gecko/gfx/gl/GLContext.cpp

2888 lines
103 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is mozilla.org code.
*
* The Initial Developer of the Original Code is
* the Mozilla Foundation.
* Portions created by the Initial Developer are Copyright (C) 2009
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Vladimir Vukicevic <vladimir@pobox.com>
* Mark Steele <mwsteele@gmail.com>
* Bas Schouten <bschouten@mozilla.com>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include <string.h>
#include <stdio.h>
#include "prlink.h"
#include "prenv.h"
#include "nsThreadUtils.h"
#include "gfxPlatform.h"
#include "GLContext.h"
#include "GLContextProvider.h"
#include "gfxCrashReporterUtils.h"
#include "gfxUtils.h"
#include "mozilla/Preferences.h"
#include "mozilla/Util.h" // for DebugOnly
using namespace mozilla::gfx;
namespace mozilla {
namespace gl {
#ifdef DEBUG
Monitor GLContext::sCurrentGLContextMonitor("sCurrentGLContext_monitor");
PRUintn GLContext::sCurrentGLContextTLS = -1;
#endif
PRUint32 GLContext::sDebugMode = 0;
// define this here since it's global to GLContextProvider, not any
// specific implementation
const ContextFormat ContextFormat::BasicRGBA32Format(ContextFormat::BasicRGBA32);
#define MAX_SYMBOL_LENGTH 128
#define MAX_SYMBOL_NAMES 5
// should match the order of GLExtensions
static const char *sExtensionNames[] = {
"GL_EXT_framebuffer_object",
"GL_ARB_framebuffer_object",
"GL_ARB_texture_rectangle",
"GL_EXT_bgra",
"GL_EXT_texture_format_BGRA8888",
"GL_OES_depth24",
"GL_OES_depth32",
"GL_OES_stencil8",
"GL_OES_texture_npot",
"GL_OES_depth_texture",
"GL_OES_packed_depth_stencil",
"GL_IMG_read_format",
"GL_EXT_read_format_bgra",
"GL_APPLE_client_storage",
"GL_ARB_texture_non_power_of_two",
"GL_ARB_pixel_buffer_object",
"GL_ARB_ES2_compatibility",
"GL_OES_texture_float",
"GL_ARB_texture_float",
"GL_EXT_unpack_subimage",
"GL_OES_standard_derivatives",
"GL_EXT_framebuffer_blit",
"GL_ANGLE_framebuffer_blit",
"GL_EXT_framebuffer_multisample",
"GL_ANGLE_framebuffer_multisample",
"GL_OES_rgb8_rgba8",
"GL_ARB_robustness",
"GL_EXT_robustness",
NULL
};
bool
LibrarySymbolLoader::OpenLibrary(const char *library)
{
PRLibSpec lspec;
lspec.type = PR_LibSpec_Pathname;
lspec.value.pathname = library;
mLibrary = PR_LoadLibraryWithFlags(lspec, PR_LD_LAZY | PR_LD_LOCAL);
if (!mLibrary)
return false;
return true;
}
bool
LibrarySymbolLoader::LoadSymbols(SymLoadStruct *firstStruct, bool tryplatform, const char *prefix)
{
return LoadSymbols(mLibrary, firstStruct, tryplatform ? mLookupFunc : nsnull, prefix);
}
PRFuncPtr
LibrarySymbolLoader::LookupSymbol(PRLibrary *lib,
const char *sym,
PlatformLookupFunction lookupFunction)
{
PRFuncPtr res = 0;
// try finding it in the library directly, if we have one
if (lib) {
res = PR_FindFunctionSymbol(lib, sym);
}
// then try looking it up via the lookup symbol
if (!res && lookupFunction) {
res = lookupFunction(sym);
}
// finally just try finding it in the process
if (!res) {
PRLibrary *leakedLibRef;
res = PR_FindFunctionSymbolAndLibrary(sym, &leakedLibRef);
}
return res;
}
bool
LibrarySymbolLoader::LoadSymbols(PRLibrary *lib,
SymLoadStruct *firstStruct,
PlatformLookupFunction lookupFunction,
const char *prefix)
{
char sbuf[MAX_SYMBOL_LENGTH * 2];
int failCount = 0;
SymLoadStruct *ss = firstStruct;
while (ss->symPointer) {
*ss->symPointer = 0;
for (int i = 0; i < MAX_SYMBOL_NAMES; i++) {
if (ss->symNames[i] == nsnull)
break;
const char *s = ss->symNames[i];
if (prefix && *prefix != 0) {
strcpy(sbuf, prefix);
strcat(sbuf, ss->symNames[i]);
s = sbuf;
}
PRFuncPtr p = LookupSymbol(lib, s, lookupFunction);
if (p) {
*ss->symPointer = p;
break;
}
}
if (*ss->symPointer == 0) {
fprintf (stderr, "Can't find symbol '%s'\n", ss->symNames[0]);
failCount++;
}
ss++;
}
return failCount == 0 ? true : false;
}
/*
* XXX - we should really know the ARB/EXT variants of these
* instead of only handling the symbol if it's exposed directly.
*/
bool
GLContext::InitWithPrefix(const char *prefix, bool trygl)
{
ScopedGfxFeatureReporter reporter("GL Context");
if (mInitialized) {
reporter.SetSuccessful();
return true;
}
SymLoadStruct symbols[] = {
{ (PRFuncPtr*) &mSymbols.fActiveTexture, { "ActiveTexture", "ActiveTextureARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fAttachShader, { "AttachShader", "AttachShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindAttribLocation, { "BindAttribLocation", "BindAttribLocationARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindBuffer, { "BindBuffer", "BindBufferARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindTexture, { "BindTexture", "BindTextureARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendColor, { "BlendColor", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendEquation, { "BlendEquation", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendEquationSeparate, { "BlendEquationSeparate", "BlendEquationSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendFunc, { "BlendFunc", NULL } },
{ (PRFuncPtr*) &mSymbols.fBlendFuncSeparate, { "BlendFuncSeparate", "BlendFuncSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fBufferData, { "BufferData", NULL } },
{ (PRFuncPtr*) &mSymbols.fBufferSubData, { "BufferSubData", NULL } },
{ (PRFuncPtr*) &mSymbols.fClear, { "Clear", NULL } },
{ (PRFuncPtr*) &mSymbols.fClearColor, { "ClearColor", NULL } },
{ (PRFuncPtr*) &mSymbols.fClearStencil, { "ClearStencil", NULL } },
{ (PRFuncPtr*) &mSymbols.fColorMask, { "ColorMask", NULL } },
{ (PRFuncPtr*) &mSymbols.fCullFace, { "CullFace", NULL } },
{ (PRFuncPtr*) &mSymbols.fDetachShader, { "DetachShader", "DetachShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthFunc, { "DepthFunc", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthMask, { "DepthMask", NULL } },
{ (PRFuncPtr*) &mSymbols.fDisable, { "Disable", NULL } },
{ (PRFuncPtr*) &mSymbols.fDisableVertexAttribArray, { "DisableVertexAttribArray", "DisableVertexAttribArrayARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDrawArrays, { "DrawArrays", NULL } },
{ (PRFuncPtr*) &mSymbols.fDrawElements, { "DrawElements", NULL } },
{ (PRFuncPtr*) &mSymbols.fEnable, { "Enable", NULL } },
{ (PRFuncPtr*) &mSymbols.fEnableVertexAttribArray, { "EnableVertexAttribArray", "EnableVertexAttribArrayARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fFinish, { "Finish", NULL } },
{ (PRFuncPtr*) &mSymbols.fFlush, { "Flush", NULL } },
{ (PRFuncPtr*) &mSymbols.fFrontFace, { "FrontFace", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetActiveAttrib, { "GetActiveAttrib", "GetActiveAttribARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetActiveUniform, { "GetActiveUniform", "GetActiveUniformARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetAttachedShaders, { "GetAttachedShaders", "GetAttachedShadersARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetAttribLocation, { "GetAttribLocation", "GetAttribLocationARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetIntegerv, { "GetIntegerv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetFloatv, { "GetFloatv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetBooleanv, { "GetBooleanv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetBufferParameteriv, { "GetBufferParameteriv", "GetBufferParameterivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetError, { "GetError", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetProgramiv, { "GetProgramiv", "GetProgramivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetProgramInfoLog, { "GetProgramInfoLog", "GetProgramInfoLogARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexParameteri, { "TexParameteri", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexParameterf, { "TexParameterf", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetString, { "GetString", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetTexParameterfv, { "GetTexParameterfv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetTexParameteriv, { "GetTexParameteriv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetUniformfv, { "GetUniformfv", "GetUniformfvARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetUniformiv, { "GetUniformiv", "GetUniformivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetUniformLocation, { "GetUniformLocation", "GetUniformLocationARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetVertexAttribfv, { "GetVertexAttribfv", "GetVertexAttribfvARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetVertexAttribiv, { "GetVertexAttribiv", "GetVertexAttribivARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fHint, { "Hint", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsBuffer, { "IsBuffer", "IsBufferARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsEnabled, { "IsEnabled", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsProgram, { "IsProgram", "IsProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsShader, { "IsShader", "IsShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsTexture, { "IsTexture", "IsTextureARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fLineWidth, { "LineWidth", NULL } },
{ (PRFuncPtr*) &mSymbols.fLinkProgram, { "LinkProgram", "LinkProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fPixelStorei, { "PixelStorei", NULL } },
{ (PRFuncPtr*) &mSymbols.fPolygonOffset, { "PolygonOffset", NULL } },
{ (PRFuncPtr*) &mSymbols.fReadPixels, { "ReadPixels", NULL } },
{ (PRFuncPtr*) &mSymbols.fSampleCoverage, { "SampleCoverage", NULL } },
{ (PRFuncPtr*) &mSymbols.fScissor, { "Scissor", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilFunc, { "StencilFunc", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilFuncSeparate, { "StencilFuncSeparate", "StencilFuncSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilMask, { "StencilMask", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilMaskSeparate, { "StencilMaskSeparate", "StencilMaskSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilOp, { "StencilOp", NULL } },
{ (PRFuncPtr*) &mSymbols.fStencilOpSeparate, { "StencilOpSeparate", "StencilOpSeparateEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexImage2D, { "TexImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fTexSubImage2D, { "TexSubImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1f, { "Uniform1f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1fv, { "Uniform1fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1i, { "Uniform1i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform1iv, { "Uniform1iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2f, { "Uniform2f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2fv, { "Uniform2fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2i, { "Uniform2i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform2iv, { "Uniform2iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3f, { "Uniform3f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3fv, { "Uniform3fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3i, { "Uniform3i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform3iv, { "Uniform3iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4f, { "Uniform4f", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4fv, { "Uniform4fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4i, { "Uniform4i", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniform4iv, { "Uniform4iv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniformMatrix2fv, { "UniformMatrix2fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniformMatrix3fv, { "UniformMatrix3fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUniformMatrix4fv, { "UniformMatrix4fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fUseProgram, { "UseProgram", NULL } },
{ (PRFuncPtr*) &mSymbols.fValidateProgram, { "ValidateProgram", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttribPointer, { "VertexAttribPointer", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib1f, { "VertexAttrib1f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib2f, { "VertexAttrib2f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib3f, { "VertexAttrib3f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib4f, { "VertexAttrib4f", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib1fv, { "VertexAttrib1fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib2fv, { "VertexAttrib2fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib3fv, { "VertexAttrib3fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttrib4fv, { "VertexAttrib4fv", NULL } },
{ (PRFuncPtr*) &mSymbols.fViewport, { "Viewport", NULL } },
{ (PRFuncPtr*) &mSymbols.fCompileShader, { "CompileShader", NULL } },
{ (PRFuncPtr*) &mSymbols.fCopyTexImage2D, { "CopyTexImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fCopyTexSubImage2D, { "CopyTexSubImage2D", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetShaderiv, { "GetShaderiv", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetShaderInfoLog, { "GetShaderInfoLog", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetShaderSource, { "GetShaderSource", NULL } },
{ (PRFuncPtr*) &mSymbols.fShaderSource, { "ShaderSource", NULL } },
{ (PRFuncPtr*) &mSymbols.fVertexAttribPointer, { "VertexAttribPointer", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindFramebuffer, { "BindFramebuffer", "BindFramebufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fBindRenderbuffer, { "BindRenderbuffer", "BindRenderbufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fCheckFramebufferStatus, { "CheckFramebufferStatus", "CheckFramebufferStatusEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fFramebufferRenderbuffer, { "FramebufferRenderbuffer", "FramebufferRenderbufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fFramebufferTexture2D, { "FramebufferTexture2D", "FramebufferTexture2DEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenerateMipmap, { "GenerateMipmap", "GenerateMipmapEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetFramebufferAttachmentParameteriv, { "GetFramebufferAttachmentParameteriv", "GetFramebufferAttachmentParameterivEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGetRenderbufferParameteriv, { "GetRenderbufferParameteriv", "GetRenderbufferParameterivEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsFramebuffer, { "IsFramebuffer", "IsFramebufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fIsRenderbuffer, { "IsRenderbuffer", "IsRenderbufferEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fRenderbufferStorage, { "RenderbufferStorage", "RenderbufferStorageEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenBuffers, { "GenBuffers", "GenBuffersARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenTextures, { "GenTextures", NULL } },
{ (PRFuncPtr*) &mSymbols.fCreateProgram, { "CreateProgram", "CreateProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fCreateShader, { "CreateShader", "CreateShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenFramebuffers, { "GenFramebuffers", "GenFramebuffersEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fGenRenderbuffers, { "GenRenderbuffers", "GenRenderbuffersEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteBuffers, { "DeleteBuffers", "DeleteBuffersARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteTextures, { "DeleteTextures", "DeleteTexturesARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteProgram, { "DeleteProgram", "DeleteProgramARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteShader, { "DeleteShader", "DeleteShaderARB", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteFramebuffers, { "DeleteFramebuffers", "DeleteFramebuffersEXT", NULL } },
{ (PRFuncPtr*) &mSymbols.fDeleteRenderbuffers, { "DeleteRenderbuffers", "DeleteRenderbuffersEXT", NULL } },
{ NULL, { NULL } },
};
mInitialized = LoadSymbols(&symbols[0], trygl, prefix);
// Load OpenGL ES 2.0 symbols, or desktop if we aren't using ES 2.
