderStateMachine::mEstimatedDuration (Mirror)"),
mExplicitDuration(mTaskQueue, Maybe<double>(),
"MediaDecoderStateMachine::mExplicitDuration (Mirror)"),
mObservedDuration(TimeUnit(), "MediaDecoderStateMachine::mObservedDuration"),
mPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_LOADING,
"MediaDecoderStateMachine::mPlayState (Mirror)"),
mNextPlayState(mTaskQueue, MediaDecoder::PLAY_STATE_PAUSED,
"MediaDecoderStateMachine::mNextPlayState (Mirror)"),
mLogicallySeeking(mTaskQueue, false,
"MediaDecoderStateMachine::mLogicallySeeking (Mirror)"),
mIsShutdown(mTaskQueue, false,
"MediaDecoderStateMachine::mIsShutdown (Canonical)"),
mNextFrameStatus(mTaskQueue, MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED,
"MediaDecoderStateMachine::mNextFrameStatus (Canonical)"),
mFragmentEndTime(-1),
mReader(aReader),
mCurrentPosition(mTaskQueue, 0, "MediaDecoderStateMachine::mCurrentPosition (Canonical)"),
mStreamStartTime(0),
mAudioEndTime(-1),
mDecodedAudioEndTime(-1),
mVideoFrameEndTime(-1),
mDecodedVideoEndTime(-1),
mVolume(mTaskQueue, 1.0, "MediaDecoderStateMachine::mVolume (Mirror)"),
mPlaybackRate(1.0),
mLogicalPlaybackRate(mTaskQueue, 1.0, "MediaDecoderStateMachine::mLogicalPlaybackRate (Mirror)"),
mPreservesPitch(mTaskQueue, true, "MediaDecoderStateMachine::mPreservesPitch (Mirror)"),
mLowAudioThresholdUsecs(detail::LOW_AUDIO_USECS),
mAmpleAudioThresholdUsecs(detail::AMPLE_AUDIO_USECS),
mQuickBufferingLowDataThresholdUsecs(detail::QUICK_BUFFERING_LOW_DATA_USECS),
mIsAudioPrerolling(false),
mIsVideoPrerolling(false),
mAudioCaptured(false),
mPositionChangeQueued(false),
mAudioCompleted(false, "MediaDecoderStateMachine::mAudioCompleted"),
mNotifyMetadataBeforeFirstFrame(false),
mDispatchedEventToDecode(false),
mQuickBuffering(false),
mMinimizePreroll(false),
mDecodeThreadWaiting(false),
mDropAudioUntilNextDiscontinuity(false),
mDropVideoUntilNextDiscontinuity(false),
mDecodeToSeekTarget(false),
mCurrentTimeBeforeSeek(0),
mCorruptFrames(30),
mDisabledHardwareAcceleration(false),
mDecodingFrozenAtStateDecoding(false),
mSentLoadedMetadataEvent(false),
mSentFirstFrameLoadedEvent(false),
mSentPlaybackEndedEvent(false),
mDecodedStream(new DecodedStream())
{
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
// Dispatch initialization that needs to happen on that task queue.
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(this, &MediaDecoderStateMachine::InitializationTask);
mTaskQueue->Dispatch(r.forget());
static bool sPrefCacheInit = false;
if (!sPrefCacheInit) {
sPrefCacheInit = true;
Preferences::AddUintVarCache(&sVideoQueueDefaultSize,
"media.video-queue.default-size",
MAX_VIDEO_QUEUE_SIZE);
Preferences::AddUintVarCache(&sVideoQueueHWAccelSize,
"media.video-queue.hw-accel-size",
MIN_VIDEO_QUEUE_SIZE);
Preferences::AddUintVarCache(&sVideoQueueSendToCompositorSize,
"media.video-queue.send-to-compositor-size",
VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE);
}
mBufferingWait = IsRealTime() ? 0 : 15;
mLowDataThresholdUsecs = IsRealTime() ? 0 : detail::LOW_DATA_THRESHOLD_USECS;
#ifdef XP_WIN
// Ensure high precision timers are enabled on Windows, otherwise the state
// machine isn't woken up at reliable intervals to set the next frame,
// and we drop frames while painting. Note that multiple calls to this
// function per-process is OK, provided each call is matched by a corresponding
// timeEndPeriod() call.
timeBeginPeriod(1);
#endif
AudioQueue().AddPopListener(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::OnAudioPopped),
mTaskQueue);
VideoQueue().AddPopListener(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::OnVideoPopped),
mTaskQueue);
}
MediaDecoderStateMachine::~MediaDecoderStateMachine()
{
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
mReader = nullptr;
#ifdef XP_WIN
timeEndPeriod(1);
#endif
}
void
MediaDecoderStateMachine::InitializationTask()
{
MOZ_ASSERT(OnTaskQueue());
// Connect mirrors.
mBuffered.Connect(mReader->CanonicalBuffered());
mEstimatedDuration.Connect(mDecoder->CanonicalEstimatedDuration());
mExplicitDuration.Connect(mDecoder->CanonicalExplicitDuration());
mPlayState.Connect(mDecoder->CanonicalPlayState());
mNextPlayState.Connect(mDecoder->CanonicalNextPlayState());
mLogicallySeeking.Connect(mDecoder->CanonicalLogicallySeeking());
mVolume.Connect(mDecoder->CanonicalVolume());
mLogicalPlaybackRate.Connect(mDecoder->CanonicalPlaybackRate());
mPreservesPitch.Connect(mDecoder->CanonicalPreservesPitch());
// Initialize watchers.
mWatchManager.Watch(mBuffered, &MediaDecoderStateMachine::BufferedRangeUpdated);
mWatchManager.Watch(mState, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mAudioCompleted, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mVolume, &MediaDecoderStateMachine::VolumeChanged);
mWatchManager.Watch(mLogicalPlaybackRate, &MediaDecoderStateMachine::LogicalPlaybackRateChanged);
mWatchManager.Watch(mPreservesPitch, &MediaDecoderStateMachine::PreservesPitchChanged);
mWatchManager.Watch(mEstimatedDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mExplicitDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mObservedDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::PlayStateChanged);
mWatchManager.Watch(mLogicallySeeking, &MediaDecoderStateMachine::LogicallySeekingChanged);
}
bool MediaDecoderStateMachine::HasFutureAudio()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
// We've got audio ready to play if:
// 1. We've not completed playback of audio, and
// 2. we either have more than the threshold of decoded audio available, or
// we've completely decoded all audio (but not finished playing it yet
// as per 1).
return !mAudioCompleted &&
(AudioDecodedUsecs() >
mLowAudioThresholdUsecs * mPlaybackRate ||
AudioQueue().IsFinished());
}
bool MediaDecoderStateMachine::HaveNextFrameData()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return (!HasAudio() || HasFutureAudio()) &&
(!HasVideo() || VideoQueue().GetSize() > 1);
}
int64_t MediaDecoderStateMachine::GetDecodedAudioDuration()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
int64_t audioDecoded = AudioQueue().Duration();
if (mAudioEndTime != -1) {
audioDecoded += mAudioEndTime - GetMediaTime();
}
return audioDecoded;
}
void MediaDecoderStateMachine::SendStreamData()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(!mAudioSink, "Should've been stopped in RunStateMachine()");
bool finished = mDecodedStream->SendData(
mStreamStartTime, mInfo, AudioQueue(), VideoQueue(),
mVolume, mDecoder->IsSameOriginMedia());
if (mInfo.HasAudio()) {
CheckedInt64 playedUsecs = mDecodedStream->AudioEndTime(
mStreamStartTime, mInfo.mAudio.mRate);
if (playedUsecs.isValid()) {
OnAudioEndTimeUpdate(playedUsecs.value());
}
}
const auto clockTime = GetClock();
while (true) {
const AudioData* a = AudioQueue().PeekFront();
// If we discard audio samples fed to the stream immediately, we will
// keep decoding audio samples till the end and consume a lot of memory.
// Therefore we only discard those behind the stream clock to throttle
// the decoding speed.
if (a && a->mTime <= clockTime) {
nsRefPtr<AudioData> releaseMe = AudioQueue().PopFront();
continue;
}
break;
}
// To be consistent with AudioSink, |mAudioCompleted| is not set
// until all samples are drained.
if (finished && AudioQueue().GetSize() == 0) {
mAudioCompleted = true;
}
}
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio(int64_t aAmpleAudioUSecs)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (AudioQueue().GetSize() == 0 ||
GetDecodedAudioDuration() < aAmpleAudioUSecs) {
return false;
}
return !mAudioCaptured || mDecodedStream->HaveEnoughAudio(mInfo);
}
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (VideoQueue().GetSize() - 1 < GetAmpleVideoFrames() * mPlaybackRate) {
return false;
}
return !mAudioCaptured || mDecodedStream->HaveEnoughVideo(mInfo);
}
bool
MediaDecoderStateMachine::NeedToDecodeVideo()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("NeedToDecodeVideo() isDec=%d decToTar=%d minPrl=%d seek=%d enufVid=%d",
IsVideoDecoding(), mDecodeToSeekTarget, mMinimizePreroll,
mState == DECODER_STATE_SEEKING,
HaveEnoughDecodedVideo());
return IsVideoDecoding() &&
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
(mState == DECODER_STATE_DECODING_FIRSTFRAME &&
IsVideoDecoding() && VideoQueue().GetSize() == 0) ||
(!mMinimizePreroll && !HaveEnoughDecodedVideo()));
}
bool
MediaDecoderStateMachine::NeedToSkipToNextKeyframe()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mState == DECODER_STATE_DECODING_FIRSTFRAME) {
return false;
}
MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
mState == DECODER_STATE_BUFFERING ||
mState == DECODER_STATE_SEEKING);
// We are in seeking or buffering states, don't skip frame.
if (!IsVideoDecoding() || mState == DECODER_STATE_BUFFERING ||
mState == DECODER_STATE_SEEKING) {
return false;
}
// Don't skip frame for video-only decoded stream because the clock time of
// the stream relies on the video frame.
if (mAudioCaptured && !HasAudio()) {
return false;
}
// We'll skip the video decode to the next keyframe if we're low on
// audio, or if we're low on video, provided we're not running low on
// data to decode. If we're running low on downloaded data to decode,
// we won't start keyframe skipping, as we'll be pausing playback to buffer
// soon anyway and we'll want to be able to display frames immediately
// after buffering finishes. We ignore the low audio calculations for
// readers that are async, as since their audio decode runs on a different
// task queue it should never run low and skipping won't help their decode.
