mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
467 lines
15 KiB
C++
467 lines
15 KiB
C++
/*
|
|
* Copyright (C) 2010 Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "DenormalDisabler.h"
|
|
#include "Biquad.h"
|
|
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
|
|
namespace WebCore {
|
|
|
|
const int kBufferSize = 1024;
|
|
|
|
Biquad::Biquad()
|
|
{
|
|
// Initialize as pass-thru (straight-wire, no filter effect)
|
|
setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
|
|
|
|
reset(); // clear filter memory
|
|
}
|
|
|
|
Biquad::~Biquad()
|
|
{
|
|
}
|
|
|
|
void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess)
|
|
{
|
|
int n = framesToProcess;
|
|
|
|
// Create local copies of member variables
|
|
double x1 = m_x1;
|
|
double x2 = m_x2;
|
|
double y1 = m_y1;
|
|
double y2 = m_y2;
|
|
|
|
double b0 = m_b0;
|
|
double b1 = m_b1;
|
|
double b2 = m_b2;
|
|
double a1 = m_a1;
|
|
double a2 = m_a2;
|
|
|
|
while (n--) {
|
|
// FIXME: this can be optimized by pipelining the multiply adds...
|
|
float x = *sourceP++;
|
|
float y = b0*x + b1*x1 + b2*x2 - a1*y1 - a2*y2;
|
|
|
|
*destP++ = y;
|
|
|
|
// Update state variables
|
|
x2 = x1;
|
|
x1 = x;
|
|
y2 = y1;
|
|
y1 = y;
|
|
}
|
|
|
|
// Local variables back to member. Flush denormals here so we
|
|
// don't slow down the inner loop above.
|
|
m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1);
|
|
m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2);
|
|
m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1);
|
|
m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2);
|
|
|
|
m_b0 = b0;
|
|
m_b1 = b1;
|
|
m_b2 = b2;
|
|
m_a1 = a1;
|
|
m_a2 = a2;
|
|
}
|
|
|
|
void Biquad::reset()
|
|
{
|
|
m_x1 = m_x2 = m_y1 = m_y2 = 0;
|
|
}
|
|
|
|
void Biquad::setLowpassParams(double cutoff, double resonance)
|
|
{
|
|
// Limit cutoff to 0 to 1.
|
|
cutoff = std::max(0.0, std::min(cutoff, 1.0));
|
|
|
|
if (cutoff == 1) {
|
|
// When cutoff is 1, the z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
} else if (cutoff > 0) {
|
|
// Compute biquad coefficients for lowpass filter
|
|
resonance = std::max(0.0, resonance); // can't go negative
|
|
double g = pow(10.0, 0.05 * resonance);
|
|
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
|
|
|
|
double theta = M_PI * cutoff;
|
|
double sn = 0.5 * d * sin(theta);
|
|
double beta = 0.5 * (1 - sn) / (1 + sn);
|
|
double gamma = (0.5 + beta) * cos(theta);
|
|
double alpha = 0.25 * (0.5 + beta - gamma);
|
|
|
|
double b0 = 2 * alpha;
|
|
double b1 = 2 * 2 * alpha;
|
|
double b2 = 2 * alpha;
|
|
double a1 = 2 * -gamma;
|
|
double a2 = 2 * beta;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
|
|
} else {
|
|
// When cutoff is zero, nothing gets through the filter, so set
|
|
// coefficients up correctly.
|
|
setNormalizedCoefficients(0, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setHighpassParams(double cutoff, double resonance)
|
|
{
|
|
// Limit cutoff to 0 to 1.
|
|
cutoff = std::max(0.0, std::min(cutoff, 1.0));
|
|
|
|
if (cutoff == 1) {
|
|
// The z-transform is 0.
|
|
setNormalizedCoefficients(0, 0, 0,
|
|
1, 0, 0);
|
|
} else if (cutoff > 0) {
|
|
// Compute biquad coefficients for highpass filter
|
|
resonance = std::max(0.0, resonance); // can't go negative
|
|
double g = pow(10.0, 0.05 * resonance);
|
|
double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
|
|
|
|
double theta = M_PI * cutoff;
|
|
double sn = 0.5 * d * sin(theta);
|
|
double beta = 0.5 * (1 - sn) / (1 + sn);
|
|
double gamma = (0.5 + beta) * cos(theta);
|
|
double alpha = 0.25 * (0.5 + beta + gamma);
|
|
|
|
double b0 = 2 * alpha;
|
|
double b1 = 2 * -2 * alpha;
|
|
double b2 = 2 * alpha;
|
|
double a1 = 2 * -gamma;
|
|
double a2 = 2 * beta;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
|
|
} else {
|
|
// When cutoff is zero, we need to be careful because the above
|
|
// gives a quadratic divided by the same quadratic, with poles
|
|
// and zeros on the unit circle in the same place. When cutoff
|
|
// is zero, the z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, double a0, double a1, double a2)
|
|
{
|
|
double a0Inverse = 1 / a0;
|
|
|
|
m_b0 = b0 * a0Inverse;
|
|
m_b1 = b1 * a0Inverse;
|
|
m_b2 = b2 * a0Inverse;
|
|
m_a1 = a1 * a0Inverse;
|
|
m_a2 = a2 * a0Inverse;
|
|
}
|
|
|
|
void Biquad::setLowShelfParams(double frequency, double dbGain)
|
|
{
|
|
// Clip frequencies to between 0 and 1, inclusive.