if (mInitialized) {
if (mIsGLES2) {
SymLoadStruct symbols_ES2[] = {
{ (PRFuncPtr*) &mSymbols.fGetShaderPrecisionFormat, { "GetShaderPrecisionFormat", NULL } },
{ (PRFuncPtr*) &mSymbols.fClearDepthf, { "ClearDepthf", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthRangef, { "DepthRangef", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&symbols_ES2[0], trygl, prefix)) {
NS_RUNTIMEABORT("OpenGL ES 2.0 supported, but symbols could not be loaded.");
mInitialized = false;
}
} else {
SymLoadStruct symbols_desktop[] = {
{ (PRFuncPtr*) &mSymbols.fClearDepth, { "ClearDepth", NULL } },
{ (PRFuncPtr*) &mSymbols.fDepthRange, { "DepthRange", NULL } },
{ (PRFuncPtr*) &mSymbols.fReadBuffer, { "ReadBuffer", NULL } },
{ (PRFuncPtr*) &mSymbols.fMapBuffer, { "MapBuffer", NULL } },
{ (PRFuncPtr*) &mSymbols.fUnmapBuffer, { "UnmapBuffer", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&symbols_desktop[0], trygl, prefix)) {
NS_RUNTIMEABORT("Desktop symbols failed to load.");
mInitialized = false;
}
}
}
const char *glVendorString;
const char *glRendererString;
if (mInitialized) {
// The order of these strings must match up with the order of the enum
// defined in GLContext.h for vendor IDs
glVendorString = (const char *)fGetString(LOCAL_GL_VENDOR);
const char *vendorMatchStrings[VendorOther] = {
"Intel",
"NVIDIA",
"ATI",
"Qualcomm",
"Imagination"
};
mVendor = VendorOther;
for (int i = 0; i < VendorOther; ++i) {
if (DoesStringMatch(glVendorString, vendorMatchStrings[i])) {
mVendor = i;
break;
}
}
// The order of these strings must match up with the order of the enum
// defined in GLContext.h for renderer IDs
glRendererString = (const char *)fGetString(LOCAL_GL_RENDERER);
const char *rendererMatchStrings[RendererOther] = {
"Adreno 200",
"Adreno 205",
"PowerVR SGX 540"
};
mRenderer = RendererOther;
for (int i = 0; i < RendererOther; ++i) {
if (DoesStringMatch(glRendererString, rendererMatchStrings[i])) {
mRenderer = i;
break;
}
}
}
if (mInitialized) {
#ifdef DEBUG
static bool once = false;
if (!once) {
const char *vendors[VendorOther] = {
"Intel",
"NVIDIA",
"ATI",
"Qualcomm"
};
once = true;
if (mVendor < VendorOther) {
printf_stderr("OpenGL vendor ('%s') recognized as: %s\n",
glVendorString, vendors[mVendor]);
} else {
printf_stderr("OpenGL vendor ('%s') unrecognized\n", glVendorString);
}
}
#endif
InitExtensions();
NS_ASSERTION(!IsExtensionSupported(GLContext::ARB_pixel_buffer_object) ||
(mSymbols.fMapBuffer && mSymbols.fUnmapBuffer),
"ARB_pixel_buffer_object supported without glMapBuffer/UnmapBuffer being available!");
if (SupportsRobustness()) {
if (IsExtensionSupported(ARB_robustness)) {
SymLoadStruct robustnessSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fGetGraphicsResetStatus, { "GetGraphicsResetStatusARB", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&robustnessSymbols[0], trygl, prefix)) {
NS_RUNTIMEABORT("GL supports ARB_robustness without supplying GetGraphicsResetStatusARB.");
mInitialized = false;
} else {
mHasRobustness = true;
}
} else if (IsExtensionSupported(EXT_robustness)) {
SymLoadStruct robustnessSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fGetGraphicsResetStatus, { "GetGraphicsResetStatusEXT", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&robustnessSymbols[0], trygl, prefix)) {
NS_RUNTIMEABORT("GL supports EGL_robustness without supplying GetGraphicsResetStatusEXT.");
mInitialized = false;
} else {
mHasRobustness = true;
}
}
}
// Check for aux symbols based on extensions
if (IsExtensionSupported(GLContext::ANGLE_framebuffer_blit) ||
IsExtensionSupported(GLContext::EXT_framebuffer_blit)) {
SymLoadStruct auxSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fBlitFramebuffer, { "BlitFramebuffer", "BlitFramebufferEXT", "BlitFramebufferANGLE", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&auxSymbols[0], trygl, prefix)) {
NS_RUNTIMEABORT("GL supports framebuffer_blit without supplying glBlitFramebuffer");
mInitialized = false;
}
}
if (IsExtensionSupported(GLContext::ANGLE_framebuffer_multisample) ||
IsExtensionSupported(GLContext::EXT_framebuffer_multisample)) {
SymLoadStruct auxSymbols[] = {
{ (PRFuncPtr*) &mSymbols.fRenderbufferStorageMultisample, { "RenderbufferStorageMultisample", "RenderbufferStorageMultisampleEXT", "RenderbufferStorageMultisampleANGLE", NULL } },
{ NULL, { NULL } },
};
if (!LoadSymbols(&auxSymbols[0], trygl, prefix)) {
NS_RUNTIMEABORT("GL supports framebuffer_multisample without supplying glRenderbufferStorageMultisample");
mInitialized = false;
}
}
}
if (mInitialized) {
GLint v[4];
fGetIntegerv(LOCAL_GL_SCISSOR_BOX, v);
mScissorStack.AppendElement(nsIntRect(v[0], v[1], v[2], v[3]));
fGetIntegerv(LOCAL_GL_VIEWPORT, v);
mViewportStack.AppendElement(nsIntRect(v[0], v[1], v[2], v[3]));
fGetIntegerv(LOCAL_GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
fGetIntegerv(LOCAL_GL_MAX_RENDERBUFFER_SIZE, &mMaxRenderbufferSize);
mMaxTextureImageSize = mMaxTextureSize;
// BGRA ReadPixels support - in particular, what is returned for
// GL_IMPLEMENTATION_COLOR_READ_FORMAT et al - is only guaranteed to be
// accurate for what's currently bound to the context. It seems that,
// after we initialize, we bind something incompatible with the BGRA
// pixel format on at least some devices.
// For now, just disable this code altogether.
mSupport_ES_ReadPixels_BGRA_UByte = false;
if (false) {
if (IsExtensionSupported(gl::GLContext::EXT_bgra)) {
mSupport_ES_ReadPixels_BGRA_UByte = true;
} else if (IsExtensionSupported(gl::GLContext::EXT_read_format_bgra) ||
IsExtensionSupported(gl::GLContext::IMG_read_format)) {
GLint auxFormat = 0;
GLint auxType = 0;
fGetIntegerv(LOCAL_GL_IMPLEMENTATION_COLOR_READ_FORMAT, &auxFormat);
fGetIntegerv(LOCAL_GL_IMPLEMENTATION_COLOR_READ_TYPE, &auxType);
if (auxFormat == LOCAL_GL_BGRA && auxType == LOCAL_GL_UNSIGNED_BYTE)
mSupport_ES_ReadPixels_BGRA_UByte = true;
}
}
UpdateActualFormat();
}
#ifdef DEBUG
if (PR_GetEnv("MOZ_GL_DEBUG"))
sDebugMode |= DebugEnabled;
// enables extra verbose output, informing of the start and finish of every GL call.
// useful e.g. to record information to investigate graphics system crashes/lockups
if (PR_GetEnv("MOZ_GL_DEBUG_VERBOSE"))
sDebugMode |= DebugTrace;
// aborts on GL error. Can be useful to debug quicker code that is known not to generate any GL error in principle.
if (PR_GetEnv("MOZ_GL_DEBUG_ABORT_ON_ERROR"))
sDebugMode |= DebugAbortOnError;
#endif
if (mInitialized)
reporter.SetSuccessful();
else {
// if initialization fails, ensure all symbols are zero, to avoid hard-to-understand bugs
mSymbols.Zero();
}
return mInitialized;
}
void
GLContext::InitExtensions()
{
MakeCurrent();
const GLubyte *extensions = fGetString(LOCAL_GL_EXTENSIONS);
if (!extensions)
return;
char *exts = strdup((char *)extensions);
#ifdef DEBUG
static bool once = false;
#else
const bool once = true;
#endif
if (!once) {
printf_stderr("GL extensions: %s\n", exts);
}
char *s = exts;
bool done = false;
while (!done) {
char *space = strchr(s, ' ');
if (space) {
*space = '\0';
} else {
done = true;
}
for (int i = 0; sExtensionNames[i]; ++i) {
if (strcmp(s, sExtensionNames[i]) == 0) {
if (!once) {
printf_stderr("Found extension %s\n", s);
}
mAvailableExtensions[i] = 1;
}
}
s = space+1;
}
free(exts);
#ifdef DEBUG
once = true;
#endif
}
// Take texture data in a given buffer and copy it into a larger buffer,
// padding out the edge pixels for filtering if necessary
static void
CopyAndPadTextureData(const GLvoid* srcBuffer,
GLvoid* dstBuffer,
GLsizei srcWidth, GLsizei srcHeight,
GLsizei dstWidth, GLsizei dstHeight,
GLsizei stride, GLint pixelsize)
{
unsigned char *rowDest = static_cast<unsigned char*>(dstBuffer);
const unsigned char *source = static_cast<const unsigned char*>(srcBuffer);
for (GLsizei h = 0; h < srcHeight; ++h) {
memcpy(rowDest, source, srcWidth * pixelsize);
rowDest += dstWidth * pixelsize;
source += stride;
}
GLsizei padHeight = srcHeight;
// Pad out an extra row of pixels so that edge filtering doesn't use garbage data
if (dstHeight > srcHeight) {
memcpy(rowDest, source - stride, srcWidth * pixelsize);
padHeight++;
}
// Pad out an extra column of pixels
if (dstWidth > srcWidth) {
rowDest = static_cast<unsigned char*>(dstBuffer) + srcWidth * pixelsize;
for (GLsizei h = 0; h < padHeight; ++h) {
memcpy(rowDest, rowDest - pixelsize, pixelsize);
rowDest += dstWidth * pixelsize;
}
}
}
bool
GLContext::IsExtensionSupported(const char *extension)
{
return ListHasExtension(fGetString(LOCAL_GL_EXTENSIONS), extension);
}
// In both of these cases (for the Adreno at least) it is impossible
// to determine good or bad driver versions for POT texture uploads,
// so blacklist them all. Newer drivers use a different rendering
// string in the form "Adreno (TM) 200" and the drivers we've seen so
// far work fine with NPOT textures, so don't blacklist those until we
// have evidence of any problems with them.