bool isLowOnDecodedAudio = !mReader->IsAsync() &&
!mIsAudioPrerolling && IsAudioDecoding() &&
(GetDecodedAudioDuration() <
mLowAudioThresholdUsecs * mPlaybackRate);
bool isLowOnDecodedVideo = !mIsVideoPrerolling &&
((GetClock() - mDecodedVideoEndTime) * mPlaybackRate >
LOW_VIDEO_THRESHOLD_USECS);
bool lowUndecoded = HasLowUndecodedData();
if ((isLowOnDecodedAudio || isLowOnDecodedVideo) && !lowUndecoded) {
DECODER_LOG("Skipping video decode to the next keyframe lowAudio=%d lowVideo=%d lowUndecoded=%d async=%d",
isLowOnDecodedAudio, isLowOnDecodedVideo, lowUndecoded, mReader->IsAsync());
return true;
}
return false;
}
bool
MediaDecoderStateMachine::NeedToDecodeAudio()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("NeedToDecodeAudio() isDec=%d decToTar=%d minPrl=%d seek=%d enufAud=%d",
IsAudioDecoding(), mDecodeToSeekTarget, mMinimizePreroll,
mState == DECODER_STATE_SEEKING,
HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate));
return IsAudioDecoding() &&
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
(mState == DECODER_STATE_DECODING_FIRSTFRAME &&
IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(!mMinimizePreroll &&
!HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate) &&
(mState != DECODER_STATE_SEEKING || mDecodeToSeekTarget)));
}
bool
MediaDecoderStateMachine::IsAudioSeekComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("IsAudioSeekComplete() curTarVal=%d mAudDis=%d aqFin=%d aqSz=%d",
mCurrentSeek.Exists(), mDropAudioUntilNextDiscontinuity, AudioQueue().IsFinished(), AudioQueue().GetSize());
return
!HasAudio() ||
(mCurrentSeek.Exists() &&
!mDropAudioUntilNextDiscontinuity &&
(AudioQueue().IsFinished() || AudioQueue().GetSize() > 0));
}
bool
MediaDecoderStateMachine::IsVideoSeekComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("IsVideoSeekComplete() curTarVal=%d mVidDis=%d vqFin=%d vqSz=%d",
mCurrentSeek.Exists(), mDropVideoUntilNextDiscontinuity, VideoQueue().IsFinished(), VideoQueue().GetSize());
return
!HasVideo() ||
(mCurrentSeek.Exists() &&
!mDropVideoUntilNextDiscontinuity &&
(VideoQueue().IsFinished() || VideoQueue().GetSize() > 0));
}
void
MediaDecoderStateMachine::OnAudioDecoded(AudioData* aAudioSample)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
nsRefPtr<AudioData> audio(aAudioSample);
MOZ_ASSERT(audio);
mAudioDataRequest.Complete();
aAudioSample->AdjustForStartTime(StartTime());
mDecodedAudioEndTime = audio->GetEndTime();
SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
(audio ? audio->mTime : -1),
(audio ? audio->GetEndTime() : -1),
(audio ? audio->mDiscontinuity : 0));
switch (mState) {
case DECODER_STATE_DECODING_FIRSTFRAME: {
Push(audio);
MaybeFinishDecodeFirstFrame();
return;
}
case DECODER_STATE_BUFFERING: {
// If we're buffering, this may be the sample we need to stop buffering.
// Save it and schedule the state machine.
Push(audio);
ScheduleStateMachine();
return;
}
case DECODER_STATE_DECODING: {
Push(audio);
if (mIsAudioPrerolling && DonePrerollingAudio()) {
StopPrerollingAudio();
}
// Schedule the state machine to send stream data as soon as possible.
if (mAudioCaptured) {
ScheduleStateMachine();
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeek.Exists()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (audio->mDiscontinuity) {
mDropAudioUntilNextDiscontinuity = false;
}
if (!mDropAudioUntilNextDiscontinuity) {
// We must be after the discontinuity; we're receiving samples
// at or after the seek target.
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
audio->mTime < mCurrentTimeBeforeSeek) {
// We are doing a fastSeek, but we ended up *before* the previous
// playback position. This is surprising UX, so switch to an accurate
// seek and decode to the seek target. This is not conformant to the
// spec, fastSeek should always be fast, but until we get the time to
// change all Readers to seek to the keyframe after the currentTime
// in this case, we'll just decode forward. Bug 1026330.
mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
}
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
// Non-precise seek; we can stop the seek at the first sample.
Push(audio);
} else {
// We're doing an accurate seek. We must discard
// MediaData up to the one containing exact seek target.
if (NS_FAILED(DropAudioUpToSeekTarget(audio))) {
DecodeError();
return;
}
}
}
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::Push(AudioData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
AudioQueue().Push(aSample);
UpdateNextFrameStatus();
DispatchDecodeTasksIfNeeded();
// XXXbholley - Still necessary?
mDecoder->GetReentrantMonitor().NotifyAll();
}
void
MediaDecoderStateMachine::PushFront(AudioData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
AudioQueue().PushFront(aSample);
UpdateNextFrameStatus();
}
void
MediaDecoderStateMachine::Push(VideoData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
aSample->mFrameID = ++mCurrentFrameID;
VideoQueue().Push(aSample);
UpdateNextFrameStatus();
DispatchDecodeTasksIfNeeded();
// XXXbholley - Is this still necessary?
mDecoder->GetReentrantMonitor().NotifyAll();
}
void
MediaDecoderStateMachine::PushFront(VideoData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
aSample->mFrameID = ++mCurrentFrameID;
VideoQueue().PushFront(aSample);
UpdateNextFrameStatus();
}
void
MediaDecoderStateMachine::OnAudioPopped()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
UpdateNextFrameStatus();
DispatchAudioDecodeTaskIfNeeded();
}
void
MediaDecoderStateMachine::OnVideoPopped()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
UpdateNextFrameStatus();
DispatchVideoDecodeTaskIfNeeded();
// Notify the decode thread that the video queue's buffers may have
// free'd up space for more frames.
mDecoder->GetReentrantMonitor().NotifyAll();
}
void
MediaDecoderStateMachine::OnNotDecoded(MediaData::Type aType,
MediaDecoderReader::NotDecodedReason aReason)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
SAMPLE_LOG("OnNotDecoded (aType=%u, aReason=%u)", aType, aReason);
bool isAudio = aType == MediaData::AUDIO_DATA;
MOZ_ASSERT_IF(!isAudio, aType == MediaData::VIDEO_DATA);
if (isAudio) {
mAudioDataRequest.Complete();
} else {
mVideoDataRequest.Complete();
}
if (IsShutdown()) {
// Already shutdown;
return;
}
// If this is a decode error, delegate to the generic error path.
if (aReason == MediaDecoderReader::DECODE_ERROR) {
DecodeError();
return;
}
// If the decoder is waiting for data, we tell it to call us back when the
// data arrives.
if (aReason == MediaDecoderReader::WAITING_FOR_DATA) {
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
"Readers that send WAITING_FOR_DATA need to implement WaitForData");
nsRefPtr<MediaDecoderStateMachine> self = this;
WaitRequestRef(aType).Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::WaitForData, aType)
->Then(TaskQueue(), __func__,
[self] (MediaData::Type aType) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->WaitRequestRef(aType).Complete();
self->DispatchDecodeTasksIfNeeded();
},
[self] (WaitForDataRejectValue aRejection) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->WaitRequestRef(aRejection.mType).Complete();
}));
return;
}
if (aReason == MediaDecoderReader::CANCELED) {
DispatchDecodeTasksIfNeeded();
return;
}
// This is an EOS. Finish off the queue, and then handle things based on our
// state.
MOZ_ASSERT(aReason == MediaDecoderReader::END_OF_STREAM);
if (!isAudio && mState == DECODER_STATE_SEEKING &&
mCurrentSeek.Exists() && mFirstVideoFrameAfterSeek) {
// Null sample. Hit end of stream. If we have decoded a frame,
// insert it into the queue so that we have something to display.
// We make sure to do this before invoking VideoQueue().Finish()
// below.
Push(mFirstVideoFrameAfterSeek);
mFirstVideoFrameAfterSeek = nullptr;
}
if (isAudio) {
AudioQueue().Finish();
StopPrerollingAudio();
} else {
VideoQueue().Finish();
StopPrerollingVideo();
}
switch (mState) {
case DECODER_STATE_DECODING_FIRSTFRAME: {
MaybeFinishDecodeFirstFrame();
return;
}
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
CheckIfDecodeComplete();
mDecoder->GetReentrantMonitor().NotifyAll();
// Schedule the state machine to notify track ended as soon as possible.
if (mAudioCaptured) {
ScheduleStateMachine();
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeek.Exists()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (isAudio) {
mDropAudioUntilNextDiscontinuity = false;
} else {
mDropVideoUntilNextDiscontinuity = false;
}
CheckIfSeekComplete();
return;
}
default: {
return;
}
}
}
void
MediaDecoderStateMachine::MaybeFinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if ((IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
return;
}
if (NS_FAILED(FinishDecodeFirstFrame())) {
DecodeError();
}
}
void
MediaDecoderStateMachine::OnVideoDecoded(VideoData* aVideoSample)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
nsRefPtr<VideoData> video(aVideoSample);
MOZ_ASSERT(video);
mVideoDataRequest.Complete();
aVideoSample->AdjustForStartTime(StartTime());
mDecodedVideoEndTime = video ? video->GetEndTime() : mDecodedVideoEndTime;
SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
(video ? video->mTime : -1),
(video ? video->GetEndTime() : -1),
(video ? video->mDiscontinuity : 0));
switch (mState) {
case DECODER_STATE_DECODING_FIRSTFRAME: {
Push(video);
MaybeFinishDecodeFirstFrame();
return;
}
case DECODER_STATE_BUFFERING: {
// If we're buffering, this may be the sample we need to stop buffering.
// Save it and schedule the state machine.
Push(video);
ScheduleStateMachine();
return;
}
case DECODER_STATE_DECODING: {
Push(video);
if (mIsVideoPrerolling && DonePrerollingVideo()) {
StopPrerollingVideo();
}
// Schedule the state machine to send stream data as soon as possible or
// the VideoQueue() is empty before the Push().
// VideoQueue() is empty implies the state machine thread doesn't have
// precise time information about video frames. Once the first video
// frame pushed in the queue, schedule the state machine as soon as
// possible to render the video frame or delay the state machine thread
// accurately.
if (mAudioCaptured || VideoQueue().GetSize() == 1) {
ScheduleStateMachine();
}
// For non async readers, if the requested video sample was slow to
// arrive, increase the amount of audio we buffer to ensure that we
// don't run out of audio. This is unnecessary for async readers,
// since they decode audio and video on different threads so they
// are unlikely to run out of decoded audio.
if (mReader->IsAsync()) {
return;
}
TimeDuration decodeTime = TimeStamp::Now() - mVideoDecodeStartTime;
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
!HasLowUndecodedData())
{
mLowAudioThresholdUsecs =
std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), mAmpleAudioThresholdUsecs);
mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
mAmpleAudioThresholdUsecs);
DECODER_LOG("Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
}
return;
}
case DECODER_STATE_SEEKING: {
if (!mCurrentSeek.Exists()) {
// We've received a sample from a previous decode. Discard it.
return;
}
if (mDropVideoUntilNextDiscontinuity) {
if (video->mDiscontinuity) {
mDropVideoUntilNextDiscontinuity = false;
}
}
if (!mDropVideoUntilNextDiscontinuity) {
// We must be after the discontinuity; we're receiving samples
// at or after the seek target.
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint &&
mCurrentSeek.mTarget.mTime > mCurrentTimeBeforeSeek &&
video->mTime < mCurrentTimeBeforeSeek) {
// We are doing a fastSeek, but we ended up *before* the previous
// playback position. This is surprising UX, so switch to an accurate
// seek and decode to the seek target. This is not conformant to the
// spec, fastSeek should always be fast, but until we get the time to
// change all Readers to seek to the keyframe after the currentTime
// in this case, we'll just decode forward. Bug 1026330.
mCurrentSeek.mTarget.mType = SeekTarget::Accurate;
}
if (mCurrentSeek.mTarget.mType == SeekTarget::PrevSyncPoint) {
// Non-precise seek; we can stop the seek at the first sample.
