gecko/js/tests/ecma/Expressions/11.5.3.js

162 lines
10 KiB
JavaScript

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
gTestfile = '11.5.3.js';
/**
File Name: 11.5.3.js
ECMA Section: 11.5.3 Applying the % operator
Description:
The binary % operator is said to yield the remainder of its operands from
an implied division; the left operand is the dividend and the right operand
is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.
The result of a floating-point remainder operation as computed by the %
operator is not the same as the "remainder" operation defined by IEEE 754.
The IEEE 754 "remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous
to that of the usual integer remainder operator. Instead the ECMAScript
language defines % on floating-point operations to behave in a manner
analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.
The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.
If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
possible without exceeding the magnitude of the true mathematical quotient of n and d.
Author: christine@netscape.com
Date: 12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
var BUGNUMBER="111202";
startTest();
writeHeaderToLog( SECTION + " Applying the % operator");
// if either operand is NaN, the result is NaN.
new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
// dividend is an infinity
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
// divisor is 0
new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical quotient of n and d.
test();