bool
GLContext::CanUploadSubTextures()
{
// There are certain GPUs that we don't want to use glTexSubImage2D on
// because that function can be very slow and/or buggy
return (Renderer() != RendererAdreno200 &&
Renderer() != RendererAdreno205);
}
bool
GLContext::CanUploadNonPowerOfTwo()
{
static bool sPowerOfTwoForced;
static bool sPowerOfTwoPrefCached = false;
if (!sPowerOfTwoPrefCached) {
sPowerOfTwoPrefCached = true;
mozilla::Preferences::AddBoolVarCache(&sPowerOfTwoForced,
"gfx.textures.poweroftwo.force-enabled");
}
// Some GPUs driver crash when uploading non power of two 565 textures.
return sPowerOfTwoForced ? false : (Renderer() != RendererAdreno200 &&
Renderer() != RendererAdreno205);
}
bool
GLContext::WantsSmallTiles()
{
#ifdef MOZ_WIDGET_ANDROID
// We must use small tiles for good performance if we can't use
// glTexSubImage2D() for some reason.
if (!CanUploadSubTextures())
return true;
// We can't use small tiles on the SGX 540, because of races in texture upload.
if (Renderer() == RendererSGX540)
return false;
// Don't use small tiles otherwise. (If we implement incremental texture upload,
// then we will want to revisit this.)
return false;
#else
return false;
#endif
}
// Common code for checking for both GL extensions and GLX extensions.
bool
GLContext::ListHasExtension(const GLubyte *extensions, const char *extension)
{
// fix bug 612572 - we were crashing as we were calling this function with extensions==null
if (extensions == nsnull || extension == nsnull)
return false;
const GLubyte *start;
GLubyte *where, *terminator;
/* Extension names should not have spaces. */
where = (GLubyte *) strchr(extension, ' ');
if (where || *extension == '\0')
return false;
/*
* It takes a bit of care to be fool-proof about parsing the
* OpenGL extensions string. Don't be fooled by sub-strings,
* etc.
*/
start = extensions;
for (;;) {
where = (GLubyte *) strstr((const char *) start, extension);
if (!where) {
break;
}
terminator = where + strlen(extension);
if (where == start || *(where - 1) == ' ') {
if (*terminator == ' ' || *terminator == '\0') {
return true;
}
}
start = terminator;
}
return false;
}
already_AddRefed<TextureImage>
GLContext::CreateTextureImage(const nsIntSize& aSize,
TextureImage::ContentType aContentType,
GLenum aWrapMode,
bool aUseNearestFilter)
{
MakeCurrent();
GLuint texture;
fGenTextures(1, &texture);
fActiveTexture(LOCAL_GL_TEXTURE0);
fBindTexture(LOCAL_GL_TEXTURE_2D, texture);
GLint texfilter = aUseNearestFilter ? LOCAL_GL_NEAREST : LOCAL_GL_LINEAR;
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, texfilter);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, texfilter);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_S, aWrapMode);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_WRAP_T, aWrapMode);
return CreateBasicTextureImage(texture, aSize, aWrapMode, aContentType, this);
}
void GLContext::ApplyFilterToBoundTexture(gfxPattern::GraphicsFilter aFilter)
{
if (aFilter == gfxPattern::FILTER_NEAREST) {
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_NEAREST);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_NEAREST);
} else {
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR);
}
}
BasicTextureImage::~BasicTextureImage()
{
GLContext *ctx = mGLContext;
if (ctx->IsDestroyed() || !NS_IsMainThread()) {
ctx = ctx->GetSharedContext();
}
// If we have a context, then we need to delete the texture;
// if we don't have a context (either real or shared),
// then they went away when the contex was deleted, because it
// was the only one that had access to it.
if (ctx && !ctx->IsDestroyed()) {
mGLContext->MakeCurrent();
mGLContext->fDeleteTextures(1, &mTexture);
}
}
gfxASurface*
BasicTextureImage::BeginUpdate(nsIntRegion& aRegion)
{
NS_ASSERTION(!mUpdateSurface, "BeginUpdate() without EndUpdate()?");
// determine the region the client will need to repaint
if (mGLContext->CanUploadSubTextures()) {
GetUpdateRegion(aRegion);
} else {
aRegion = nsIntRect(nsIntPoint(0, 0), mSize);
}
mUpdateRegion = aRegion;
nsIntRect rgnSize = mUpdateRegion.GetBounds();
if (!nsIntRect(nsIntPoint(0, 0), mSize).Contains(rgnSize)) {
NS_ERROR("update outside of image");
return NULL;
}
ImageFormat format =
(GetContentType() == gfxASurface::CONTENT_COLOR) ?
gfxASurface::ImageFormatRGB24 : gfxASurface::ImageFormatARGB32;
mUpdateSurface =
GetSurfaceForUpdate(gfxIntSize(rgnSize.width, rgnSize.height), format);
if (!mUpdateSurface || mUpdateSurface->CairoStatus()) {
mUpdateSurface = NULL;
return NULL;
}
mUpdateSurface->SetDeviceOffset(gfxPoint(-rgnSize.x, -rgnSize.y));
return mUpdateSurface;
}
void
BasicTextureImage::GetUpdateRegion(nsIntRegion& aForRegion)
{
// if the texture hasn't been initialized yet, or something important
// changed, we need to recreate our backing surface and force the
// client to paint everything
if (mTextureState != Valid)
aForRegion = nsIntRect(nsIntPoint(0, 0), mSize);
}
void
BasicTextureImage::EndUpdate()
{
NS_ASSERTION(!!mUpdateSurface, "EndUpdate() without BeginUpdate()?");
// FIXME: this is the slow boat. Make me fast (with GLXPixmap?).
// Undo the device offset that BeginUpdate set; doesn't much matter for us here,
// but important if we ever do anything directly with the surface.
mUpdateSurface->SetDeviceOffset(gfxPoint(0, 0));
bool relative = FinishedSurfaceUpdate();
mShaderType =
mGLContext->UploadSurfaceToTexture(mUpdateSurface,
mUpdateRegion,
mTexture,
mTextureState == Created,
mUpdateOffset,
relative);
FinishedSurfaceUpload();
mUpdateSurface = nsnull;
mTextureState = Valid;
}
void
BasicTextureImage::BindTexture(GLenum aTextureUnit)
{
mGLContext->fActiveTexture(aTextureUnit);
mGLContext->fBindTexture(LOCAL_GL_TEXTURE_2D, mTexture);
mGLContext->fActiveTexture(LOCAL_GL_TEXTURE0);
}
void
BasicTextureImage::ApplyFilter()
{
mGLContext->ApplyFilterToBoundTexture(mFilter);
}
already_AddRefed<gfxASurface>
BasicTextureImage::GetSurfaceForUpdate(const gfxIntSize& aSize, ImageFormat aFmt)
{
return gfxPlatform::GetPlatform()->
CreateOffscreenSurface(aSize, gfxASurface::ContentFromFormat(aFmt));
}
bool
BasicTextureImage::FinishedSurfaceUpdate()
{
return false;
}
void
BasicTextureImage::FinishedSurfaceUpload()
{
}
bool
BasicTextureImage::DirectUpdate(gfxASurface* aSurf, const nsIntRegion& aRegion, const nsIntPoint& aFrom /* = nsIntPoint(0, 0) */)
{
nsIntRect bounds = aRegion.GetBounds();
nsIntRegion region;
if (mTextureState != Valid) {
bounds = nsIntRect(0, 0, mSize.width, mSize.height);
region = nsIntRegion(bounds);
} else {
region = aRegion;
}
mShaderType =
mGLContext->UploadSurfaceToTexture(aSurf,
region,
mTexture,
mTextureState == Created,
bounds.TopLeft() + aFrom,
false);
mTextureState = Valid;
return true;
}
void
BasicTextureImage::Resize(const nsIntSize& aSize)
{
NS_ASSERTION(!mUpdateSurface, "Resize() while in update?");
mGLContext->fBindTexture(LOCAL_GL_TEXTURE_2D, mTexture);
mGLContext->fTexImage2D(LOCAL_GL_TEXTURE_2D,
0,
LOCAL_GL_RGBA,
aSize.width,
aSize.height,
0,
LOCAL_GL_RGBA,
LOCAL_GL_UNSIGNED_BYTE,
NULL);
mTextureState = Allocated;
mSize = aSize;
}
TiledTextureImage::TiledTextureImage(GLContext* aGL,
nsIntSize aSize,
TextureImage::ContentType aContentType,
bool aUseNearestFilter)
: TextureImage(aSize, LOCAL_GL_CLAMP_TO_EDGE, aContentType, aUseNearestFilter)
, mCurrentImage(0)
, mInUpdate(false)
, mGL(aGL)
, mUseNearestFilter(aUseNearestFilter)
, mTextureState(Created)
{
mTileSize = mGL->WantsSmallTiles() ? 256 : mGL->GetMaxTextureSize();
if (aSize != nsIntSize(0,0)) {
Resize(aSize);
}
}
TiledTextureImage::~TiledTextureImage()
{
}
bool
TiledTextureImage::DirectUpdate(gfxASurface* aSurf, const nsIntRegion& aRegion, const nsIntPoint& aFrom /* = nsIntPoint(0, 0) */)
{
nsIntRegion region;
if (mTextureState != Valid || !mGL->CanUploadSubTextures()) {
nsIntRect bounds = nsIntRect(0, 0, mSize.width, mSize.height);
region = nsIntRegion(bounds);
} else {
region = aRegion;
}
bool result = true;
for (unsigned i = 0; i < mImages.Length(); i++) {
int xPos = (i % mColumns) * mTileSize;
int yPos = (i / mColumns) * mTileSize;
nsIntRegion tileRegion;
tileRegion.And(region, nsIntRect(nsIntPoint(xPos,yPos), mImages[i]->GetSize())); // intersect with tile
if (tileRegion.IsEmpty())
continue;
tileRegion.MoveBy(-xPos, -yPos); // translate into tile local space
result &= mImages[i]->DirectUpdate(aSurf,
tileRegion,
aFrom + nsIntPoint(xPos, yPos));
}
mShaderType = mImages[0]->GetShaderProgramType();
mTextureState = Valid;
return result;
}
void
TiledTextureImage::GetUpdateRegion(nsIntRegion& aForRegion)
{
if (mTextureState != Valid) {
// if the texture hasn't been initialized yet, or something important
// changed, we need to recreate our backing surface and force the
// client to paint everything
aForRegion = nsIntRect(nsIntPoint(0, 0), mSize);
return;
}
nsIntRegion newRegion;
// We need to query each texture with the region it will be drawing and
// set aForRegion to be the combination of all of these regions
for (unsigned i = 0; i < mImages.Length(); i++) {
int xPos = (i % mColumns) * mTileSize;
int yPos = (i / mColumns) * mTileSize;
nsIntRect imageRect = nsIntRect(nsIntRect(nsIntPoint(xPos,yPos), mImages[i]->GetSize()));
if (aForRegion.Intersects(imageRect)) {
// Make a copy of the region
nsIntRegion subRegion;
subRegion.And(aForRegion, imageRect);
// Translate it into tile-space
subRegion.MoveBy(-xPos, -yPos);
// Query region
mImages[i]->GetUpdateRegion(subRegion);
// Translate back
subRegion.MoveBy(xPos, yPos);
// Add to the accumulated region
newRegion.Or(newRegion, subRegion);
}
}
aForRegion = newRegion;
}
gfxASurface*
TiledTextureImage::BeginUpdate(nsIntRegion& aRegion)
{
NS_ASSERTION(!mInUpdate, "nested update");
mInUpdate = true;
// Note, we don't call GetUpdateRegion here as if the updated region is
// fully contained in a single tile, we get to avoid iterating through
// the tiles again (and a little copying).