Push(video);
} else {
// We're doing an accurate seek. We still need to discard
// MediaData up to the one containing exact seek target.
if (NS_FAILED(DropVideoUpToSeekTarget(video))) {
DecodeError();
return;
}
}
}
CheckIfSeekComplete();
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::CheckIfSeekComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
const bool videoSeekComplete = IsVideoSeekComplete();
if (HasVideo() && !videoSeekComplete) {
// We haven't reached the target. Ensure we have requested another sample.
if (NS_FAILED(EnsureVideoDecodeTaskQueued())) {
DECODER_WARN("Failed to request video during seek");
DecodeError();
}
}
const bool audioSeekComplete = IsAudioSeekComplete();
if (HasAudio() && !audioSeekComplete) {
// We haven't reached the target. Ensure we have requested another sample.
if (NS_FAILED(EnsureAudioDecodeTaskQueued())) {
DECODER_WARN("Failed to request audio during seek");
DecodeError();
}
}
SAMPLE_LOG("CheckIfSeekComplete() audioSeekComplete=%d videoSeekComplete=%d",
audioSeekComplete, videoSeekComplete);
if (audioSeekComplete && videoSeekComplete) {
mDecodeToSeekTarget = false;
SeekCompleted();
}
}
bool
MediaDecoderStateMachine::IsAudioDecoding()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return HasAudio() && !AudioQueue().IsFinished();
}
bool
MediaDecoderStateMachine::IsVideoDecoding()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return HasVideo() && !VideoQueue().IsFinished();
}
void
MediaDecoderStateMachine::CheckIfDecodeComplete()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (IsShutdown() ||
mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_COMPLETED) {
// Don't change our state if we've already been shutdown, or we're seeking,
// since we don't want to abort the shutdown or seek processes.
return;
}
if (!IsVideoDecoding() && !IsAudioDecoding()) {
// We've finished decoding all active streams,
// so move to COMPLETED state.
SetState(DECODER_STATE_COMPLETED);
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
DECODER_LOG("CheckIfDecodeComplete %scompleted",
((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
}
bool MediaDecoderStateMachine::IsPlaying() const
{
AssertCurrentThreadInMonitor();
return !mPlayStartTime.IsNull();
}
nsresult MediaDecoderStateMachine::Init(MediaDecoderStateMachine* aCloneDonor)
{
MOZ_ASSERT(NS_IsMainThread());
MediaDecoderReader* cloneReader = nullptr;
if (aCloneDonor) {
cloneReader = aCloneDonor->mReader;
}
nsresult rv = mReader->Init(cloneReader);
NS_ENSURE_SUCCESS(rv, rv);
return NS_OK;
}
void MediaDecoderStateMachine::StopPlayback()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("StopPlayback()");
AssertCurrentThreadInMonitor();
mDecoder->DispatchPlaybackStopped();
if (IsPlaying()) {
RenderVideoFrames(1);
mPlayDuration = GetClock();
SetPlayStartTime(TimeStamp());
}
// Notify the audio sink, so that it notices that we've stopped playing,
// so it can pause audio playback.
mDecoder->GetReentrantMonitor().NotifyAll();
NS_ASSERTION(!IsPlaying(), "Should report not playing at end of StopPlayback()");
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::MaybeStartPlayback()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
mState == DECODER_STATE_COMPLETED);
if (IsPlaying()) {
// Logging this case is really spammy - don't do it.
return;
}
bool playStatePermits = mPlayState == MediaDecoder::PLAY_STATE_PLAYING;
if (!playStatePermits || mIsAudioPrerolling || mIsVideoPrerolling) {
DECODER_LOG("Not starting playback [playStatePermits: %d, "
"mIsAudioPrerolling: %d, mIsVideoPrerolling: %d]",
(int) playStatePermits, (int) mIsAudioPrerolling, (int) mIsVideoPrerolling);
return;
}
if (mDecoder->CheckDecoderCanOffloadAudio()) {
DECODER_LOG("Offloading playback");
return;
}
DECODER_LOG("MaybeStartPlayback() starting playback");
mDecoder->DispatchPlaybackStarted();
SetPlayStartTime(TimeStamp::Now());
MOZ_ASSERT(IsPlaying());
nsresult rv = StartAudioThread();
NS_ENSURE_SUCCESS_VOID(rv);
mDecoder->GetReentrantMonitor().NotifyAll();
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld)", aTime);
AssertCurrentThreadInMonitor();
mCurrentPosition = aTime;
NS_ASSERTION(mCurrentPosition >= 0, "CurrentTime should be positive!");
mObservedDuration = std::max(mObservedDuration.Ref(),
TimeUnit::FromMicroseconds(mCurrentPosition.Ref()));
}
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
mMetadataManager.DispatchMetadataIfNeeded(mDecoder, aTime);
if (fragmentEnded) {
StopPlayback();
}
}
void MediaDecoderStateMachine::ClearPositionChangeFlag()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
AssertCurrentThreadInMonitor();
mPositionChangeQueued = false;
}
static const char* const gMachineStateStr[] = {
"NONE",
"DECODING_METADATA",
"WAIT_FOR_RESOURCES",
"WAIT_FOR_CDM",
"DECODING_FIRSTFRAME",
"DORMANT",
"DECODING",
"SEEKING",
"BUFFERING",
"COMPLETED",
"SHUTDOWN",
"ERROR"
};
void MediaDecoderStateMachine::SetState(State aState)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mState == aState) {
return;
}
DECODER_LOG("Change machine state from %s to %s",
gMachineStateStr[mState], gMachineStateStr[aState]);
mState = aState;
mIsShutdown = mState == DECODER_STATE_ERROR || mState == DECODER_STATE_SHUTDOWN;
// Clear state-scoped state.
mSentPlaybackEndedEvent = false;
}
void MediaDecoderStateMachine::VolumeChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mAudioSink) {
mAudioSink->SetVolume(mVolume);
}
}
void MediaDecoderStateMachine::RecomputeDuration()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
TimeUnit duration;
if (mExplicitDuration.Ref().isSome()) {
double d = mExplicitDuration.Ref().ref();
if (IsNaN(d)) {
// We have an explicit duration (which means that we shouldn't look at
// any other duration sources), but the duration isn't ready yet.
return;
}
// We don't fire duration changed for this case because it should have
// already been fired on the main thread when the explicit duration was set.
duration = TimeUnit::FromSeconds(d);
} else if (mEstimatedDuration.Ref().isSome()) {
duration = mEstimatedDuration.Ref().ref();
} else if (mInfo.mMetadataDuration.isSome()) {
duration = mInfo.mMetadataDuration.ref();
} else {
return;
}
if (duration < mObservedDuration.Ref()) {
duration = mObservedDuration;
}
MOZ_ASSERT(duration.ToMicroseconds() >= 0);
mDuration = Some(duration);
}
void MediaDecoderStateMachine::SetDormant(bool aDormant)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
return;
}
if (!mReader) {
return;
}
DECODER_LOG("SetDormant=%d", aDormant);
if (aDormant) {
if (mState == DECODER_STATE_SEEKING) {
if (mQueuedSeek.Exists()) {
// Keep latest seek target
} else if (mPendingSeek.Exists()) {
mQueuedSeek.Steal(mPendingSeek);
} else if (mCurrentSeek.Exists()) {
mQueuedSeek.Steal(mCurrentSeek);
} else {
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
SeekTarget::Accurate,
MediaDecoderEventVisibility::Suppressed);
// XXXbholley - Nobody is listening to this promise. Do we need to pass it
// back to MediaDecoder when we come out of dormant?
nsRefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
}
} else {
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
SeekTarget::Accurate,
MediaDecoderEventVisibility::Suppressed);
// XXXbholley - Nobody is listening to this promise. Do we need to pass it
// back to MediaDecoder when we come out of dormant?
nsRefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
}
mPendingSeek.RejectIfExists(__func__);
mCurrentSeek.RejectIfExists(__func__);
SetState(DECODER_STATE_DORMANT);
if (IsPlaying()) {
StopPlayback();
}
Reset();
// Note that we do not wait for the decode task queue to go idle before
// queuing the ReleaseMediaResources task - instead, we disconnect promises,
// reset state, and put a ResetDecode in the decode task queue. Any tasks
// that run after ResetDecode are supposed to run with a clean slate. We rely
// on that in other places (i.e. seeking), so it seems reasonable to rely on
// it here as well.
nsCOMPtr<nsIRunnable> r = NS_NewRunnableMethod(mReader, &MediaDecoderReader::ReleaseMediaResources);
DecodeTaskQueue()->Dispatch(r.forget());
mDecoder->GetReentrantMonitor().NotifyAll();
} else if ((aDormant != true) && (mState == DECODER_STATE_DORMANT)) {
mDecodingFrozenAtStateDecoding = true;
ScheduleStateMachine();
mCurrentPosition = 0;
SetState(DECODER_STATE_DECODING_NONE);
mDecoder->GetReentrantMonitor().NotifyAll();
}
}
void MediaDecoderStateMachine::Shutdown()
{
MOZ_ASSERT(OnTaskQueue());
// Once we've entered the shutdown state here there's no going back.
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// Change state before issuing shutdown request to threads so those
// threads can start exiting cleanly during the Shutdown call.
ScheduleStateMachine();
SetState(DECODER_STATE_SHUTDOWN);
if (mAudioSink) {
mAudioSink->PrepareToShutdown();
}
mQueuedSeek.RejectIfExists(__func__);
mPendingSeek.RejectIfExists(__func__);
mCurrentSeek.RejectIfExists(__func__);
if (IsPlaying()) {
StopPlayback();
}
Reset();
// Shut down our start time rendezvous.
if (mStartTimeRendezvous) {
mStartTimeRendezvous->Destroy();
}
// Put a task in the decode queue to shutdown the reader.
// the queue to spin down.
ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__, &MediaDecoderReader::Shutdown)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::FinishShutdown,
&MediaDecoderStateMachine::FinishShutdown);
DECODER_LOG("Shutdown started");
}
void MediaDecoderStateMachine::StartDecoding()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState == DECODER_STATE_DECODING) {
return;
}
SetState(DECODER_STATE_DECODING);
mDecodeStartTime = TimeStamp::Now();
CheckIfDecodeComplete();
if (mState == DECODER_STATE_COMPLETED) {
return;
}
// Reset other state to pristine values before starting decode.
mIsAudioPrerolling = !DonePrerollingAudio();
mIsVideoPrerolling = !DonePrerollingVideo();
// Ensure that we've got tasks enqueued to decode data if we need to.
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
void MediaDecoderStateMachine::NotifyWaitingForResourcesStatusChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
DECODER_LOG("NotifyWaitingForResourcesStatusChanged");
if (mState == DECODER_STATE_WAIT_FOR_RESOURCES) {
// Try again.
SetState(DECODER_STATE_DECODING_NONE);
ScheduleStateMachine();
} else if (mState == DECODER_STATE_WAIT_FOR_CDM &&
!mReader->IsWaitingOnCDMResource()) {
SetState(DECODER_STATE_DECODING_FIRSTFRAME);
EnqueueDecodeFirstFrameTask();
}
}
void MediaDecoderStateMachine::PlayStateChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// This method used to be a Play() method invoked by MediaDecoder when the
// play state became PLAY_STATE_PLAYING. As such, it doesn't have any work to
// do for other state changes. That could change.