|
|
frequency = std::max(0.0, std::min(frequency, 1.0));
|
|
|
|
double A = pow(10.0, dbGain / 40);
|
|
|
|
if (frequency == 1) {
|
|
// The z-transform is a constant gain.
|
|
setNormalizedCoefficients(A * A, 0, 0,
|
|
1, 0, 0);
|
|
} else if (frequency > 0) {
|
|
double w0 = M_PI * frequency;
|
|
double S = 1; // filter slope (1 is max value)
|
|
double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
|
|
double k = cos(w0);
|
|
double k2 = 2 * sqrt(A) * alpha;
|
|
double aPlusOne = A + 1;
|
|
double aMinusOne = A - 1;
|
|
|
|
double b0 = A * (aPlusOne - aMinusOne * k + k2);
|
|
double b1 = 2 * A * (aMinusOne - aPlusOne * k);
|
|
double b2 = A * (aPlusOne - aMinusOne * k - k2);
|
|
double a0 = aPlusOne + aMinusOne * k + k2;
|
|
double a1 = -2 * (aMinusOne + aPlusOne * k);
|
|
double a2 = aPlusOne + aMinusOne * k - k2;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
|
|
} else {
|
|
// When frequency is 0, the z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setHighShelfParams(double frequency, double dbGain)
|
|
{
|
|
// Clip frequencies to between 0 and 1, inclusive.
|
|
frequency = std::max(0.0, std::min(frequency, 1.0));
|
|
|
|
double A = pow(10.0, dbGain / 40);
|
|
|
|
if (frequency == 1) {
|
|
// The z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
} else if (frequency > 0) {
|
|
double w0 = M_PI * frequency;
|
|
double S = 1; // filter slope (1 is max value)
|
|
double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
|
|
double k = cos(w0);
|
|
double k2 = 2 * sqrt(A) * alpha;
|
|
double aPlusOne = A + 1;
|
|
double aMinusOne = A - 1;
|
|
|
|
double b0 = A * (aPlusOne + aMinusOne * k + k2);
|
|
double b1 = -2 * A * (aMinusOne + aPlusOne * k);
|
|
double b2 = A * (aPlusOne + aMinusOne * k - k2);
|
|
double a0 = aPlusOne - aMinusOne * k + k2;
|
|
double a1 = 2 * (aMinusOne - aPlusOne * k);
|
|
double a2 = aPlusOne - aMinusOne * k - k2;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
|
|
} else {
|
|
// When frequency = 0, the filter is just a gain, A^2.
|
|
setNormalizedCoefficients(A * A, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setPeakingParams(double frequency, double Q, double dbGain)
|
|
{
|
|
// Clip frequencies to between 0 and 1, inclusive.
|
|
frequency = std::max(0.0, std::min(frequency, 1.0));
|
|
|
|
// Don't let Q go negative, which causes an unstable filter.
|
|
Q = std::max(0.0, Q);
|
|
|
|
double A = pow(10.0, dbGain / 40);
|
|
|
|
if (frequency > 0 && frequency < 1) {
|
|
if (Q > 0) {
|
|
double w0 = M_PI * frequency;
|
|
double alpha = sin(w0) / (2 * Q);
|
|
double k = cos(w0);
|
|
|
|
double b0 = 1 + alpha * A;
|
|
double b1 = -2 * k;
|
|
double b2 = 1 - alpha * A;
|
|
double a0 = 1 + alpha / A;
|
|
double a1 = -2 * k;
|
|
double a2 = 1 - alpha / A;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
|
|
} else {
|
|
// When Q = 0, the above formulas have problems. If we look at
|
|
// the z-transform, we can see that the limit as Q->0 is A^2, so
|
|
// set the filter that way.
|
|
setNormalizedCoefficients(A * A, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
} else {
|
|
// When frequency is 0 or 1, the z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setAllpassParams(double frequency, double Q)
|
|
{
|
|
// Clip frequencies to between 0 and 1, inclusive.
|
|
frequency = std::max(0.0, std::min(frequency, 1.0));
|
|
|
|
// Don't let Q go negative, which causes an unstable filter.
|
|
Q = std::max(0.0, Q);
|
|
|
|
if (frequency > 0 && frequency < 1) {
|
|
if (Q > 0) {
|
|
double w0 = M_PI * frequency;
|
|
double alpha = sin(w0) / (2 * Q);
|
|
double k = cos(w0);
|
|
|
|
double b0 = 1 - alpha;
|
|
double b1 = -2 * k;
|
|
double b2 = 1 + alpha;
|
|
double a0 = 1 + alpha;
|
|
double a1 = -2 * k;
|
|
double a2 = 1 - alpha;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
|
|
} else {
|
|
// When Q = 0, the above formulas have problems. If we look at
|
|
// the z-transform, we can see that the limit as Q->0 is -1, so
|
|
// set the filter that way.