if (mTextureState != Valid)
{
// if the texture hasn't been initialized yet, or something important
// changed, we need to recreate our backing surface and force the
// client to paint everything
aRegion = nsIntRect(nsIntPoint(0, 0), mSize);
}
nsIntRect bounds = aRegion.GetBounds();
for (unsigned i = 0; i < mImages.Length(); i++) {
int xPos = (i % mColumns) * mTileSize;
int yPos = (i / mColumns) * mTileSize;
nsIntRegion imageRegion = nsIntRegion(nsIntRect(nsIntPoint(xPos,yPos), mImages[i]->GetSize()));
// a single Image can handle this update request
if (imageRegion.Contains(aRegion)) {
// adjust for tile offset
aRegion.MoveBy(-xPos, -yPos);
// forward the actual call
nsRefPtr<gfxASurface> surface = mImages[i]->BeginUpdate(aRegion);
// caller expects container space
aRegion.MoveBy(xPos, yPos);
// Correct the device offset
gfxPoint offset = surface->GetDeviceOffset();
surface->SetDeviceOffset(gfxPoint(offset.x - xPos,
offset.y - yPos));
// we don't have a temp surface
mUpdateSurface = nsnull;
// remember which image to EndUpdate
mCurrentImage = i;
return surface.get();
}
}
// Get the real updated region, taking into account the capabilities of
// each TextureImage tile
GetUpdateRegion(aRegion);
mUpdateRegion = aRegion;
bounds = aRegion.GetBounds();
// update covers multiple Images - create a temp surface to paint in
gfxASurface::gfxImageFormat format =
(GetContentType() == gfxASurface::CONTENT_COLOR) ?
gfxASurface::ImageFormatRGB24 : gfxASurface::ImageFormatARGB32;
mUpdateSurface = gfxPlatform::GetPlatform()->
CreateOffscreenSurface(gfxIntSize(bounds.width, bounds.height), gfxASurface::ContentFromFormat(format));
mUpdateSurface->SetDeviceOffset(gfxPoint(-bounds.x, -bounds.y));
return mUpdateSurface;
}
void
TiledTextureImage::EndUpdate()
{
NS_ASSERTION(mInUpdate, "EndUpdate not in update");
if (!mUpdateSurface) { // update was to a single TextureImage
mImages[mCurrentImage]->EndUpdate();
mInUpdate = false;
mTextureState = Valid;
mShaderType = mImages[mCurrentImage]->GetShaderProgramType();
return;
}
// upload tiles from temp surface
for (unsigned i = 0; i < mImages.Length(); i++) {
int xPos = (i % mColumns) * mTileSize;
int yPos = (i / mColumns) * mTileSize;
nsIntRect imageRect = nsIntRect(nsIntPoint(xPos,yPos), mImages[i]->GetSize());
nsIntRegion subregion;
subregion.And(mUpdateRegion, imageRect);
if (subregion.IsEmpty())
continue;
subregion.MoveBy(-xPos, -yPos); // Tile-local space
// copy tile from temp surface
gfxASurface* surf = mImages[i]->BeginUpdate(subregion);
nsRefPtr<gfxContext> ctx = new gfxContext(surf);
gfxUtils::ClipToRegion(ctx, subregion);
ctx->SetOperator(gfxContext::OPERATOR_SOURCE);
ctx->SetSource(mUpdateSurface, gfxPoint(-xPos, -yPos));
ctx->Paint();
mImages[i]->EndUpdate();
}
mUpdateSurface = nsnull;
mInUpdate = false;
mShaderType = mImages[0]->GetShaderProgramType();
mTextureState = Valid;
}
void TiledTextureImage::BeginTileIteration()
{
mCurrentImage = 0;
}
bool TiledTextureImage::NextTile()
{
if (mCurrentImage + 1 < mImages.Length()) {
mCurrentImage++;
return true;
}
return false;
}
nsIntRect TiledTextureImage::GetTileRect()
{
nsIntRect rect = mImages[mCurrentImage]->GetTileRect();
unsigned int xPos = (mCurrentImage % mColumns) * mTileSize;
unsigned int yPos = (mCurrentImage / mColumns) * mTileSize;
rect.MoveBy(xPos, yPos);
return rect;
}
void
TiledTextureImage::BindTexture(GLenum aTextureUnit)
{
mImages[mCurrentImage]->BindTexture(aTextureUnit);
}
void
TiledTextureImage::ApplyFilter()
{
mGL->ApplyFilterToBoundTexture(mFilter);
}
/*
* simple resize, just discards everything. we can be more clever just
* adding or discarding tiles, but do we want this?
*/
void TiledTextureImage::Resize(const nsIntSize& aSize)
{
if (mSize == aSize && mTextureState != Created) {
return;
}
mSize = aSize;
mImages.Clear();
// calculate rows and columns, rounding up
mColumns = (aSize.width + mTileSize - 1) / mTileSize;
mRows = (aSize.height + mTileSize - 1) / mTileSize;
for (unsigned int row = 0; row < mRows; row++) {
for (unsigned int col = 0; col < mColumns; col++) {
nsIntSize size( // use tilesize first, then the remainder
(col+1) * mTileSize > (unsigned int)aSize.width ? aSize.width % mTileSize : mTileSize,
(row+1) * mTileSize > (unsigned int)aSize.height ? aSize.height % mTileSize : mTileSize);
nsRefPtr<TextureImage> teximg =
mGL->TileGenFunc(size, mContentType, mUseNearestFilter);
mImages.AppendElement(teximg.forget());
}
}
mTextureState = Allocated;
}
PRUint32 TiledTextureImage::GetTileCount()
{
return mImages.Length();
}
bool
GLContext::ResizeOffscreenFBO(const gfxIntSize& aSize, const bool aUseReadFBO, const bool aDisableAA)
{
if (!IsOffscreenSizeAllowed(aSize))
return false;
MakeCurrent();
const bool alpha = mCreationFormat.alpha > 0;
const int depth = mCreationFormat.depth;
const int stencil = mCreationFormat.stencil;
int samples = mCreationFormat.samples;
GLint maxSamples = 0;
if (SupportsFramebufferMultisample() && !aDisableAA)
fGetIntegerv(LOCAL_GL_MAX_SAMPLES, &maxSamples);
samples = NS_MIN(samples, maxSamples);
const bool useDrawMSFBO = (samples > 0);
if (!useDrawMSFBO && !aUseReadFBO) {
// Early out, as no FBO resize work is necessary.
return true;
}
GLuint curBoundFramebufferDraw = 0;
GLuint curBoundFramebufferRead = 0;
GLuint curBoundRenderbuffer = 0;
GLuint curBoundTexture = 0;
GLint viewport[4];
const bool useDepthStencil =
!mIsGLES2 || IsExtensionSupported(OES_packed_depth_stencil);
// save a few things for later restoring
curBoundFramebufferDraw = GetBoundDrawFBO();
curBoundFramebufferRead = GetBoundReadFBO();
fGetIntegerv(LOCAL_GL_RENDERBUFFER_BINDING, (GLint*) &curBoundRenderbuffer);
fGetIntegerv(LOCAL_GL_TEXTURE_BINDING_2D, (GLint*) &curBoundTexture);
fGetIntegerv(LOCAL_GL_VIEWPORT, viewport);
// the context format of what we're defining
// This becomes mActualFormat on success
ContextFormat cf(mCreationFormat);
// Create everything we need for the resize, so if it fails, we haven't broken anything
// If successful, these new resized objects will replace their associated member vars in GLContext
GLuint newOffscreenDrawFBO = 0;
GLuint newOffscreenReadFBO = 0;
GLuint newOffscreenTexture = 0;
GLuint newOffscreenColorRB = 0;
GLuint newOffscreenDepthRB = 0;
GLuint newOffscreenStencilRB = 0;
// Create the buffers and texture
if (aUseReadFBO) {
fGenFramebuffers(1, &newOffscreenReadFBO);
fGenTextures(1, &newOffscreenTexture);
}
if (useDrawMSFBO) {
fGenFramebuffers(1, &newOffscreenDrawFBO);
fGenRenderbuffers(1, &newOffscreenColorRB);
} else {
newOffscreenDrawFBO = newOffscreenReadFBO;
}
if (depth && stencil && useDepthStencil) {
fGenRenderbuffers(1, &newOffscreenDepthRB);
} else {
if (depth) {
fGenRenderbuffers(1, &newOffscreenDepthRB);
}
if (stencil) {
fGenRenderbuffers(1, &newOffscreenStencilRB);
}
}
// Allocate texture
if (aUseReadFBO) {
fBindTexture(LOCAL_GL_TEXTURE_2D, newOffscreenTexture);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D, LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_LINEAR);
if (alpha) {
fTexImage2D(LOCAL_GL_TEXTURE_2D,
0,
LOCAL_GL_RGBA,
aSize.width, aSize.height,
0,
LOCAL_GL_RGBA,
LOCAL_GL_UNSIGNED_BYTE,
NULL);
cf.red = cf.green = cf.blue = cf.alpha = 8;
} else {
fTexImage2D(LOCAL_GL_TEXTURE_2D,
0,
LOCAL_GL_RGB,
aSize.width, aSize.height,
0,
LOCAL_GL_RGB,
#ifdef XP_WIN
LOCAL_GL_UNSIGNED_BYTE,
#else
mIsGLES2 ? LOCAL_GL_UNSIGNED_SHORT_5_6_5
: LOCAL_GL_UNSIGNED_BYTE,
#endif
NULL);
#ifdef XP_WIN
cf.red = cf.green = cf.blue = 8;
#else
cf.red = 5;
cf.green = 6;
cf.blue = 5;
#endif
cf.alpha = 0;
}
}
cf.samples = samples;
// Allocate color buffer
if (useDrawMSFBO) {
GLenum colorFormat;
if (!mIsGLES2 || IsExtensionSupported(OES_rgb8_rgba8))
colorFormat = alpha ? LOCAL_GL_RGBA8 : LOCAL_GL_RGB8;
else
colorFormat = alpha ? LOCAL_GL_RGBA4 : LOCAL_GL_RGB565;
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, newOffscreenColorRB);
fRenderbufferStorageMultisample(LOCAL_GL_RENDERBUFFER,
samples,
colorFormat,
aSize.width, aSize.height);
}
// Allocate depth and stencil buffers
if (depth && stencil && useDepthStencil) {
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, newOffscreenDepthRB);
if (useDrawMSFBO) {
fRenderbufferStorageMultisample(LOCAL_GL_RENDERBUFFER,
samples,
LOCAL_GL_DEPTH24_STENCIL8,
aSize.width, aSize.height);
} else {
fRenderbufferStorage(LOCAL_GL_RENDERBUFFER,
LOCAL_GL_DEPTH24_STENCIL8,
aSize.width, aSize.height);
}
cf.depth = 24;
cf.stencil = 8;
} else {
if (depth) {
GLenum depthType;
if (mIsGLES2) {
if (IsExtensionSupported(OES_depth32)) {
depthType = LOCAL_GL_DEPTH_COMPONENT32;
cf.depth = 32;
} else if (IsExtensionSupported(OES_depth24)) {
depthType = LOCAL_GL_DEPTH_COMPONENT24;
cf.depth = 24;
} else {
depthType = LOCAL_GL_DEPTH_COMPONENT16;
cf.depth = 16;
}
} else {
depthType = LOCAL_GL_DEPTH_COMPONENT24;
cf.depth = 24;
}
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, newOffscreenDepthRB);
if (useDrawMSFBO) {
fRenderbufferStorageMultisample(LOCAL_GL_RENDERBUFFER,
samples,
depthType,
aSize.width, aSize.height);
} else {
fRenderbufferStorage(LOCAL_GL_RENDERBUFFER,
depthType,
aSize.width, aSize.height);
}
}
if (stencil) {
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, newOffscreenStencilRB);
if (useDrawMSFBO) {
fRenderbufferStorageMultisample(LOCAL_GL_RENDERBUFFER,
samples,
LOCAL_GL_STENCIL_INDEX8,
aSize.width, aSize.height);
} else {
fRenderbufferStorage(LOCAL_GL_RENDERBUFFER,
LOCAL_GL_STENCIL_INDEX8,
aSize.width, aSize.height);
}
cf.stencil = 8;
}
}
// Now assemble the FBO
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, newOffscreenDrawFBO); // If we're not using a separate draw FBO, this will be the read FBO
if (useDrawMSFBO) {
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_RENDERBUFFER,
newOffscreenColorRB);
}
if (depth && stencil && useDepthStencil) {
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_DEPTH_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
newOffscreenDepthRB);
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_STENCIL_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
newOffscreenDepthRB);
} else {
if (depth) {
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_DEPTH_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
newOffscreenDepthRB);
}
if (stencil) {
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_STENCIL_ATTACHMENT,
LOCAL_GL_RENDERBUFFER,
newOffscreenStencilRB);
}
}
if (aUseReadFBO) {
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, newOffscreenReadFBO);
fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D,
newOffscreenTexture,
0);
}
// We should be all resized. Check for framebuffer completeness.