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
return;
}
// Once we start playing, we don't want to minimize our prerolling, as we
// assume the user is likely to want to keep playing in future. This needs to
// happen before we invoke StartDecoding().
if (mMinimizePreroll) {
mMinimizePreroll = false;
DispatchDecodeTasksIfNeeded();
}
if (mDecodingFrozenAtStateDecoding) {
mDecodingFrozenAtStateDecoding = false;
DispatchDecodeTasksIfNeeded();
}
// Some state transitions still happen synchronously on the main thread. So
// if the main thread invokes Play() and then Seek(), the seek will initiate
// synchronously on the main thread, and the asynchronous PlayInternal task
// will arrive when it's no longer valid. The proper thing to do is to move
// all state transitions to the state machine task queue, but for now we just
// make sure that none of the possible main-thread state transitions (Seek(),
// SetDormant(), and Shutdown()) have not occurred.
if (mState != DECODER_STATE_DECODING && mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_COMPLETED)
{
DECODER_LOG("Unexpected state - Bailing out of PlayInternal()");
return;
}
// When asked to play, switch to decoding state only if
// we are currently buffering. In other cases, we'll start playing anyway
// when the state machine notices the decoder's state change to PLAYING.
if (mState == DECODER_STATE_BUFFERING) {
StartDecoding();
}
ScheduleStateMachine();
}
void MediaDecoderStateMachine::LogicallySeekingChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
ScheduleStateMachine();
}
void MediaDecoderStateMachine::BufferedRangeUpdated()
{
MOZ_ASSERT(OnTaskQueue());
// While playing an unseekable stream of unknown duration, mObservedDuration
// is updated (in AdvanceFrame()) as we play. But if data is being downloaded
// faster than played, mObserved won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mObservedDuration here as new data is downloaded to prevent such a lag.
if (!mBuffered.Ref().IsInvalid()) {
bool exists;
media::TimeUnit end{mBuffered.Ref().GetEnd(&exists)};
if (exists) {
mObservedDuration = std::max(mObservedDuration.Ref(), end);
}
}
}
nsRefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::Seek(SeekTarget aTarget)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mDecodingFrozenAtStateDecoding = false;
if (IsShutdown()) {
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
// We need to be able to seek both at a transport level and at a media level
// to seek.
if (!mDecoder->IsMediaSeekable()) {
DECODER_WARN("Seek() function should not be called on a non-seekable state machine");
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
"We should have got duration already");
if (mState < DECODER_STATE_DECODING) {
DECODER_LOG("Seek() Not Enough Data to continue at this stage, queuing seek");
mQueuedSeek.RejectIfExists(__func__);
mQueuedSeek.mTarget = aTarget;
return mQueuedSeek.mPromise.Ensure(__func__);
}
mQueuedSeek.RejectIfExists(__func__);
mPendingSeek.RejectIfExists(__func__);
mPendingSeek.mTarget = aTarget;
DECODER_LOG("Changed state to SEEKING (to %lld)", mPendingSeek.mTarget.mTime);
SetState(DECODER_STATE_SEEKING);
ScheduleStateMachine();
return mPendingSeek.mPromise.Ensure(__func__);
}
void MediaDecoderStateMachine::StopAudioThread()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mAudioSink) {
DECODER_LOG("Shutdown audio thread");
mAudioSink->PrepareToShutdown();
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mAudioSink->Shutdown();
}
mAudioSink = nullptr;
}
}
nsresult
MediaDecoderStateMachine::EnqueueDecodeFirstFrameTask()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_DECODING_FIRSTFRAME);
nsCOMPtr<nsIRunnable> task(
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::CallDecodeFirstFrame));
TaskQueue()->Dispatch(task.forget());
return NS_OK;
}
void
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return;
}
if (mState == DECODER_STATE_DECODING && mDecodingFrozenAtStateDecoding) {
DECODER_LOG("DispatchDecodeTasksIfNeeded return due to "
"mFreezeDecodingAtStateDecoding");
return;
}
// NeedToDecodeAudio() can go from false to true while we hold the
// monitor, but it can't go from true to false. This can happen because
// NeedToDecodeAudio() takes into account the amount of decoded audio
// that's been written to the AudioStream but not played yet. So if we
// were calling NeedToDecodeAudio() twice and we thread-context switch
// between the calls, audio can play, which can affect the return value
// of NeedToDecodeAudio() giving inconsistent results. So we cache the
// value returned by NeedToDecodeAudio(), and make decisions
// based on the cached value. If NeedToDecodeAudio() has
// returned false, and then subsequently returns true and we're not
// playing, it will probably be OK since we don't need to consume data
// anyway.
const bool needToDecodeAudio = NeedToDecodeAudio();
const bool needToDecodeVideo = NeedToDecodeVideo();
// If we're in completed state, we should not need to decode anything else.
MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
(!needToDecodeAudio && !needToDecodeVideo));
bool needIdle = !IsLogicallyPlaying() &&
mState != DECODER_STATE_SEEKING &&
!needToDecodeAudio &&
!needToDecodeVideo &&
!IsPlaying();
SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d audioStatus=%s needVideo=%d videoStatus=%s needIdle=%d",
needToDecodeAudio, AudioRequestStatus(),
needToDecodeVideo, VideoRequestStatus(),
needIdle);
if (needToDecodeAudio) {
EnsureAudioDecodeTaskQueued();
}
if (needToDecodeVideo) {
EnsureVideoDecodeTaskQueued();
}
if (needIdle) {
DECODER_LOG("Dispatching SetIdle() audioQueue=%lld videoQueue=%lld",
GetDecodedAudioDuration(),
VideoQueue().Duration());
nsCOMPtr<nsIRunnable> task = NS_NewRunnableMethod(mReader, &MediaDecoderReader::SetIdle);
DecodeTaskQueue()->Dispatch(task.forget());
}
}
void
MediaDecoderStateMachine::InitiateSeek()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
mCurrentSeek.RejectIfExists(__func__);
mCurrentSeek.Steal(mPendingSeek);
// Bound the seek time to be inside the media range.
int64_t end = Duration().ToMicroseconds();
NS_ASSERTION(end != -1, "Should know end time by now");
int64_t seekTime = mCurrentSeek.mTarget.mTime;
seekTime = std::min(seekTime, end);
seekTime = std::max(int64_t(0), seekTime);
NS_ASSERTION(seekTime >= 0 && seekTime <= end,
"Can only seek in range [0,duration]");
mCurrentSeek.mTarget.mTime = seekTime;
if (mAudioCaptured) {
mDecodedStream->RecreateData();
}
mDropAudioUntilNextDiscontinuity = HasAudio();
mDropVideoUntilNextDiscontinuity = HasVideo();
mDecoder->StopProgressUpdates();
mCurrentTimeBeforeSeek = GetMediaTime();
// Stop playback now to ensure that while we're outside the monitor
// dispatching SeekingStarted, playback doesn't advance and mess with
// mCurrentPosition that we've setting to seekTime here.
StopPlayback();
UpdatePlaybackPositionInternal(mCurrentSeek.mTarget.mTime);
nsCOMPtr<nsIRunnable> startEvent =
NS_NewRunnableMethodWithArg<MediaDecoderEventVisibility>(
mDecoder,
&MediaDecoder::SeekingStarted,
mCurrentSeek.mTarget.mEventVisibility);
AbstractThread::MainThread()->Dispatch(startEvent.forget());
// Reset our state machine and decoding pipeline before seeking.
Reset();
// Do the seek.
nsRefPtr<MediaDecoderStateMachine> self = this;
mSeekRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::Seek, mCurrentSeek.mTarget.mTime,
Duration().ToMicroseconds())
->Then(TaskQueue(), __func__,
[self] (int64_t) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->mSeekRequest.Complete();
// We must decode the first samples of active streams, so we can determine
// the new stream time. So dispatch tasks to do that.
self->mDecodeToSeekTarget = true;
self->DispatchDecodeTasksIfNeeded();
}, [self] (nsresult aResult) -> void {
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
self->mSeekRequest.Complete();
MOZ_ASSERT(NS_FAILED(aResult), "Cancels should also disconnect mSeekRequest");
self->DecodeError();
}));
}
nsresult
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (NeedToDecodeAudio()) {
return EnsureAudioDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d status=%s",
IsAudioDecoding(), AudioRequestStatus());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return NS_OK;
}
if (!IsAudioDecoding() || mAudioDataRequest.Exists() ||
mAudioWaitRequest.Exists() || mSeekRequest.Exists()) {
return NS_OK;
}
SAMPLE_LOG("Queueing audio task - queued=%i, decoder-queued=%o",
AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());
mAudioDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(),
__func__, &MediaDecoderReader::RequestAudioData)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnAudioDecoded,
&MediaDecoderStateMachine::OnAudioNotDecoded));
return NS_OK;
}
nsresult
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (NeedToDecodeVideo()) {
return EnsureVideoDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d status=%s",
IsVideoDecoding(), VideoRequestStatus());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_DECODING_FIRSTFRAME &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return NS_OK;
}
if (!IsVideoDecoding() || mVideoDataRequest.Exists() ||
mVideoWaitRequest.Exists() || mSeekRequest.Exists()) {
return NS_OK;
}
bool skipToNextKeyFrame = NeedToSkipToNextKeyframe();
int64_t currentTime = mState == DECODER_STATE_SEEKING ? 0 : GetMediaTime();
bool forceDecodeAhead = static_cast<uint32_t>(VideoQueue().GetSize()) <= SCARCE_VIDEO_QUEUE_SIZE;
// Time the video decode, so that if it's slow, we can increase our low
// audio threshold to reduce the chance of an audio underrun while we're
// waiting for a video decode to complete.
mVideoDecodeStartTime = TimeStamp::Now();
SAMPLE_LOG("Queueing video task - queued=%i, decoder-queued=%o, skip=%i, time=%lld",
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(), skipToNextKeyFrame,
currentTime);
mVideoDataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::RequestVideoData,
skipToNextKeyFrame, currentTime, forceDecodeAhead)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnVideoDecoded,
&MediaDecoderStateMachine::OnVideoNotDecoded));
return NS_OK;
}
nsresult
MediaDecoderStateMachine::StartAudioThread()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mAudioCaptured) {
MOZ_ASSERT(!mAudioSink);
return NS_OK;
}
if (HasAudio() && !mAudioSink) {
auto audioStartTime = GetMediaTime();
// The audio end time should always be at least the audio start time.
mAudioEndTime = audioStartTime;
mAudioCompleted = false;
mAudioSink = new AudioSink(this, audioStartTime,
mInfo.mAudio, mDecoder->GetAudioChannel());
// OnAudioSinkError() will be called before Init() returns if an error
// occurs during initialization.
nsresult rv = mAudioSink->Init();
NS_ENSURE_SUCCESS(rv, rv);
mAudioSink->SetVolume(mVolume);
mAudioSink->SetPlaybackRate(mPlaybackRate);
mAudioSink->SetPreservesPitch(mPreservesPitch);
}
return NS_OK;
}
int64_t MediaDecoderStateMachine::AudioDecodedUsecs()
{
MOZ_ASSERT(OnTaskQueue());
NS_ASSERTION(HasAudio(),
"Should only call AudioDecodedUsecs() when we have audio");
// The amount of audio we have decoded is the amount of audio data we've
// already decoded and pushed to the hardware, plus the amount of audio
// data waiting to be pushed to the hardware.