|
|
setNormalizedCoefficients(-1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
} else {
|
|
// When frequency is 0 or 1, the z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setNotchParams(double frequency, double Q)
|
|
{
|
|
// Clip frequencies to between 0 and 1, inclusive.
|
|
frequency = std::max(0.0, std::min(frequency, 1.0));
|
|
|
|
// Don't let Q go negative, which causes an unstable filter.
|
|
Q = std::max(0.0, Q);
|
|
|
|
if (frequency > 0 && frequency < 1) {
|
|
if (Q > 0) {
|
|
double w0 = M_PI * frequency;
|
|
double alpha = sin(w0) / (2 * Q);
|
|
double k = cos(w0);
|
|
|
|
double b0 = 1;
|
|
double b1 = -2 * k;
|
|
double b2 = 1;
|
|
double a0 = 1 + alpha;
|
|
double a1 = -2 * k;
|
|
double a2 = 1 - alpha;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
|
|
} else {
|
|
// When Q = 0, the above formulas have problems. If we look at
|
|
// the z-transform, we can see that the limit as Q->0 is 0, so
|
|
// set the filter that way.
|
|
setNormalizedCoefficients(0, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
} else {
|
|
// When frequency is 0 or 1, the z-transform is 1.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setBandpassParams(double frequency, double Q)
|
|
{
|
|
// No negative frequencies allowed.
|
|
frequency = std::max(0.0, frequency);
|
|
|
|
// Don't let Q go negative, which causes an unstable filter.
|
|
Q = std::max(0.0, Q);
|
|
|
|
if (frequency > 0 && frequency < 1) {
|
|
double w0 = M_PI * frequency;
|
|
if (Q > 0) {
|
|
double alpha = sin(w0) / (2 * Q);
|
|
double k = cos(w0);
|
|
|
|
double b0 = alpha;
|
|
double b1 = 0;
|
|
double b2 = -alpha;
|
|
double a0 = 1 + alpha;
|
|
double a1 = -2 * k;
|
|
double a2 = 1 - alpha;
|
|
|
|
setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
|
|
} else {
|
|
// When Q = 0, the above formulas have problems. If we look at
|
|
// the z-transform, we can see that the limit as Q->0 is 1, so
|
|
// set the filter that way.
|
|
setNormalizedCoefficients(1, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
} else {
|
|
// When the cutoff is zero, the z-transform approaches 0, if Q
|
|
// > 0. When both Q and cutoff are zero, the z-transform is
|
|
// pretty much undefined. What should we do in this case?
|
|
// For now, just make the filter 0. When the cutoff is 1, the
|
|
// z-transform also approaches 0.
|
|
setNormalizedCoefficients(0, 0, 0,
|
|
1, 0, 0);
|
|
}
|
|
}
|
|
|
|
void Biquad::setZeroPolePairs(const Complex &zero, const Complex &pole)
|
|
{
|
|
double b0 = 1;
|
|
double b1 = -2 * zero.real();
|
|
|
|
double zeroMag = abs(zero);
|
|
double b2 = zeroMag * zeroMag;
|
|
|
|
double a1 = -2 * pole.real();
|
|
|
|
double poleMag = abs(pole);
|
|
double a2 = poleMag * poleMag;
|
|
setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
|
|
}
|
|
|
|
void Biquad::setAllpassPole(const Complex &pole)
|
|
{
|
|
Complex zero = Complex(1, 0) / pole;
|
|
setZeroPolePairs(zero, pole);
|
|
}
|
|
|
|
void Biquad::getFrequencyResponse(int nFrequencies,
|
|
const float* frequency,
|
|
float* magResponse,
|
|
float* phaseResponse)
|
|
{
|
|
// Evaluate the Z-transform of the filter at given normalized
|
|
// frequency from 0 to 1. (1 corresponds to the Nyquist
|
|
// frequency.)
|
|
//
|
|
// The z-transform of the filter is
|
|
//
|
|
// H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2))
|
|
//
|
|
// Evaluate as
|
|
//
|
|
// b0 + (b1 + b2*z1)*z1
|
|
// --------------------
|
|
// 1 + (a1 + a2*z1)*z1
|
|
//
|
|
// with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency)
|
|
|
|
// Make local copies of the coefficients as a micro-optimization.
|
|
double b0 = m_b0;
|
|
double b1 = m_b1;
|
|
double b2 = m_b2;
|
|
double a1 = m_a1;
|
|
double a2 = m_a2;
|
|
|
|
for (int k = 0; k < nFrequencies; ++k) {
|
|
double omega = -M_PI * frequency[k];
|
|
Complex z = Complex(cos(omega), sin(omega));
|
|
Complex numerator = b0 + (b1 + b2 * z) * z;
|
|
Complex denominator = Complex(1, 0) + (a1 + a2 * z) * z;
|
|
Complex response = numerator / denominator;
|
|
magResponse[k] = static_cast<float>(abs(response));
|
|
phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response)));
|
|
}
|
|
}
|
|
|
|
} // namespace WebCore
|
|
|