GLenum status;
bool framebuffersComplete = true;
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, newOffscreenDrawFBO);
status = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER);
if (status != LOCAL_GL_FRAMEBUFFER_COMPLETE) {
NS_WARNING("DrawFBO: Incomplete");
#ifdef DEBUG
printf_stderr("Framebuffer status: %X\n", status);
#endif
framebuffersComplete = false;
}
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, newOffscreenReadFBO);
status = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER);
if (status != LOCAL_GL_FRAMEBUFFER_COMPLETE) {
NS_WARNING("ReadFBO: Incomplete");
#ifdef DEBUG
printf_stderr("Framebuffer status: %X\n", status);
#endif
framebuffersComplete = false;
}
if (!framebuffersComplete) {
NS_WARNING("Error resizing offscreen framebuffer -- framebuffer(s) not complete");
// Clean up the mess
fDeleteFramebuffers(1, &newOffscreenDrawFBO);
fDeleteFramebuffers(1, &newOffscreenReadFBO);
fDeleteTextures(1, &newOffscreenTexture);
fDeleteRenderbuffers(1, &newOffscreenColorRB);
fDeleteRenderbuffers(1, &newOffscreenDepthRB);
fDeleteRenderbuffers(1, &newOffscreenStencilRB);
BindReadFBO(curBoundFramebufferRead);
BindDrawFBO(curBoundFramebufferDraw);
fBindTexture(LOCAL_GL_TEXTURE_2D, curBoundTexture);
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, curBoundRenderbuffer);
fViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
return false;
}
// Success, so delete the old and busted
fDeleteFramebuffers(1, &mOffscreenDrawFBO);
fDeleteFramebuffers(1, &mOffscreenReadFBO);
fDeleteTextures(1, &mOffscreenTexture);
fDeleteRenderbuffers(1, &mOffscreenColorRB);
fDeleteRenderbuffers(1, &mOffscreenDepthRB);
fDeleteRenderbuffers(1, &mOffscreenStencilRB);
// Update currently bound references if we're changing what they were point to
// This way we don't rebind to old buffers when we're done here
if (curBoundFramebufferDraw == mOffscreenDrawFBO)
curBoundFramebufferDraw = newOffscreenDrawFBO;
if (curBoundFramebufferRead == mOffscreenReadFBO)
curBoundFramebufferRead = newOffscreenReadFBO;
if (curBoundTexture == mOffscreenTexture)
curBoundTexture = newOffscreenTexture;
if (curBoundRenderbuffer == mOffscreenColorRB)
curBoundRenderbuffer = newOffscreenColorRB;
else if (curBoundRenderbuffer == mOffscreenDepthRB)
curBoundRenderbuffer = newOffscreenDepthRB;
else if (curBoundRenderbuffer == mOffscreenStencilRB)
curBoundRenderbuffer = newOffscreenStencilRB;
// Replace with the new hotness
mOffscreenDrawFBO = newOffscreenDrawFBO;
mOffscreenReadFBO = newOffscreenReadFBO;
mOffscreenTexture = newOffscreenTexture;
mOffscreenColorRB = newOffscreenColorRB;
mOffscreenDepthRB = newOffscreenDepthRB;
mOffscreenStencilRB = newOffscreenStencilRB;
mOffscreenSize = aSize;
mOffscreenActualSize = aSize;
mActualFormat = cf;
#ifdef DEBUG
if (DebugMode()) {
printf_stderr("Resized %dx%d offscreen FBO: r: %d g: %d b: %d a: %d depth: %d stencil: %d samples: %d\n",
mOffscreenActualSize.width, mOffscreenActualSize.height,
mActualFormat.red, mActualFormat.green, mActualFormat.blue, mActualFormat.alpha,
mActualFormat.depth, mActualFormat.stencil, mActualFormat.samples);
}
#endif
// Make sure we know that the buffers are new and thus dirty:
ForceDirtyFBOs();
// We're good, and the framebuffer is already attached.
// Now restore the GL state back to what it was before the resize took place.
// If the user was using fb 0, this will bind the offscreen framebuffer we
// just created.
BindDrawFBO(curBoundFramebufferDraw);
BindReadFBO(curBoundFramebufferRead);
fBindTexture(LOCAL_GL_TEXTURE_2D, curBoundTexture);
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, curBoundRenderbuffer);
fViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
return true;
}
void
GLContext::DeleteOffscreenFBO()
{
fDeleteFramebuffers(1, &mOffscreenDrawFBO);
fDeleteFramebuffers(1, &mOffscreenReadFBO);
fDeleteTextures(1, &mOffscreenTexture);
fDeleteRenderbuffers(1, &mOffscreenColorRB);
fDeleteRenderbuffers(1, &mOffscreenDepthRB);
fDeleteRenderbuffers(1, &mOffscreenStencilRB);
mOffscreenDrawFBO = 0;
mOffscreenReadFBO = 0;
mOffscreenTexture = 0;
mOffscreenColorRB = 0;
mOffscreenDepthRB = 0;
mOffscreenStencilRB = 0;
}
void
GLContext::ClearSafely()
{
// bug 659349 --- we must be very careful here: clearing a GL framebuffer is nontrivial, relies on a lot of state,
// and in the case of the backbuffer of a WebGL context, state is exposed to scripts.
//
// The code here is taken from WebGLContext::ForceClearFramebufferWithDefaultValues, but I didn't find a good way of
// sharing code with it. WebGL's code is somewhat performance-critical as it is typically called on every frame, so
// WebGL keeps track of GL state to avoid having to query it everytime, and also tries to only do work for actually
// present buffers (e.g. stencil buffer). Doing that here seems like premature optimization,
// as ClearSafely() is called only when e.g. a canvas is resized, not on every animation frame.
realGLboolean scissorTestEnabled;
realGLboolean ditherEnabled;
realGLboolean colorWriteMask[4];
realGLboolean depthWriteMask;
GLint stencilWriteMaskFront, stencilWriteMaskBack;
GLfloat colorClearValue[4];
GLfloat depthClearValue;
GLint stencilClearValue;
// save current GL state
fGetBooleanv(LOCAL_GL_SCISSOR_TEST, &scissorTestEnabled);
fGetBooleanv(LOCAL_GL_DITHER, &ditherEnabled);
fGetBooleanv(LOCAL_GL_COLOR_WRITEMASK, colorWriteMask);
fGetBooleanv(LOCAL_GL_DEPTH_WRITEMASK, &depthWriteMask);
fGetIntegerv(LOCAL_GL_STENCIL_WRITEMASK, &stencilWriteMaskFront);
fGetIntegerv(LOCAL_GL_STENCIL_BACK_WRITEMASK, &stencilWriteMaskBack);
fGetFloatv(LOCAL_GL_COLOR_CLEAR_VALUE, colorClearValue);
fGetFloatv(LOCAL_GL_DEPTH_CLEAR_VALUE, &depthClearValue);
fGetIntegerv(LOCAL_GL_STENCIL_CLEAR_VALUE, &stencilClearValue);
// prepare GL state for clearing
fDisable(LOCAL_GL_SCISSOR_TEST);
fDisable(LOCAL_GL_DITHER);
PushViewportRect(nsIntRect(0, 0, mOffscreenSize.width, mOffscreenSize.height));
fColorMask(1, 1, 1, 1);
fClearColor(0.f, 0.f, 0.f, 0.f);
fDepthMask(1);
fClearDepth(1.0f);
fStencilMask(0xffffffff);
fClearStencil(0);
// do clear
fClear(LOCAL_GL_COLOR_BUFFER_BIT |
LOCAL_GL_DEPTH_BUFFER_BIT |
LOCAL_GL_STENCIL_BUFFER_BIT);
// restore GL state after clearing
fColorMask(colorWriteMask[0],
colorWriteMask[1],
colorWriteMask[2],
colorWriteMask[3]);
fClearColor(colorClearValue[0],
colorClearValue[1],
colorClearValue[2],
colorClearValue[3]);
fDepthMask(depthWriteMask);
fClearDepth(depthClearValue);
fStencilMaskSeparate(LOCAL_GL_FRONT, stencilWriteMaskFront);
fStencilMaskSeparate(LOCAL_GL_BACK, stencilWriteMaskBack);
fClearStencil(stencilClearValue);
PopViewportRect();
if (ditherEnabled)
fEnable(LOCAL_GL_DITHER);
else
fDisable(LOCAL_GL_DITHER);
if (scissorTestEnabled)
fEnable(LOCAL_GL_SCISSOR_TEST);
else
fDisable(LOCAL_GL_SCISSOR_TEST);
}
void
GLContext::UpdateActualFormat()
{
ContextFormat nf;
fGetIntegerv(LOCAL_GL_RED_BITS, (GLint*) &nf.red);
fGetIntegerv(LOCAL_GL_GREEN_BITS, (GLint*) &nf.green);
fGetIntegerv(LOCAL_GL_BLUE_BITS, (GLint*) &nf.blue);
fGetIntegerv(LOCAL_GL_ALPHA_BITS, (GLint*) &nf.alpha);
fGetIntegerv(LOCAL_GL_DEPTH_BITS, (GLint*) &nf.depth);
fGetIntegerv(LOCAL_GL_STENCIL_BITS, (GLint*) &nf.stencil);
mActualFormat = nf;
}
void
GLContext::MarkDestroyed()
{
if (IsDestroyed())
return;
MakeCurrent();
DeleteOffscreenFBO();
fDeleteProgram(mBlitProgram);
mBlitProgram = 0;
fDeleteFramebuffers(1, &mBlitFramebuffer);
mBlitFramebuffer = 0;
mSymbols.Zero();
}
already_AddRefed<gfxImageSurface>
GLContext::ReadTextureImage(GLuint aTexture,
const gfxIntSize& aSize,
GLenum aTextureFormat)
{
MakeCurrent();
nsRefPtr<gfxImageSurface> isurf;
GLint oldrb, oldfb, oldprog, oldPackAlignment;
GLint success;
GLuint rb = 0, fb = 0;
GLuint vs = 0, fs = 0, prog = 0;
const char *vShader =
"attribute vec4 aVertex;\n"
"attribute vec2 aTexCoord;\n"
"varying vec2 vTexCoord;\n"
"void main() { gl_Position = aVertex; vTexCoord = aTexCoord; }";
const char *fShader =
"#ifdef GL_ES\n"
"precision mediump float;\n"
"#endif\n"
"varying vec2 vTexCoord;\n"
"uniform sampler2D uTexture;\n"
"void main() { gl_FragColor = texture2D(uTexture, vTexCoord); }";
float verts[4*4] = {
-1.0f, -1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
};
float texcoords[2*4] = {
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f
};
fGetIntegerv(LOCAL_GL_RENDERBUFFER_BINDING, &oldrb);
fGetIntegerv(LOCAL_GL_FRAMEBUFFER_BINDING, &oldfb);
fGetIntegerv(LOCAL_GL_CURRENT_PROGRAM, &oldprog);
fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, &oldPackAlignment);
PushViewportRect(nsIntRect(0, 0, aSize.width, aSize.height));
fGenRenderbuffers(1, &rb);
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, rb);
fRenderbufferStorage(LOCAL_GL_RENDERBUFFER, LOCAL_GL_RGBA,
aSize.width, aSize.height);
fGenFramebuffers(1, &fb);
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, fb);
fFramebufferRenderbuffer(LOCAL_GL_FRAMEBUFFER, LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_RENDERBUFFER, rb);
if (fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER) !=
LOCAL_GL_FRAMEBUFFER_COMPLETE)
{
goto cleanup;
}
vs = fCreateShader(LOCAL_GL_VERTEX_SHADER);
fs = fCreateShader(LOCAL_GL_FRAGMENT_SHADER);
fShaderSource(vs, 1, (const GLchar**) &vShader, NULL);
fShaderSource(fs, 1, (const GLchar**) &fShader, NULL);
prog = fCreateProgram();
fAttachShader(prog, vs);
fAttachShader(prog, fs);
fBindAttribLocation(prog, 0, "aVertex");
fBindAttribLocation(prog, 1, "aTexCoord");
fLinkProgram(prog);
fGetProgramiv(prog, LOCAL_GL_LINK_STATUS, &success);
if (!success) {
goto cleanup;
}
fUseProgram(prog);
fEnableVertexAttribArray(0);
fEnableVertexAttribArray(1);
fVertexAttribPointer(0, 4, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, verts);
fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, texcoords);
fActiveTexture(LOCAL_GL_TEXTURE0);