int64_t pushed = (mAudioEndTime != -1) ? (mAudioEndTime - GetMediaTime()) : 0;
// Currently for real time streams, AudioQueue().Duration() produce
// wrong values (Bug 1114434), so we use frame counts to calculate duration.
if (IsRealTime()) {
return pushed + FramesToUsecs(AudioQueue().FrameCount(), mInfo.mAudio.mRate).value();
}
return pushed + AudioQueue().Duration();
}
bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mReader->UseBufferingHeuristics());
// We consider ourselves low on decoded data if we're low on audio,
// provided we've not decoded to the end of the audio stream, or
// if we're low on video frames, provided
// we've not decoded to the end of the video stream.
return ((IsAudioDecoding() && AudioDecodedUsecs() < aAudioUsecs) ||
(IsVideoDecoding() &&
static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
}
bool MediaDecoderStateMachine::OutOfDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding() && !AudioQueue().IsFinished() &&
AudioQueue().GetSize() == 0 &&
(!mAudioSink || !mAudioSink->HasUnplayedFrames());
}
bool MediaDecoderStateMachine::HasLowUndecodedData()
{
MOZ_ASSERT(OnTaskQueue());
return HasLowUndecodedData(mLowDataThresholdUsecs);
}
bool MediaDecoderStateMachine::HasLowUndecodedData(int64_t aUsecs)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
NS_ASSERTION(mState > DECODER_STATE_DECODING_FIRSTFRAME,
"Must have loaded first frame for mBuffered to be valid");
// If we don't have a duration, mBuffered is probably not going to have
// a useful buffered range. Return false here so that we don't get stuck in
// buffering mode for live streams.
if (Duration().IsInfinite()) {
return false;
}
if (mBuffered.Ref().IsInvalid()) {
return false;
}
int64_t endOfDecodedVideoData = INT64_MAX;
if (HasVideo() && !VideoQueue().AtEndOfStream()) {
endOfDecodedVideoData = VideoQueue().Peek() ? VideoQueue().Peek()->GetEndTime() : mVideoFrameEndTime;
}
int64_t endOfDecodedAudioData = INT64_MAX;
if (HasAudio() && !AudioQueue().AtEndOfStream()) {
// mDecodedAudioEndTime could be -1 when no audio samples are decoded.
// But that is fine since we consider ourself as low in decoded data when
// we don't have any decoded audio samples at all.
endOfDecodedAudioData = mDecodedAudioEndTime;
}
int64_t endOfDecodedData = std::min(endOfDecodedVideoData, endOfDecodedAudioData);
if (Duration().ToMicroseconds() < endOfDecodedData) {
// Our duration is not up to date. No point buffering.
return false;
}
media::TimeInterval interval(media::TimeUnit::FromMicroseconds(endOfDecodedData),
media::TimeUnit::FromMicroseconds(std::min(endOfDecodedData + aUsecs, Duration().ToMicroseconds())));
return endOfDecodedData != INT64_MAX && !mBuffered.Ref().Contains(interval);
}
void
MediaDecoderStateMachine::DecodeError()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (IsShutdown()) {
// Already shutdown.
return;
}
// Change state to error, which will cause the state machine to wait until
// the MediaDecoder shuts it down.
SetState(DECODER_STATE_ERROR);
ScheduleStateMachine();
DECODER_WARN("Decode error, changed state to ERROR");
// XXXbholley - Is anybody actually waiting on this monitor, or is it just
// a leftover from when we used to do sync dispatch for the below?
mDecoder->GetReentrantMonitor().NotifyAll();
// MediaDecoder::DecodeError notifies the owner, and then shuts down the state
// machine.
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DecodeError);
AbstractThread::MainThread()->Dispatch(event.forget());
}
void
MediaDecoderStateMachine::OnMetadataRead(MetadataHolder* aMetadata)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mMetadataRequest.Complete();
mDecoder->SetMediaSeekable(mReader->IsMediaSeekable());
mInfo = aMetadata->mInfo;
mMetadataTags = aMetadata->mTags.forget();
nsRefPtr<MediaDecoderStateMachine> self = this;
// Set up the start time rendezvous if it doesn't already exist (which is
// generally the case, unless we're coming out of dormant mode).
if (!mStartTimeRendezvous) {
mStartTimeRendezvous = new StartTimeRendezvous(TaskQueue(), HasAudio(), HasVideo(),
mReader->ForceZeroStartTime() || IsRealTime());
mStartTimeRendezvous->AwaitStartTime()->Then(TaskQueue(), __func__,
[self] () -> void {
NS_ENSURE_TRUE_VOID(!self->IsShutdown());
self->mReader->DispatchSetStartTime(self->StartTime());
},
[] () -> void { NS_WARNING("Setting start time on reader failed"); }
);
}
if (mInfo.mMetadataDuration.isSome()) {
RecomputeDuration();
} else if (mInfo.mUnadjustedMetadataEndTime.isSome()) {
mStartTimeRendezvous->AwaitStartTime()->Then(TaskQueue(), __func__,
[self] () -> void {
NS_ENSURE_TRUE_VOID(!self->IsShutdown());
TimeUnit unadjusted = self->mInfo.mUnadjustedMetadataEndTime.ref();
TimeUnit adjustment = TimeUnit::FromMicroseconds(self->StartTime());
self->mInfo.mMetadataDuration.emplace(unadjusted - adjustment);
self->RecomputeDuration();
}, [] () -> void { NS_WARNING("Adjusting metadata end time failed"); }
);
}
if (HasVideo()) {
DECODER_LOG("Video decode isAsync=%d HWAccel=%d videoQueueSize=%d",
mReader->IsAsync(),
mReader->VideoIsHardwareAccelerated(),
GetAmpleVideoFrames());
}
mDecoder->StartProgressUpdates();
// In general, we wait until we know the duration before notifying the decoder.
// However, we notify unconditionally in this case without waiting for the start
// time, since the caller might be waiting on metadataloaded to be fired before
// feeding in the CDM, which we need to decode the first frame (and
// thus get the metadata). We could fix this if we could compute the start
// time by demuxing without necessaring decoding.
mNotifyMetadataBeforeFirstFrame = mDuration.Ref().isSome() || mReader->IsWaitingOnCDMResource();
if (mNotifyMetadataBeforeFirstFrame) {
EnqueueLoadedMetadataEvent();
}
if (mReader->IsWaitingOnCDMResource()) {
// Metadata parsing was successful but we're still waiting for CDM caps
// to become available so that we can build the correct decryptor/decoder.
SetState(DECODER_STATE_WAIT_FOR_CDM);
return;
}
SetState(DECODER_STATE_DECODING_FIRSTFRAME);
EnqueueDecodeFirstFrameTask();
ScheduleStateMachine();
}
void
MediaDecoderStateMachine::OnMetadataNotRead(ReadMetadataFailureReason aReason)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mMetadataRequest.Complete();
if (aReason == ReadMetadataFailureReason::WAITING_FOR_RESOURCES) {
SetState(DECODER_STATE_WAIT_FOR_RESOURCES);
} else {
MOZ_ASSERT(aReason == ReadMetadataFailureReason::METADATA_ERROR);
DECODER_WARN("Decode metadata failed, shutting down decoder");
DecodeError();
}
}
void
MediaDecoderStateMachine::EnqueueLoadedMetadataEvent()
{
MOZ_ASSERT(OnTaskQueue());
nsAutoPtr<MediaInfo> info(new MediaInfo());
*info = mInfo;
MediaDecoderEventVisibility visibility = mSentLoadedMetadataEvent?
MediaDecoderEventVisibility::Suppressed :
MediaDecoderEventVisibility::Observable;
nsCOMPtr<nsIRunnable> metadataLoadedEvent =
new MetadataEventRunner(mDecoder, info, mMetadataTags, visibility);
AbstractThread::MainThread()->Dispatch(metadataLoadedEvent.forget());
mSentLoadedMetadataEvent = true;
}
void
MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent()
{
MOZ_ASSERT(OnTaskQueue());
nsAutoPtr<MediaInfo> info(new MediaInfo());
*info = mInfo;
MediaDecoderEventVisibility visibility = mSentFirstFrameLoadedEvent?
MediaDecoderEventVisibility::Suppressed :
MediaDecoderEventVisibility::Observable;
nsCOMPtr<nsIRunnable> event =
new FirstFrameLoadedEventRunner(mDecoder, info, visibility);
AbstractThread::MainThread()->Dispatch(event.forget());
mSentFirstFrameLoadedEvent = true;
}
void
MediaDecoderStateMachine::CallDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState != DECODER_STATE_DECODING_FIRSTFRAME) {
return;
}
if (NS_FAILED(DecodeFirstFrame())) {
DECODER_WARN("Decode failed to start, shutting down decoder");
DecodeError();
}
}
nsresult
MediaDecoderStateMachine::DecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
MOZ_ASSERT(mState == DECODER_STATE_DECODING_FIRSTFRAME);
DECODER_LOG("DecodeFirstFrame started");
if (IsRealTime()) {
nsresult res = FinishDecodeFirstFrame();
NS_ENSURE_SUCCESS(res, res);
} else if (mSentFirstFrameLoadedEvent) {
// We're resuming from dormant state, so we don't need to request
// the first samples in order to determine the media start time,
// we have the start time from last time we loaded.
nsresult res = FinishDecodeFirstFrame();
NS_ENSURE_SUCCESS(res, res);
} else {
if (HasAudio()) {
mAudioDataRequest.Begin(
ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::RequestAudioData)
->Then(TaskQueue(), __func__, mStartTimeRendezvous.get(),
&StartTimeRendezvous::ProcessFirstSample<AudioDataPromise>,
&StartTimeRendezvous::FirstSampleRejected<AudioData>)
->CompletionPromise()
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnAudioDecoded,
&MediaDecoderStateMachine::OnAudioNotDecoded)
);
}
if (HasVideo()) {
mVideoDecodeStartTime = TimeStamp::Now();
mVideoDataRequest.Begin(
ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::RequestVideoData, false, int64_t(0), false)
->Then(TaskQueue(), __func__, mStartTimeRendezvous.get(),
&StartTimeRendezvous::ProcessFirstSample<VideoDataPromise>,
&StartTimeRendezvous::FirstSampleRejected<VideoData>)
->CompletionPromise()
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnVideoDecoded,
&MediaDecoderStateMachine::OnVideoNotDecoded));
}
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::FinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
DECODER_LOG("FinishDecodeFirstFrame");
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (!IsRealTime() && !mSentFirstFrameLoadedEvent) {
RenderVideoFrames(1);
}
// If we don't know the duration by this point, we assume infinity, per spec.
if (mDuration.Ref().isNothing()) {
mDuration = Some(TimeUnit::FromInfinity());
}
DECODER_LOG("Media duration %lld, "
"transportSeekable=%d, mediaSeekable=%d",
Duration().ToMicroseconds(), mDecoder->IsTransportSeekable(), mDecoder->IsMediaSeekable());
if (HasAudio() && !HasVideo()) {
// We're playing audio only. We don't need to worry about slow video
// decodes causing audio underruns, so don't buffer so much audio in
// order to reduce memory usage.
mAmpleAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
mLowAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
mQuickBufferingLowDataThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
}
// Get potentially updated metadata
{
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
mReader->ReadUpdatedMetadata(&mInfo);
}
if (!mNotifyMetadataBeforeFirstFrame) {
// If we didn't have duration and/or start time before, we should now.