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
fUniform1i(fGetUniformLocation(prog, "uTexture"), 0);
fDrawArrays(LOCAL_GL_TRIANGLE_STRIP, 0, 4);
fDisableVertexAttribArray(1);
fDisableVertexAttribArray(0);
isurf = new gfxImageSurface(aSize, gfxASurface::ImageFormatARGB32);
if (!isurf || isurf->CairoStatus()) {
isurf = nsnull;
goto cleanup;
}
if (oldPackAlignment != 4)
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 4);
fReadPixels(0, 0, aSize.width, aSize.height,
LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE,
isurf->Data());
if (oldPackAlignment != 4)
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, oldPackAlignment);
cleanup:
// note that deleting 0 has no effect in any of these calls
fDeleteRenderbuffers(1, &rb);
fDeleteFramebuffers(1, &fb);
fDeleteShader(vs);
fDeleteShader(fs);
fDeleteProgram(prog);
fBindRenderbuffer(LOCAL_GL_RENDERBUFFER, oldrb);
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, oldfb);
fUseProgram(oldprog);
PopViewportRect();
return isurf.forget();
}
void
GLContext::ReadPixelsIntoImageSurface(GLint aX, GLint aY,
GLsizei aWidth, GLsizei aHeight,
gfxImageSurface *aDest)
{
MakeCurrent();
if (aDest->Format() != gfxASurface::ImageFormatARGB32 &&
aDest->Format() != gfxASurface::ImageFormatRGB24)
{
NS_WARNING("ReadPixelsIntoImageSurface called with invalid image format");
return;
}
if (aDest->Width() != aWidth ||
aDest->Height() != aHeight ||
aDest->Stride() != aWidth * 4)
{
NS_WARNING("ReadPixelsIntoImageSurface called with wrong size or stride surface");
return;
}
GLint currentPackAlignment = 0;
fGetIntegerv(LOCAL_GL_PACK_ALIGNMENT, &currentPackAlignment);
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 4);
// defaults for desktop
GLenum format = LOCAL_GL_BGRA;
GLenum datatype = LOCAL_GL_UNSIGNED_INT_8_8_8_8_REV;
bool swap = false;
if (IsGLES2()) {
datatype = LOCAL_GL_UNSIGNED_BYTE;
if (mSupport_ES_ReadPixels_BGRA_UByte) {
format = LOCAL_GL_BGRA;
} else {
format = LOCAL_GL_RGBA;
swap = true;
}
}
fReadPixels(0, 0, aWidth, aHeight,
format, datatype,
aDest->Data());
if (swap) {
// swap B and R bytes
for (int j = 0; j < aHeight; ++j) {
PRUint32 *row = (PRUint32*) (aDest->Data() + aDest->Stride() * j);
for (int i = 0; i < aWidth; ++i) {
*row = (*row & 0xff00ff00) | ((*row & 0xff) << 16) | ((*row & 0xff0000) >> 16);
row++;
}
}
}
fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, currentPackAlignment);
}
void
GLContext::BlitTextureImage(TextureImage *aSrc, const nsIntRect& aSrcRect,
TextureImage *aDst, const nsIntRect& aDstRect)
{
NS_ASSERTION(!aSrc->InUpdate(), "Source texture is in update!");
NS_ASSERTION(!aDst->InUpdate(), "Destination texture is in update!");
if (aSrcRect.IsEmpty() || aDstRect.IsEmpty())
return;
// only save/restore this stuff on Qualcomm Adreno, to work
// around an apparent bug
int savedFb = 0;
if (mVendor == VendorQualcomm) {
fGetIntegerv(LOCAL_GL_FRAMEBUFFER_BINDING, &savedFb);
}
fDisable(LOCAL_GL_SCISSOR_TEST);
fDisable(LOCAL_GL_BLEND);
// 2.0 means scale up by two
float blitScaleX = float(aDstRect.width) / float(aSrcRect.width);
float blitScaleY = float(aDstRect.height) / float(aSrcRect.height);
// We start iterating over all destination tiles
aDst->BeginTileIteration();
do {
// calculate portion of the tile that is going to be painted to
nsIntRect dstSubRect;
nsIntRect dstTextureRect = aDst->GetTileRect();
dstSubRect.IntersectRect(aDstRect, dstTextureRect);
// this tile is not part of the destination rectangle aDstRect
if (dstSubRect.IsEmpty())
continue;
// (*) transform the rect of this tile into the rectangle defined by aSrcRect...
nsIntRect dstInSrcRect(dstSubRect);
dstInSrcRect.MoveBy(-aDstRect.TopLeft());
// ...which might be of different size, hence scale accordingly
dstInSrcRect.ScaleRoundOut(1.0f / blitScaleX, 1.0f / blitScaleY);
dstInSrcRect.MoveBy(aSrcRect.TopLeft());
SetBlitFramebufferForDestTexture(aDst->GetTextureID());
UseBlitProgram();
aSrc->BeginTileIteration();
// now iterate over all tiles in the source Image...
do {
// calculate portion of the source tile that is in the source rect
nsIntRect srcSubRect;
nsIntRect srcTextureRect = aSrc->GetTileRect();
srcSubRect.IntersectRect(aSrcRect, srcTextureRect);
// this tile is not part of the source rect
if (srcSubRect.IsEmpty()) {
continue;
}
// calculate intersection of source rect with destination rect
srcSubRect.IntersectRect(srcSubRect, dstInSrcRect);
// this tile does not overlap the current destination tile
if (srcSubRect.IsEmpty()) {
continue;
}
// We now have the intersection of
// the current source tile
// and the desired source rectangle
// and the destination tile
// and the desired destination rectange
// in destination space.
// We need to transform this back into destination space, inverting the transform from (*)
nsIntRect srcSubInDstRect(srcSubRect);
srcSubInDstRect.MoveBy(-aSrcRect.TopLeft());
srcSubInDstRect.ScaleRoundOut(blitScaleX, blitScaleY);
srcSubInDstRect.MoveBy(aDstRect.TopLeft());
// we transform these rectangles to be relative to the current src and dst tiles, respectively
nsIntSize srcSize = srcTextureRect.Size();
nsIntSize dstSize = dstTextureRect.Size();
srcSubRect.MoveBy(-srcTextureRect.x, -srcTextureRect.y);
srcSubInDstRect.MoveBy(-dstTextureRect.x, -dstTextureRect.y);
float dx0 = 2.0 * float(srcSubInDstRect.x) / float(dstSize.width) - 1.0;
float dy0 = 2.0 * float(srcSubInDstRect.y) / float(dstSize.height) - 1.0;
float dx1 = 2.0 * float(srcSubInDstRect.x + srcSubInDstRect.width) / float(dstSize.width) - 1.0;
float dy1 = 2.0 * float(srcSubInDstRect.y + srcSubInDstRect.height) / float(dstSize.height) - 1.0;
PushViewportRect(nsIntRect(0, 0, dstSize.width, dstSize.height));
RectTriangles rects;
nsIntSize realTexSize = srcSize;
if (!CanUploadNonPowerOfTwo()) {
realTexSize = nsIntSize(NextPowerOfTwo(srcSize.width),
NextPowerOfTwo(srcSize.height));
}
if (aSrc->GetWrapMode() == LOCAL_GL_REPEAT) {
rects.addRect(/* dest rectangle */
dx0, dy0, dx1, dy1,
/* tex coords */
srcSubRect.x / float(realTexSize.width),
srcSubRect.y / float(realTexSize.height),
srcSubRect.XMost() / float(realTexSize.width),
srcSubRect.YMost() / float(realTexSize.height));
} else {
DecomposeIntoNoRepeatTriangles(srcSubRect, realTexSize, rects);
// now put the coords into the d[xy]0 .. d[xy]1 coordinate space
// from the 0..1 that it comes out of decompose
RectTriangles::vert_coord* v = (RectTriangles::vert_coord*)rects.vertexPointer();
for (unsigned int i = 0; i < rects.elements(); ++i) {
v[i].x = (v[i].x * (dx1 - dx0)) + dx0;
v[i].y = (v[i].y * (dy1 - dy0)) + dy0;
}
}
TextureImage::ScopedBindTexture texBind(aSrc, LOCAL_GL_TEXTURE0);
fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, rects.vertexPointer());
fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, rects.texCoordPointer());
fEnableVertexAttribArray(0);
fEnableVertexAttribArray(1);
fDrawArrays(LOCAL_GL_TRIANGLES, 0, rects.elements());
fDisableVertexAttribArray(0);
fDisableVertexAttribArray(1);
PopViewportRect();
} while (aSrc->NextTile());
} while (aDst->NextTile());
fVertexAttribPointer(0, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, NULL);
fVertexAttribPointer(1, 2, LOCAL_GL_FLOAT, LOCAL_GL_FALSE, 0, NULL);
// unbind the previous texture from the framebuffer
SetBlitFramebufferForDestTexture(0);
// then put back the previous framebuffer, and don't
// enable stencil if it wasn't enabled on entry to work
// around Adreno 200 bug that causes us to crash if
// we enable scissor test while the current FBO is invalid
// (which it will be, once we assign texture 0 to the color
// attachment)
if (mVendor == VendorQualcomm) {
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, savedFb);
}
fEnable(LOCAL_GL_SCISSOR_TEST);
fEnable(LOCAL_GL_BLEND);
}
static unsigned int
DataOffset(gfxImageSurface *aSurf, const nsIntPoint &aPoint)
{
unsigned int data = aPoint.y * aSurf->Stride();
data += aPoint.x * gfxASurface::BytePerPixelFromFormat(aSurf->Format());
return data;
}
ShaderProgramType
GLContext::UploadSurfaceToTexture(gfxASurface *aSurface,
const nsIntRegion& aDstRegion,
GLuint& aTexture,
bool aOverwrite,
const nsIntPoint& aSrcPoint,
bool aPixelBuffer)
{
bool textureInited = aOverwrite ? false : true;
MakeCurrent();
fActiveTexture(LOCAL_GL_TEXTURE0);
if (!aTexture) {
fGenTextures(1, &aTexture);
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_MIN_FILTER,
LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_MAG_FILTER,
LOCAL_GL_LINEAR);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_WRAP_S,
LOCAL_GL_CLAMP_TO_EDGE);
fTexParameteri(LOCAL_GL_TEXTURE_2D,
LOCAL_GL_TEXTURE_WRAP_T,
LOCAL_GL_CLAMP_TO_EDGE);
textureInited = false;
} else {
fBindTexture(LOCAL_GL_TEXTURE_2D, aTexture);
}
nsIntRegion paintRegion;
if (!textureInited) {
paintRegion = nsIntRegion(aDstRegion.GetBounds());
} else {
paintRegion = aDstRegion;
}
nsRefPtr<gfxImageSurface> imageSurface = aSurface->GetAsImageSurface();
unsigned char* data = NULL;
if (!imageSurface ||
(imageSurface->Format() != gfxASurface::ImageFormatARGB32 &&
imageSurface->Format() != gfxASurface::ImageFormatRGB24 &&
imageSurface->Format() != gfxASurface::ImageFormatRGB16_565 &&
imageSurface->Format() != gfxASurface::ImageFormatA8)) {
// We can't get suitable pixel data for the surface, make a copy
nsIntRect bounds = aDstRegion.GetBounds();
imageSurface =
new gfxImageSurface(gfxIntSize(bounds.width, bounds.height),
gfxASurface::ImageFormatARGB32);
nsRefPtr<gfxContext> context = new gfxContext(imageSurface);
context->Translate(-gfxPoint(aSrcPoint.x, aSrcPoint.y));
context->SetSource(aSurface);
context->Paint();
data = imageSurface->Data();
NS_ASSERTION(!aPixelBuffer,
"Must be using an image compatible surface with pixel buffers!");
} else {
// If a pixel buffer is bound the data pointer parameter is relative
// to the start of the data block.
if (!aPixelBuffer) {
data = imageSurface->Data();
}
data += DataOffset(imageSurface, aSrcPoint);
}
GLenum format;
GLenum internalformat;
GLenum type;
PRInt32 pixelSize = gfxASurface::BytePerPixelFromFormat(imageSurface->Format());
ShaderProgramType shader;
switch (imageSurface->Format()) {
case gfxASurface::ImageFormatARGB32:
format = LOCAL_GL_RGBA;
type = LOCAL_GL_UNSIGNED_BYTE;
shader = BGRALayerProgramType;
break;
case gfxASurface::ImageFormatRGB24:
// Treat RGB24 surfaces as RGBA32 except for the shader
// program used.
format = LOCAL_GL_RGBA;
type = LOCAL_GL_UNSIGNED_BYTE;
shader = BGRXLayerProgramType;
break;
case gfxASurface::ImageFormatRGB16_565:
format = LOCAL_GL_RGB;
type = LOCAL_GL_UNSIGNED_SHORT_5_6_5;
shader = RGBALayerProgramType;
break;
case gfxASurface::ImageFormatA8:
format = LOCAL_GL_LUMINANCE;
type = LOCAL_GL_UNSIGNED_BYTE;
// We don't have a specific luminance shader
shader = ShaderProgramType(0);
break;
default:
NS_ASSERTION(false, "Unhandled image surface format!");
format = 0;
type = 0;
shader = ShaderProgramType(0);
}
PRInt32 stride = imageSurface->Stride();
#ifndef USE_GLES2
internalformat = LOCAL_GL_RGBA;
#else
internalformat = format;
#endif
nsIntRegionRectIterator iter(paintRegion);
const nsIntRect *iterRect;
// Top left point of the region's bounding rectangle.
nsIntPoint topLeft = paintRegion.GetBounds().TopLeft();
while ((iterRect = iter.Next())) {
// The inital data pointer is at the top left point of the region's
// bounding rectangle. We need to find the offset of this rect
// within the region and adjust the data pointer accordingly.
unsigned char *rectData =
data + DataOffset(imageSurface, iterRect->TopLeft() - topLeft);
NS_ASSERTION(textureInited || (iterRect->x == 0 && iterRect->y == 0),
"Must be uploading to the origin when we don't have an existing texture");
if (textureInited && CanUploadSubTextures()) {
TexSubImage2D(LOCAL_GL_TEXTURE_2D,
0,
iterRect->x,
iterRect->y,
iterRect->width,
iterRect->height,
stride,
pixelSize,
format,
type,
rectData);
} else {
TexImage2D(LOCAL_GL_TEXTURE_2D,
0,
internalformat,
iterRect->width,
iterRect->height,
stride,
pixelSize,
0,
format,
type,
rectData);
}
}
return shader;
}
static GLint GetAddressAlignment(ptrdiff_t aAddress)
{
if (!(aAddress & 0x7)) {
return 8;
} else if (!(aAddress & 0x3)) {
return 4;
} else if (!(aAddress & 0x1)) {
return 2;
} else {
return 1;
}
}
void
GLContext::TexImage2D(GLenum target, GLint level, GLint internalformat,
GLsizei width, GLsizei height, GLsizei stride,
GLint pixelsize, GLint border, GLenum format,
GLenum type, const GLvoid *pixels)
{
#ifdef USE_GLES2
NS_ASSERTION(format == internalformat,
"format and internalformat not the same for glTexImage2D on GLES2");
if (!CanUploadNonPowerOfTwo()
&& (stride != width * pixelsize
|| !IsPowerOfTwo(width)
|| !IsPowerOfTwo(height))) {
// Pad out texture width and height to the next power of two
// as we don't support/want non power of two texture uploads
GLsizei paddedWidth = NextPowerOfTwo(width);
GLsizei paddedHeight = NextPowerOfTwo(height);
GLvoid* paddedPixels = new unsigned char[paddedWidth * paddedHeight * pixelsize];
// Pad out texture data to be in a POT sized buffer for uploading to
// a POT sized texture
CopyAndPadTextureData(pixels, paddedPixels, width, height,
paddedWidth, paddedHeight, stride, pixelsize);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)paddedPixels),
GetAddressAlignment((ptrdiff_t)paddedWidth * pixelsize)));
fTexImage2D(target,
border,
internalformat,
paddedWidth,
paddedHeight,
border,
format,
type,
paddedPixels);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
delete[] static_cast<unsigned char*>(paddedPixels);
return;
}
if (stride == width * pixelsize) {
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
fTexImage2D(target,
border,
internalformat,
width,
height,
border,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
} else {
// Use GLES-specific workarounds for GL_UNPACK_ROW_LENGTH; these are
// implemented in TexSubImage2D.
fTexImage2D(target,
border,
internalformat,
width,
height,
border,
format,
type,
NULL);
TexSubImage2D(target,
level,
0,
0,
width,
height,
stride,
pixelsize,
format,
type,
pixels);
}
#else
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
int rowLength = stride/pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength);
fTexImage2D(target,
level,
internalformat,
width,
height,
border,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
#endif
}
void
GLContext::TexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height, GLsizei stride,
GLint pixelsize, GLenum format,
GLenum type, const GLvoid* pixels)
{
#ifdef USE_GLES2
if (stride == width * pixelsize) {
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
} else if (IsExtensionSupported(EXT_unpack_subimage)) {
TexSubImage2DWithUnpackSubimageGLES(target, level, xoffset, yoffset,
width, height, stride,
pixelsize, format, type, pixels);
} else {
TexSubImage2DWithoutUnpackSubimage(target, level, xoffset, yoffset,
width, height, stride,
pixelsize, format, type, pixels);
}
#else
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
int rowLength = stride/pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength);
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
#endif
}
void
GLContext::TexSubImage2DWithUnpackSubimageGLES(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLsizei stride, GLint pixelsize,
GLenum format, GLenum type,
const GLvoid* pixels)
{
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)pixels),
GetAddressAlignment((ptrdiff_t)stride)));
// When using GL_UNPACK_ROW_LENGTH, we need to work around a Tegra
// driver crash where the driver apparently tries to read
// (stride - width * pixelsize) bytes past the end of the last input
// row. We only upload the first height-1 rows using GL_UNPACK_ROW_LENGTH,
// and then we upload the final row separately. See bug 697990.
int rowLength = stride/pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, rowLength);
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height-1,
format,
type,
pixels);
fPixelStorei(LOCAL_GL_UNPACK_ROW_LENGTH, 0);
fTexSubImage2D(target,
level,
xoffset,
yoffset+height-1,
width,
1,
format,
type,
(const unsigned char *)pixels+(height-1)*stride);
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
}
void
GLContext::TexSubImage2DWithoutUnpackSubimage(GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLsizei stride, GLint pixelsize,
GLenum format, GLenum type,
const GLvoid* pixels)
{
// Not using the whole row of texture data and GL_UNPACK_ROW_LENGTH
// isn't supported. We make a copy of the texture data we're using,
// such that we're using the whole row of data in the copy. This turns
// out to be more efficient than uploading row-by-row; see bug 698197.
unsigned char *newPixels = new unsigned char[width*height*pixelsize];
unsigned char *rowDest = newPixels;
const unsigned char *rowSource = (const unsigned char *)pixels;
for (int h = 0; h < height; h++) {
memcpy(rowDest, rowSource, width*pixelsize);
rowDest += width*pixelsize;
rowSource += stride;
}
stride = width*pixelsize;
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT,
NS_MIN(GetAddressAlignment((ptrdiff_t)newPixels),
GetAddressAlignment((ptrdiff_t)stride)));
fTexSubImage2D(target,
level,
xoffset,
yoffset,
width,
height,
format,
type,
newPixels);
delete [] newPixels;
fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 4);
}
void
GLContext::RectTriangles::addRect(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
GLfloat tx0, GLfloat ty0, GLfloat tx1, GLfloat ty1)
{
vert_coord v;
v.x = x0; v.y = y0;
vertexCoords.AppendElement(v);
v.x = x1; v.y = y0;
vertexCoords.AppendElement(v);
v.x = x0; v.y = y1;
vertexCoords.AppendElement(v);
v.x = x0; v.y = y1;
vertexCoords.AppendElement(v);
v.x = x1; v.y = y0;
vertexCoords.AppendElement(v);
v.x = x1; v.y = y1;
vertexCoords.AppendElement(v);
tex_coord t;
t.u = tx0; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx0; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx0; t.v = ty1;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty0;
texCoords.AppendElement(t);
t.u = tx1; t.v = ty1;
texCoords.AppendElement(t);
}
static GLfloat
WrapTexCoord(GLfloat v)
{
// fmodf gives negative results for negative numbers;
// that is, fmodf(0.75, 1.0) == 0.75, but
// fmodf(-0.75, 1.0) == -0.75. For the negative case,
// the result we need is 0.25, so we add 1.0f.
if (v < 0.0f) {
return 1.0f + fmodf(v, 1.0f);
}
return fmodf(v, 1.0f);
}
void
GLContext::DecomposeIntoNoRepeatTriangles(const nsIntRect& aTexCoordRect,
const nsIntSize& aTexSize,
RectTriangles& aRects)
{
// normalize this
nsIntRect tcr(aTexCoordRect);
while (tcr.x > aTexSize.width)
tcr.x -= aTexSize.width;
while (tcr.y > aTexSize.height)
tcr.y -= aTexSize.height;
// Compute top left and bottom right tex coordinates
GLfloat tl[2] =
{ GLfloat(tcr.x) / GLfloat(aTexSize.width),
GLfloat(tcr.y) / GLfloat(aTexSize.height) };
GLfloat br[2] =
{ GLfloat(tcr.XMost()) / GLfloat(aTexSize.width),
GLfloat(tcr.YMost()) / GLfloat(aTexSize.height) };
// then check if we wrap in either the x or y axis; if we do,
// then also use fmod to figure out the "true" non-wrapping
// texture coordinates.
bool xwrap = false, ywrap = false;
if (tcr.x < 0 || tcr.x > aTexSize.width ||
tcr.XMost() < 0 || tcr.XMost() > aTexSize.width)
{
xwrap = true;
tl[0] = WrapTexCoord(tl[0]);
br[0] = WrapTexCoord(br[0]);
}
if (tcr.y < 0 || tcr.y > aTexSize.height ||
tcr.YMost() < 0 || tcr.YMost() > aTexSize.height)
{
ywrap = true;
tl[1] = WrapTexCoord(tl[1]);
br[1] = WrapTexCoord(br[1]);
}
NS_ASSERTION(tl[0] >= 0.0f && tl[0] <= 1.0f &&
tl[1] >= 0.0f && tl[1] <= 1.0f &&
br[0] >= 0.0f && br[0] <= 1.0f &&
br[1] >= 0.0f && br[1] <= 1.0f,
"Somehow generated invalid texture coordinates");
// If xwrap is false, the texture will be sampled from tl[0]
// .. br[0]. If xwrap is true, then it will be split into tl[0]
// .. 1.0, and 0.0 .. br[0]. Same for the Y axis. The
// destination rectangle is also split appropriately, according
// to the calculated xmid/ymid values.