EnqueueLoadedMetadataEvent();
}
EnqueueFirstFrameLoadedEvent();
if (mQueuedSeek.Exists()) {
mPendingSeek.Steal(mQueuedSeek);
SetState(DECODER_STATE_SEEKING);
ScheduleStateMachine();
} else if (mState == DECODER_STATE_DECODING_FIRSTFRAME) {
// StartDecoding() will also check if decode is completed.
StartDecoding();
}
return NS_OK;
}
void
MediaDecoderStateMachine::SeekCompleted()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
int64_t seekTime = mCurrentSeek.mTarget.mTime;
int64_t newCurrentTime = seekTime;
// Setup timestamp state.
nsRefPtr<VideoData> video = VideoQueue().PeekFront();
if (seekTime == Duration().ToMicroseconds()) {
newCurrentTime = seekTime;
} else if (HasAudio()) {
AudioData* audio = AudioQueue().PeekFront();
// Though we adjust the newCurrentTime in audio-based, and supplemented
// by video. For better UX, should NOT bind the slide position to
// the first audio data timestamp directly.
// While seeking to a position where there's only either audio or video, or
// seeking to a position lies before audio or video, we need to check if
// seekTime is bounded in suitable duration. See Bug 1112438.
int64_t videoStart = video ? video->mTime : seekTime;
int64_t audioStart = audio ? audio->mTime : seekTime;
newCurrentTime = std::min(audioStart, videoStart);
} else {
newCurrentTime = video ? video->mTime : seekTime;
}
mStreamStartTime = newCurrentTime;
mPlayDuration = newCurrentTime;
mDecoder->StartProgressUpdates();
// Change state to DECODING or COMPLETED now. SeekingStopped will
// call MediaDecoderStateMachine::Seek to reset our state to SEEKING
// if we need to seek again.
bool isLiveStream = mDecoder->GetResource()->IsLiveStream();
if (mPendingSeek.Exists()) {
// A new seek target came in while we were processing the old one. No rest
// for the seeking.
DECODER_LOG("A new seek came along while we were finishing the old one - staying in SEEKING");
SetState(DECODER_STATE_SEEKING);
} else if (GetMediaTime() == Duration().ToMicroseconds() && !isLiveStream) {
// Seeked to end of media, move to COMPLETED state. Note we don't do
// this when playing a live stream, since the end of media will advance
// once we download more data!
DECODER_LOG("Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
// Explicitly set our state so we don't decode further, and so
// we report playback ended to the media element.
SetState(DECODER_STATE_COMPLETED);
DispatchDecodeTasksIfNeeded();
} else {
DECODER_LOG("Changed state from SEEKING (to %lld) to DECODING", seekTime);
StartDecoding();
}
// Ensure timestamps are up to date.
UpdatePlaybackPositionInternal(newCurrentTime);
// Try to decode another frame to detect if we're at the end...
DECODER_LOG("Seek completed, mCurrentPosition=%lld", mCurrentPosition.Ref());
// Reset quick buffering status. This ensures that if we began the
// seek while quick-buffering, we won't bypass quick buffering mode
// if we need to buffer after the seek.
mQuickBuffering = false;
mCurrentSeek.Resolve(mState == DECODER_STATE_COMPLETED, __func__);
ScheduleStateMachine();
if (video) {
RenderVideoFrames(1);
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::Invalidate);
AbstractThread::MainThread()->Dispatch(event.forget());
}
}
class DecoderDisposer
{
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(DecoderDisposer)
DecoderDisposer(MediaDecoder* aDecoder, MediaDecoderStateMachine* aStateMachine)
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
void OnTaskQueueShutdown()
{
MOZ_ASSERT(NS_IsMainThread());
MOZ_ASSERT(mStateMachine);
MOZ_ASSERT(mDecoder);
mStateMachine->BreakCycles();
mDecoder->BreakCycles();
mStateMachine = nullptr;
mDecoder = nullptr;
}
private:
virtual ~DecoderDisposer() {}
nsRefPtr<MediaDecoder> mDecoder;
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
};
void
MediaDecoderStateMachine::FinishShutdown()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// The reader's listeners hold references to the state machine,
// creating a cycle which keeps the state machine and its shared
// thread pools alive. So break it here.
AudioQueue().ClearListeners();
VideoQueue().ClearListeners();
// Disconnect canonicals and mirrors before shutting down our task queue.
mBuffered.DisconnectIfConnected();
mEstimatedDuration.DisconnectIfConnected();
mExplicitDuration.DisconnectIfConnected();
mPlayState.DisconnectIfConnected();
mNextPlayState.DisconnectIfConnected();
mLogicallySeeking.DisconnectIfConnected();
mVolume.DisconnectIfConnected();
mLogicalPlaybackRate.DisconnectIfConnected();
mPreservesPitch.DisconnectIfConnected();
mDuration.DisconnectAll();
mIsShutdown.DisconnectAll();
mNextFrameStatus.DisconnectAll();
mCurrentPosition.DisconnectAll();
// Shut down the watch manager before shutting down our task queue.
mWatchManager.Shutdown();
MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
"How did we escape from the shutdown state?");
// We must daisy-chain these events to destroy the decoder. We must
// destroy the decoder on the main thread, but we can't destroy the
// decoder while this thread holds the decoder monitor. We can't
// dispatch an event to the main thread to destroy the decoder from
// here, as the event may run before the dispatch returns, and we
// hold the decoder monitor here. We also want to guarantee that the
// state machine is destroyed on the main thread, and so the
// event runner running this function (which holds a reference to the
// state machine) needs to finish and be released in order to allow
// that. So we dispatch an event to run after this event runner has
// finished and released its monitor/references. That event then will
// dispatch an event to the main thread to release the decoder and
// state machine.
DECODER_LOG("Shutting down state machine task queue");
RefPtr<DecoderDisposer> disposer = new DecoderDisposer(mDecoder, this);
TaskQueue()->BeginShutdown()->Then(AbstractThread::MainThread(), __func__,
disposer.get(),
&DecoderDisposer::OnTaskQueueShutdown,
&DecoderDisposer::OnTaskQueueShutdown);
}
nsresult MediaDecoderStateMachine::RunStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mDelayedScheduler.Reset(); // Must happen on state machine task queue.
mDispatchedStateMachine = false;
MediaResource* resource = mDecoder->GetResource();
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
switch (mState) {
case DECODER_STATE_ERROR:
case DECODER_STATE_SHUTDOWN:
case DECODER_STATE_DORMANT:
case DECODER_STATE_WAIT_FOR_CDM:
case DECODER_STATE_WAIT_FOR_RESOURCES:
return NS_OK;
case DECODER_STATE_DECODING_NONE: {
SetState(DECODER_STATE_DECODING_METADATA);
ScheduleStateMachine();
return NS_OK;
}
case DECODER_STATE_DECODING_METADATA: {
if (!mMetadataRequest.Exists()) {
DECODER_LOG("Dispatching AsyncReadMetadata");
mMetadataRequest.Begin(ProxyMediaCall(DecodeTaskQueue(), mReader.get(), __func__,
&MediaDecoderReader::AsyncReadMetadata)
->Then(TaskQueue(), __func__, this,
&MediaDecoderStateMachine::OnMetadataRead,
&MediaDecoderStateMachine::OnMetadataNotRead));
}
return NS_OK;
}
case DECODER_STATE_DECODING_FIRSTFRAME: {
// DECODER_STATE_DECODING_FIRSTFRAME will be started by OnMetadataRead.
return NS_OK;
}
case DECODER_STATE_DECODING: {
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying())
{
// We're playing, but the element/decoder is in paused state. Stop
// playing!
StopPlayback();
}
// Start playback if necessary so that the clock can be properly queried.
MaybeStartPlayback();
UpdateRenderedVideoFrames();
NS_ASSERTION(!IsPlaying() ||
mLogicallySeeking ||
IsStateMachineScheduled(),
"Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_BUFFERING: {
TimeStamp now = TimeStamp::Now();
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
// With buffering heuristics we will remain in the buffering state if
// we've not decoded enough data to begin playback, or if we've not
// downloaded a reasonable amount of data inside our buffering time.
if (mReader->UseBufferingHeuristics()) {
TimeDuration elapsed = now - mBufferingStart;
bool isLiveStream = resource->IsLiveStream();
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
(mQuickBuffering ? HasLowDecodedData(mQuickBufferingLowDataThresholdUsecs)
: HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
mDecoder->IsExpectingMoreData())
{
DECODER_LOG("Buffering: wait %ds, timeout in %.3lfs %s",
mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
(mQuickBuffering ? "(quick exit)" : ""));
ScheduleStateMachineIn(USECS_PER_S);
return NS_OK;
}
} else if (OutOfDecodedAudio() || OutOfDecodedVideo()) {
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
"Don't yet have a strategy for non-heuristic + non-WaitForData");
DispatchDecodeTasksIfNeeded();
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedAudio(), mAudioDataRequest.Exists() || mAudioWaitRequest.Exists());
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedVideo(), mVideoDataRequest.Exists() || mVideoWaitRequest.Exists());
DECODER_LOG("In buffering mode, waiting to be notified: outOfAudio: %d, "
"mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
OutOfDecodedAudio(), AudioRequestStatus(),
OutOfDecodedVideo(), VideoRequestStatus());
return NS_OK;
}
DECODER_LOG("Changed state from BUFFERING to DECODING");
DECODER_LOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
StartDecoding();
// Notify to allow blocked decoder thread to continue
mDecoder->GetReentrantMonitor().NotifyAll();
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_SEEKING: {
if (mPendingSeek.Exists()) {
InitiateSeek();
}
return NS_OK;
}
case DECODER_STATE_COMPLETED: {
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying()) {
StopPlayback();
}
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if (VideoQueue().GetSize() > 1 ||
(HasAudio() && !mAudioCompleted) ||
(mAudioCaptured && !mDecodedStream->IsFinished()))
{
// Start playback if necessary to play the remaining media.
MaybeStartPlayback();
UpdateRenderedVideoFrames();
NS_ASSERTION(!IsPlaying() ||
mLogicallySeeking ||
IsStateMachineScheduled(),
"Must have timer scheduled");
return NS_OK;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
StopPlayback();
if (mState != DECODER_STATE_COMPLETED) {
// While we're presenting a frame we can change state. Whatever changed
// our state should have scheduled another state machine run.
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
StopAudioThread();
if (mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
!mSentPlaybackEndedEvent)
{
int64_t clockTime = std::max(mAudioEndTime, mVideoFrameEndTime);
clockTime = std::max(int64_t(0), std::max(clockTime, Duration().ToMicroseconds()));
UpdatePlaybackPosition(clockTime);
nsCOMPtr<nsIRunnable> event =
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackEnded);
AbstractThread::MainThread()->Dispatch(event.forget());
mSentPlaybackEndedEvent = true;
}
return NS_OK;
}
}
return NS_OK;
}
void
MediaDecoderStateMachine::Reset()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
DECODER_LOG("MediaDecoderStateMachine::Reset");
// We should be resetting because we're seeking, shutting down, or entering
// dormant state. We could also be in the process of going dormant, and have
// just switched to exiting dormant before we finished entering dormant,
// hence the DECODING_NONE case below.
MOZ_ASSERT(IsShutdown() ||
mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_DORMANT ||
mState == DECODER_STATE_DECODING_NONE);
// Stop the audio thread. Otherwise, AudioSink might be accessing AudioQueue
// outside of the decoder monitor while we are clearing the queue and causes
// crash for no samples to be popped.
StopAudioThread();
mVideoFrameEndTime = -1;
mDecodedVideoEndTime = -1;
mStreamStartTime = 0;
mAudioEndTime = -1;
mDecodedAudioEndTime = -1;
mAudioCompleted = false;
AudioQueue().Reset();
VideoQueue().Reset();
mFirstVideoFrameAfterSeek = nullptr;
mDropAudioUntilNextDiscontinuity = true;
mDropVideoUntilNextDiscontinuity = true;
mDecodeToSeekTarget = false;
mMetadataRequest.DisconnectIfExists();
mAudioDataRequest.DisconnectIfExists();
mAudioWaitRequest.DisconnectIfExists();
mVideoDataRequest.DisconnectIfExists();
mVideoWaitRequest.DisconnectIfExists();
mSeekRequest.DisconnectIfExists();
nsCOMPtr<nsIRunnable> resetTask =
NS_NewRunnableMethod(mReader, &MediaDecoderReader::ResetDecode);
DecodeTaskQueue()->Dispatch(resetTask.forget());
}
void MediaDecoderStateMachine::CheckTurningOffHardwareDecoder(VideoData* aData)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
// Update corrupt-frames statistics
if (aData->mImage && !aData->mImage->IsValid()) {
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
frameStats.NotifyCorruptFrame();
// If more than 10% of the last 30 frames have been corrupted, then try disabling
// hardware acceleration. We use 10 as the corrupt value because RollingMean<>
// only supports integer types.
mCorruptFrames.insert(10);
if (!mDisabledHardwareAcceleration &&
mReader->VideoIsHardwareAccelerated() &&
frameStats.GetPresentedFrames() > 30 &&
mCorruptFrames.mean() >= 1 /* 10% */) {
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableMethod(mReader, &MediaDecoderReader::DisableHardwareAcceleration);
DecodeTaskQueue()->Dispatch(task.forget());
mDisabledHardwareAcceleration = true;
gfxCriticalNote << "Too many dropped/corrupted frames, disabling DXVA";
}
} else {
mCorruptFrames.insert(0);
}
}
void MediaDecoderStateMachine::RenderVideoFrames(int32_t aMaxFrames,
int64_t aClockTime,
const TimeStamp& aClockTimeStamp)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
VideoFrameContainer* container = mDecoder->GetVideoFrameContainer();
nsAutoTArray<nsRefPtr<VideoData>,16> frames;
VideoQueue().GetFirstElements(aMaxFrames, &frames);
if (frames.IsEmpty() || !container) {
return;
}
nsAutoTArray<ImageContainer::NonOwningImage,16> images;
TimeStamp lastFrameTime;
for (uint32_t i = 0; i < frames.Length(); ++i) {
VideoData* frame = frames[i];
frame->mSentToCompositor = true;
int64_t frameTime = frame->mTime;
if (frameTime < 0) {
// Frame times before the start time are invalid; drop such frames
continue;
}
TimeStamp t;
if (aMaxFrames > 1) {
MOZ_ASSERT(!aClockTimeStamp.IsNull());
int64_t delta = frame->mTime - aClockTime;
t = aClockTimeStamp +
TimeDuration::FromMicroseconds(delta / mPlaybackRate);
if (!lastFrameTime.IsNull() && t <= lastFrameTime) {
// Timestamps out of order; drop the new frame. In theory we should
// probably replace the previous frame with the new frame if the
// timestamps are equal, but this is a corrupt video file already so
// never mind.
continue;
}
lastFrameTime = t;
}
ImageContainer::NonOwningImage* img = images.AppendElement();
img->mTimeStamp = t;
img->mImage = frame->mImage;
img->mFrameID = frame->mFrameID;
img->mProducerID = mProducerID;
VERBOSE_LOG("playing video frame %lld (id=%d) (queued=%i, state-machine=%i, decoder-queued=%i)",
frame->mTime, frame->mFrameID,
VideoQueue().GetSize() + mReader->SizeOfVideoQueueInFrames(),
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames());
}
container->SetCurrentFrames(frames[0]->mDisplay, images);
}
void MediaDecoderStateMachine::ResyncAudioClock()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (IsPlaying()) {
SetPlayStartTime(TimeStamp::Now());
mPlayDuration = GetAudioClock();
}
}
int64_t
MediaDecoderStateMachine::GetAudioClock() const
{
MOZ_ASSERT(OnTaskQueue());
// We must hold the decoder monitor while using the audio stream off the
// audio sink to ensure that it doesn't get destroyed on the audio sink
// while we're using it.
AssertCurrentThreadInMonitor();
MOZ_ASSERT(HasAudio() && !mAudioCompleted && IsPlaying());
// Since this function is called while we are playing and AudioSink is
// created once playback starts, mAudioSink is guaranteed to be non-null.
MOZ_ASSERT(mAudioSink);
return mAudioSink->GetPosition();
}
int64_t MediaDecoderStateMachine::GetStreamClock() const
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return mStreamStartTime + mDecodedStream->GetPosition();
}
int64_t MediaDecoderStateMachine::GetVideoStreamPosition(TimeStamp aTimeStamp) const
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (!IsPlaying()) {
return mPlayDuration;
}
// Time elapsed since we started playing.
int64_t delta = DurationToUsecs(aTimeStamp - mPlayStartTime);
// Take playback rate into account.
delta *= mPlaybackRate;
return mPlayDuration + delta;
}
int64_t MediaDecoderStateMachine::GetClock(TimeStamp* aTimeStamp) const
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
// Determine the clock time. If we've got audio, and we've not reached
// the end of the audio, use the audio clock. However if we've finished
// audio, or don't have audio, use the system clock. If our output is being
// fed to a MediaStream, use that stream as the source of the clock.
int64_t clock_time = -1;
TimeStamp t;
if (!IsPlaying()) {
clock_time = mPlayDuration;
} else {
if (mAudioCaptured) {
clock_time = GetStreamClock();
} else if (HasAudio() && !mAudioCompleted) {
clock_time = GetAudioClock();
} else {
t = TimeStamp::Now();
// Audio is disabled on this system. Sync to the system clock.
clock_time = GetVideoStreamPosition(t);
}
NS_ASSERTION(GetMediaTime() <= clock_time, "Clock should go forwards.");
}
if (aTimeStamp) {
*aTimeStamp = t.IsNull() ? TimeStamp::Now() : t;
}
return clock_time;
}
void MediaDecoderStateMachine::UpdateRenderedVideoFrames()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (!IsPlaying() || mLogicallySeeking) {
return;
}
if (mAudioCaptured) {
SendStreamData();
}
TimeStamp nowTime;
const int64_t clockTime = GetClock(&nowTime);
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame and drop
// the current frame.
NS_ASSERTION(clockTime >= 0, "Should have positive clock time.");
int64_t remainingTime = AUDIO_DURATION_USECS;
if (VideoQueue().GetSize() > 0) {
nsRefPtr<VideoData> currentFrame = VideoQueue().PopFront();
int32_t framesRemoved = 0;
while (VideoQueue().GetSize() > 0) {
VideoData* nextFrame = VideoQueue().PeekFront();
if (!IsRealTime() && nextFrame->mTime > clockTime) {
remainingTime = nextFrame->mTime - clockTime;
break;
}
++framesRemoved;
if (!currentFrame->mSentToCompositor) {
mDecoder->NotifyDecodedFrames(0, 0, 1);
VERBOSE_LOG("discarding video frame mTime=%lld clock_time=%lld",
currentFrame->mTime, clockTime);
}
CheckTurningOffHardwareDecoder(currentFrame);
currentFrame = VideoQueue().PopFront();
}
VideoQueue().PushFront(currentFrame);
if (framesRemoved > 0) {
OnPlaybackOffsetUpdate(currentFrame->mOffset);
mVideoFrameEndTime = currentFrame->GetEndTime();
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
frameStats.NotifyPresentedFrame();
}
}
RenderVideoFrames(sVideoQueueSendToCompositorSize, clockTime, nowTime);
// Check to see if we don't have enough data to play up to the next frame.
// If we don't, switch to buffering mode.
if (mState == DECODER_STATE_DECODING &&
mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
mDecoder->IsExpectingMoreData()) {
bool shouldBuffer;
if (mReader->UseBufferingHeuristics()) {
shouldBuffer = HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
(JustExitedQuickBuffering() || HasLowUndecodedData());
} else {
MOZ_ASSERT(mReader->IsWaitForDataSupported());
shouldBuffer = (OutOfDecodedAudio() && mAudioWaitRequest.Exists()) ||
(OutOfDecodedVideo() && mVideoWaitRequest.Exists());
}
if (shouldBuffer) {
StartBuffering();
// Don't go straight back to the state machine loop since that might
// cause us to start decoding again and we could flip-flop between
// decoding and quick-buffering.
ScheduleStateMachineIn(USECS_PER_S);
return;
}
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (mVideoFrameEndTime != -1 || mAudioEndTime != -1) {
// These will be non -1 if we've displayed a video frame, or played an audio frame.
int64_t t = std::min(clockTime, std::max(mVideoFrameEndTime, mAudioEndTime));
// FIXME: Bug 1091422 - chained ogg files hit this assertion.
//MOZ_ASSERT(t >= GetMediaTime());
if (t > GetMediaTime()) {
UpdatePlaybackPosition(t);
}
}
// Note we have to update playback position before releasing the monitor.
// Otherwise, MediaDecoder::AddOutputStream could kick in when we are outside
// the monitor and get a staled value from GetCurrentTimeUs() which hits the
// assertion in GetClock().
int64_t delay = std::max<int64_t>(1, remainingTime / mPlaybackRate);
ScheduleStateMachineIn(delay);
}
nsresult
MediaDecoderStateMachine::DropVideoUpToSeekTarget(VideoData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
nsRefPtr<VideoData> video(aSample);
MOZ_ASSERT(video);
DECODER_LOG("DropVideoUpToSeekTarget() frame [%lld, %lld]",
video->mTime, video->GetEndTime());
MOZ_ASSERT(mCurrentSeek.Exists());
const int64_t target = mCurrentSeek.mTarget.mTime;
// If the frame end time is less than the seek target, we won't want
// to display this frame after the seek, so discard it.
if (target >= video->GetEndTime()) {
DECODER_LOG("DropVideoUpToSeekTarget() pop video frame [%lld, %lld] target=%lld",
video->mTime, video->GetEndTime(), target);
mFirstVideoFrameAfterSeek = video;
} else {
if (target >= video->mTime && video->GetEndTime() >= target) {
// The seek target lies inside this frame's time slice. Adjust the frame's
// start time to match the seek target. We do this by replacing the
// first frame with a shallow copy which has the new timestamp.
nsRefPtr<VideoData> temp = VideoData::ShallowCopyUpdateTimestamp(video, target);
video = temp;
}
mFirstVideoFrameAfterSeek = nullptr;
DECODER_LOG("DropVideoUpToSeekTarget() found video frame [%lld, %lld] containing target=%lld",
video->mTime, video->GetEndTime(), target);
PushFront(video);
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::DropAudioUpToSeekTarget(AudioData* aSample)
{
MOZ_ASSERT(OnTaskQueue());
nsRefPtr<AudioData> audio(aSample);
MOZ_ASSERT(audio &&
mCurrentSeek.Exists() &&
mCurrentSeek.mTarget.mType == SeekTarget::Accurate);
CheckedInt64 startFrame = UsecsToFrames(audio->mTime,
mInfo.mAudio.mRate);
CheckedInt64 targetFrame = UsecsToFrames(mCurrentSeek.mTarget.mTime,
mInfo.mAudio.mRate);
if (!startFrame.isValid() || !targetFrame.isValid()) {
return NS_ERROR_FAILURE;
}
if (startFrame.value() + audio->mFrames <= targetFrame.value()) {
// Our seek target lies after the frames in this AudioData. Don't
// push it onto the audio queue, and keep decoding forwards.
return NS_OK;
}
if (startFrame.value() > targetFrame.value()) {
// The seek target doesn't lie in the audio block just after the last
// audio frames we've seen which were before the seek target. This
// could have been the first audio data we've seen after seek, i.e. the
// seek terminated after the seek target in the audio stream. Just
// abort the audio decode-to-target, the state machine will play
// silence to cover the gap. Typically this happens in poorly muxed
// files.