// There isn't a 1:1 mapping between tex coords and destination coords;
// when computing midpoints, we have to take that into account. We
// need to map the texture coords, which are (in the wrap case):
// |tl->1| and |0->br| to the |0->1| range of the vertex coords. So
// we have the length (1-tl)+(br) that needs to map into 0->1.
// These are only valid if there is wrap involved, they won't be used
// otherwise.
GLfloat xlen = (1.0f - tl[0]) + br[0];
GLfloat ylen = (1.0f - tl[1]) + br[1];
NS_ASSERTION(!xwrap || xlen > 0.0f, "xlen isn't > 0, what's going on?");
NS_ASSERTION(!ywrap || ylen > 0.0f, "ylen isn't > 0, what's going on?");
NS_ASSERTION(aTexCoordRect.width <= aTexSize.width &&
aTexCoordRect.height <= aTexSize.height, "tex coord rect would cause tiling!");
if (!xwrap && !ywrap) {
aRects.addRect(0.0f, 0.0f,
1.0f, 1.0f,
tl[0], tl[1],
br[0], br[1]);
} else if (!xwrap && ywrap) {
GLfloat ymid = (1.0f - tl[1]) / ylen;
aRects.addRect(0.0f, 0.0f,
1.0f, ymid,
tl[0], tl[1],
br[0], 1.0f);
aRects.addRect(0.0f, ymid,
1.0f, 1.0f,
tl[0], 0.0f,
br[0], br[1]);
} else if (xwrap && !ywrap) {
GLfloat xmid = (1.0f - tl[0]) / xlen;
aRects.addRect(0.0f, 0.0f,
xmid, 1.0f,
tl[0], tl[1],
1.0f, br[1]);
aRects.addRect(xmid, 0.0f,
1.0f, 1.0f,
0.0f, tl[1],
br[0], br[1]);
} else {
GLfloat xmid = (1.0f - tl[0]) / xlen;
GLfloat ymid = (1.0f - tl[1]) / ylen;
aRects.addRect(0.0f, 0.0f,
xmid, ymid,
tl[0], tl[1],
1.0f, 1.0f);
aRects.addRect(xmid, 0.0f,
1.0f, ymid,
0.0f, tl[1],
br[0], 1.0f);
aRects.addRect(0.0f, ymid,
xmid, 1.0f,
tl[0], 0.0f,
1.0f, br[1]);
aRects.addRect(xmid, ymid,
1.0f, 1.0f,
0.0f, 0.0f,
br[0], br[1]);
}
}
void
GLContext::UseBlitProgram()
{
if (mBlitProgram) {
fUseProgram(mBlitProgram);
return;
}
mBlitProgram = fCreateProgram();
GLuint shaders[2];
shaders[0] = fCreateShader(LOCAL_GL_VERTEX_SHADER);
shaders[1] = fCreateShader(LOCAL_GL_FRAGMENT_SHADER);
const char *blitVSSrc =
"attribute vec2 aVertex;"
"attribute vec2 aTexCoord;"
"varying vec2 vTexCoord;"
"void main() {"
" vTexCoord = aTexCoord;"
" gl_Position = vec4(aVertex, 0.0, 1.0);"
"}";
const char *blitFSSrc = "#ifdef GL_ES\nprecision mediump float;\n#endif\n"
"uniform sampler2D uSrcTexture;"
"varying vec2 vTexCoord;"
"void main() {"
" gl_FragColor = texture2D(uSrcTexture, vTexCoord);"
"}";
fShaderSource(shaders[0], 1, (const GLchar**) &blitVSSrc, NULL);
fShaderSource(shaders[1], 1, (const GLchar**) &blitFSSrc, NULL);
for (int i = 0; i < 2; ++i) {
GLint success, len = 0;
fCompileShader(shaders[i]);
fGetShaderiv(shaders[i], LOCAL_GL_COMPILE_STATUS, &success);
NS_ASSERTION(success, "Shader compilation failed!");
if (!success) {
nsCAutoString log;
fGetShaderiv(shaders[i], LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
log.SetCapacity(len);
fGetShaderInfoLog(shaders[i], len, (GLint*) &len, (char*) log.BeginWriting());
log.SetLength(len);
printf_stderr("Shader %d compilation failed:\n%s\n", log.get());
return;
}
fAttachShader(mBlitProgram, shaders[i]);
fDeleteShader(shaders[i]);
}
fBindAttribLocation(mBlitProgram, 0, "aVertex");
fBindAttribLocation(mBlitProgram, 1, "aTexCoord");
fLinkProgram(mBlitProgram);
GLint success, len = 0;
fGetProgramiv(mBlitProgram, LOCAL_GL_LINK_STATUS, &success);
NS_ASSERTION(success, "Shader linking failed!");
if (!success) {
nsCAutoString log;
fGetProgramiv(mBlitProgram, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
log.SetCapacity(len);
fGetProgramInfoLog(mBlitProgram, len, (GLint*) &len, (char*) log.BeginWriting());
log.SetLength(len);
printf_stderr("Program linking failed:\n%s\n", log.get());
return;
}
fUseProgram(mBlitProgram);
fUniform1i(fGetUniformLocation(mBlitProgram, "uSrcTexture"), 0);
}
void
GLContext::SetBlitFramebufferForDestTexture(GLuint aTexture)
{
if (!mBlitFramebuffer) {
fGenFramebuffers(1, &mBlitFramebuffer);
}
fBindFramebuffer(LOCAL_GL_FRAMEBUFFER, mBlitFramebuffer);
fFramebufferTexture2D(LOCAL_GL_FRAMEBUFFER,
LOCAL_GL_COLOR_ATTACHMENT0,
LOCAL_GL_TEXTURE_2D,
aTexture,
0);
GLenum result = fCheckFramebufferStatus(LOCAL_GL_FRAMEBUFFER);
if (aTexture && (result != LOCAL_GL_FRAMEBUFFER_COMPLETE)) {
nsCAutoString msg;
msg.Append("Framebuffer not complete -- error 0x");
msg.AppendInt(result, 16);
// Note: if you are hitting this, it is likely that
// your texture is not texture complete -- that is, you
// allocated a texture name, but didn't actually define its
// size via a call to TexImage2D.
NS_RUNTIMEABORT(msg.get());
}
}
#ifdef DEBUG
void
GLContext::CreatedProgram(GLContext *aOrigin, GLuint aName)
{
mTrackedPrograms.AppendElement(NamedResource(aOrigin, aName));
}
void
GLContext::CreatedShader(GLContext *aOrigin, GLuint aName)
{
mTrackedShaders.AppendElement(NamedResource(aOrigin, aName));
}
void
GLContext::CreatedBuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedBuffers.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedTextures(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedTextures.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedFramebuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedFramebuffers.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
void
GLContext::CreatedRenderbuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
for (GLsizei i = 0; i < aCount; ++i) {
mTrackedRenderbuffers.AppendElement(NamedResource(aOrigin, aNames[i]));
}
}
static void
RemoveNamesFromArray(GLContext *aOrigin, GLsizei aCount, GLuint *aNames, nsTArray<GLContext::NamedResource>& aArray)
{
for (GLsizei j = 0; j < aCount; ++j) {
GLuint name = aNames[j];
// name 0 can be ignored
if (name == 0)
continue;
bool found = false;
for (PRUint32 i = 0; i < aArray.Length(); ++i) {
if (aArray[i].name == name) {
aArray.RemoveElementAt(i);
found = true;
break;
}
}
}
}
void
GLContext::DeletedProgram(GLContext *aOrigin, GLuint aName)
{
RemoveNamesFromArray(aOrigin, 1, &aName, mTrackedPrograms);
}
void
GLContext::DeletedShader(GLContext *aOrigin, GLuint aName)
{
RemoveNamesFromArray(aOrigin, 1, &aName, mTrackedShaders);
}
void
GLContext::DeletedBuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedBuffers);
}
void
GLContext::DeletedTextures(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedTextures);
}
void
GLContext::DeletedFramebuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedFramebuffers);
}
void
GLContext::DeletedRenderbuffers(GLContext *aOrigin, GLsizei aCount, GLuint *aNames)
{
RemoveNamesFromArray(aOrigin, aCount, aNames, mTrackedRenderbuffers);
}
static void
MarkContextDestroyedInArray(GLContext *aContext, nsTArray<GLContext::NamedResource>& aArray)
{
for (PRUint32 i = 0; i < aArray.Length(); ++i) {
if (aArray[i].origin == aContext)
aArray[i].originDeleted = true;
}
}
void
GLContext::SharedContextDestroyed(GLContext *aChild)
{
MarkContextDestroyedInArray(aChild, mTrackedPrograms);
MarkContextDestroyedInArray(aChild, mTrackedShaders);
MarkContextDestroyedInArray(aChild, mTrackedTextures);
MarkContextDestroyedInArray(aChild, mTrackedFramebuffers);
MarkContextDestroyedInArray(aChild, mTrackedRenderbuffers);
MarkContextDestroyedInArray(aChild, mTrackedBuffers);
}
static void
ReportArrayContents(const nsTArray<GLContext::NamedResource>& aArray)
{
nsTArray<GLContext::NamedResource> copy(aArray);
copy.Sort();
GLContext *lastContext = NULL;
for (PRUint32 i = 0; i < copy.Length(); ++i) {
if (lastContext != copy[i].origin) {
if (lastContext)
printf_stderr("\n");
printf_stderr(" [%p - %s] ", copy[i].origin, copy[i].originDeleted ? "deleted" : "live");
lastContext = copy[i].origin;
}
printf_stderr("%d ", copy[i].name);
}
printf_stderr("\n");
}
void
GLContext::ReportOutstandingNames()
{
printf_stderr("== GLContext %p ==\n", this);
printf_stderr("Outstanding Textures:\n");
ReportArrayContents(mTrackedTextures);
printf_stderr("Outstanding Buffers:\n");
ReportArrayContents(mTrackedBuffers);
printf_stderr("Outstanding Programs:\n");
ReportArrayContents(mTrackedPrograms);
printf_stderr("Outstanding Shaders:\n");
ReportArrayContents(mTrackedShaders);
printf_stderr("Outstanding Framebuffers:\n");
ReportArrayContents(mTrackedFramebuffers);
printf_stderr("Outstanding Renderbuffers:\n");
ReportArrayContents(mTrackedRenderbuffers);
}
#endif /* DEBUG */
} /* namespace gl */
} /* namespace mozilla */