DECODER_WARN("Audio not synced after seek, maybe a poorly muxed file?");
Push(audio);
return NS_OK;
}
// The seek target lies somewhere in this AudioData's frames, strip off
// any frames which lie before the seek target, so we'll begin playback
// exactly at the seek target.
NS_ASSERTION(targetFrame.value() >= startFrame.value(),
"Target must at or be after data start.");
NS_ASSERTION(targetFrame.value() < startFrame.value() + audio->mFrames,
"Data must end after target.");
int64_t framesToPrune = targetFrame.value() - startFrame.value();
if (framesToPrune > audio->mFrames) {
// We've messed up somehow. Don't try to trim frames, the |frames|
// variable below will overflow.
DECODER_WARN("Can't prune more frames that we have!");
return NS_ERROR_FAILURE;
}
uint32_t frames = audio->mFrames - static_cast<uint32_t>(framesToPrune);
uint32_t channels = audio->mChannels;
nsAutoArrayPtr<AudioDataValue> audioData(new AudioDataValue[frames * channels]);
memcpy(audioData.get(),
audio->mAudioData.get() + (framesToPrune * channels),
frames * channels * sizeof(AudioDataValue));
CheckedInt64 duration = FramesToUsecs(frames, mInfo.mAudio.mRate);
if (!duration.isValid()) {
return NS_ERROR_FAILURE;
}
nsRefPtr<AudioData> data(new AudioData(audio->mOffset,
mCurrentSeek.mTarget.mTime,
duration.value(),
frames,
audioData.forget(),
channels,
audio->mRate));
PushFront(data);
return NS_OK;
}
void MediaDecoderStateMachine::UpdateNextFrameStatus()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MediaDecoderOwner::NextFrameStatus status;
const char* statusString;
if (mState <= DECODER_STATE_DECODING_FIRSTFRAME) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
statusString = "NEXT_FRAME_UNAVAILABLE";
} else if (IsBuffering()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
statusString = "NEXT_FRAME_UNAVAILABLE_BUFFERING";
} else if (IsSeeking()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING;
statusString = "NEXT_FRAME_UNAVAILABLE_SEEKING";
} else if (HaveNextFrameData()) {
status = MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
statusString = "NEXT_FRAME_AVAILABLE";
} else {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
statusString = "NEXT_FRAME_UNAVAILABLE";
}
if (status != mNextFrameStatus) {
DECODER_LOG("Changed mNextFrameStatus to %s", statusString);
}
mNextFrameStatus = status;
}
bool MediaDecoderStateMachine::JustExitedQuickBuffering()
{
MOZ_ASSERT(OnTaskQueue());
return !mDecodeStartTime.IsNull() &&
mQuickBuffering &&
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
}
void MediaDecoderStateMachine::StartBuffering()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mState != DECODER_STATE_DECODING) {
// We only move into BUFFERING state if we're actually decoding.
// If we're currently doing something else, we don't need to buffer,
// and more importantly, we shouldn't overwrite mState to interrupt
// the current operation, as that could leave us in an inconsistent
// state!
return;
}
if (IsPlaying()) {
StopPlayback();
}
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
// Go into quick buffering mode provided we've not just left buffering using
// a "quick exit". This stops us flip-flopping between playing and buffering
// when the download speed is similar to the decode speed.
mQuickBuffering =
!JustExitedQuickBuffering() &&
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
mBufferingStart = TimeStamp::Now();
SetState(DECODER_STATE_BUFFERING);
DECODER_LOG("Changed state from DECODING to BUFFERING, decoded for %.3lfs",
decodeDuration.ToSeconds());
MediaDecoder::Statistics stats = mDecoder->GetStatistics();
DECODER_LOG("Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
}
void MediaDecoderStateMachine::SetPlayStartTime(const TimeStamp& aTimeStamp)
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
mPlayStartTime = aTimeStamp;
if (mAudioSink) {
mAudioSink->SetPlaying(!mPlayStartTime.IsNull());
}
// Have DecodedStream remember the playing state so it doesn't need to
// ask MDSM about IsPlaying(). Note we have to do this even before capture
// happens since capture could happen in the middle of playback.
mDecodedStream->SetPlaying(!mPlayStartTime.IsNull());
}
void MediaDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
DispatchAudioDecodeTaskIfNeeded();
DispatchVideoDecodeTaskIfNeeded();
}
void
MediaDecoderStateMachine::ScheduleStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
if (mDispatchedStateMachine) {
return;
}
mDispatchedStateMachine = true;
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::RunStateMachine);
TaskQueue()->Dispatch(task.forget());
}
void
MediaDecoderStateMachine::ScheduleStateMachineIn(int64_t aMicroseconds)
{
AssertCurrentThreadInMonitor();
MOZ_ASSERT(OnTaskQueue()); // mDelayedScheduler.Ensure() may Disconnect()
// the promise, which must happen on the state
// machine task queue.
MOZ_ASSERT(aMicroseconds > 0);
if (mDispatchedStateMachine) {
return;
}
// Real-time weirdness.
if (IsRealTime()) {
aMicroseconds = std::min(aMicroseconds, int64_t(40000));
}
TimeStamp now = TimeStamp::Now();
TimeStamp target = now + TimeDuration::FromMicroseconds(aMicroseconds);
SAMPLE_LOG("Scheduling state machine for %lf ms from now", (target - now).ToMilliseconds());
mDelayedScheduler.Ensure(target);
}
bool MediaDecoderStateMachine::OnDecodeTaskQueue() const
{
return !DecodeTaskQueue() || DecodeTaskQueue()->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::OnTaskQueue() const
{
return TaskQueue()->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::IsStateMachineScheduled() const
{
MOZ_ASSERT(OnTaskQueue());
return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
}
void
MediaDecoderStateMachine::LogicalPlaybackRateChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mLogicalPlaybackRate == 0) {
// This case is handled in MediaDecoder by pausing playback.
return;
}
// AudioStream will handle playback rate change when we have audio.
// Do nothing while we are not playing. Change in playback rate will
// take effect next time we start playing again.
if (!HasAudio() && IsPlaying()) {
// Remember how much time we've spent in playing the media
// for playback rate will change from now on.
TimeStamp now = TimeStamp::Now();
mPlayDuration = GetVideoStreamPosition(now);
SetPlayStartTime(now);
}
mPlaybackRate = mLogicalPlaybackRate;
if (mAudioSink) {
mAudioSink->SetPlaybackRate(mPlaybackRate);
}
ScheduleStateMachine();
}
void MediaDecoderStateMachine::PreservesPitchChanged()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mAudioSink) {
mAudioSink->SetPreservesPitch(mPreservesPitch);
}
}
bool MediaDecoderStateMachine::IsShutdown()
{
MOZ_ASSERT(OnTaskQueue());
return mIsShutdown;
}
void MediaDecoderStateMachine::QueueMetadata(int64_t aPublishTime,
nsAutoPtr<MediaInfo> aInfo,
nsAutoPtr<MetadataTags> aTags)
{
MOZ_ASSERT(OnDecodeTaskQueue());
AssertCurrentThreadInMonitor();
TimedMetadata* metadata = new TimedMetadata;
metadata->mPublishTime = aPublishTime;
metadata->mInfo = aInfo.forget();
metadata->mTags = aTags.forget();
mMetadataManager.QueueMetadata(metadata);
}
void MediaDecoderStateMachine::OnAudioEndTimeUpdate(int64_t aAudioEndTime)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
MOZ_ASSERT(aAudioEndTime >= mAudioEndTime);
mAudioEndTime = aAudioEndTime;
}
void MediaDecoderStateMachine::OnPlaybackOffsetUpdate(int64_t aPlaybackOffset)
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
mDecoder->UpdatePlaybackOffset(aPlaybackOffset);
}
void MediaDecoderStateMachine::OnAudioSinkComplete()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
if (mAudioCaptured) {
return;
}
ResyncAudioClock();
mAudioCompleted = true;
// Kick the decode thread; it may be sleeping waiting for this to finish.
mDecoder->GetReentrantMonitor().NotifyAll();
}
void MediaDecoderStateMachine::OnAudioSinkError()
{
MOZ_ASSERT(OnTaskQueue());
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
// AudioSink not used with captured streams, so ignore errors in this case.
if (mAudioCaptured) {
return;
}
ResyncAudioClock();
mAudioCompleted = true;
// Make the best effort to continue playback when there is video.
if (HasVideo()) {
return;
}
// Otherwise notify media decoder/element about this error for it makes
// no sense to play an audio-only file without sound output.
DecodeError();
}
uint32_t MediaDecoderStateMachine::GetAmpleVideoFrames() const
{
MOZ_ASSERT(OnTaskQueue());
AssertCurrentThreadInMonitor();
return (mReader->IsAsync() && mReader->VideoIsHardwareAccelerated())
? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
: std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
}
void MediaDecoderStateMachine::DispatchAudioCaptured()
{
nsRefPtr<MediaDecoderStateMachine> self = this;
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction([self] () -> void
{
MOZ_ASSERT(self->OnTaskQueue());
ReentrantMonitorAutoEnter mon(self->mDecoder->GetReentrantMonitor());
if (!self->mAudioCaptured) {
// Stop the audio sink if it's running.
self->StopAudioThread();
self->mStreamStartTime = self->GetMediaTime();
// Reset mAudioEndTime which will be updated as we send audio data to
// stream. Otherwise it will remain -1 if we don't have audio.
self->mAudioEndTime = -1;
self->mAudioCaptured = true;
self->ScheduleStateMachine();
}
});
TaskQueue()->Dispatch(r.forget());
}
void MediaDecoderStateMachine::AddOutputStream(ProcessedMediaStream* aStream,
bool aFinishWhenEnded)
{
MOZ_ASSERT(NS_IsMainThread());
DECODER_LOG("AddOutputStream aStream=%p!", aStream);
mDecodedStream->Connect(aStream, aFinishWhenEnded);
DispatchAudioCaptured();
}
} // namespace mozilla
// avoid redefined macro in unified build
#undef LOG
#undef DECODER_LOG
#undef VERBOSE_LOG
#undef DECODER_WARN
#undef DECODER_WARN_HELPER
#undef NS_DispatchToMainThread