mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
827 lines
20 KiB
C++
827 lines
20 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsTimerImpl.h"
|
|
#include "TimerThread.h"
|
|
#include "nsAutoPtr.h"
|
|
#include "nsThreadManager.h"
|
|
#include "nsThreadUtils.h"
|
|
#include "plarena.h"
|
|
#include "pratom.h"
|
|
#include "GeckoProfiler.h"
|
|
#include "mozilla/Atomics.h"
|
|
|
|
using mozilla::Atomic;
|
|
using mozilla::TimeDuration;
|
|
using mozilla::TimeStamp;
|
|
|
|
static Atomic<int32_t> gGenerator;
|
|
static TimerThread* gThread = nullptr;
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
|
|
PRLogModuleInfo*
|
|
GetTimerLog()
|
|
{
|
|
static PRLogModuleInfo* sLog;
|
|
if (!sLog) {
|
|
sLog = PR_NewLogModule("nsTimerImpl");
|
|
}
|
|
return sLog;
|
|
}
|
|
|
|
#include <math.h>
|
|
|
|
double nsTimerImpl::sDeltaSumSquared = 0;
|
|
double nsTimerImpl::sDeltaSum = 0;
|
|
double nsTimerImpl::sDeltaNum = 0;
|
|
|
|
static void
|
|
myNS_MeanAndStdDev(double n, double sumOfValues, double sumOfSquaredValues,
|
|
double* meanResult, double* stdDevResult)
|
|
{
|
|
double mean = 0.0, var = 0.0, stdDev = 0.0;
|
|
if (n > 0.0 && sumOfValues >= 0) {
|
|
mean = sumOfValues / n;
|
|
double temp = (n * sumOfSquaredValues) - (sumOfValues * sumOfValues);
|
|
if (temp < 0.0 || n <= 1) {
|
|
var = 0.0;
|
|
} else {
|
|
var = temp / (n * (n - 1));
|
|
}
|
|
// for some reason, Windows says sqrt(0.0) is "-1.#J" (?!) so do this:
|
|
stdDev = var != 0.0 ? sqrt(var) : 0.0;
|
|
}
|
|
*meanResult = mean;
|
|
*stdDevResult = stdDev;
|
|
}
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
|
|
// It's needed to avoid contention over the default allocator lock when
|
|
// firing timer events (see bug 733277). The thread-safety is required because
|
|
// nsTimerEvent objects are allocated on the timer thread, and freed on another
|
|
// thread. Because TimerEventAllocator has its own lock, contention over that
|
|
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
|
|
//
|
|
// Because this allocator is layered over PLArenaPool, it never shrinks -- even
|
|
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
|
|
// for later recycling. So the amount of memory consumed will always be equal
|
|
// to the high-water mark consumption. But nsTimerEvents are small and it's
|
|
// unusual to have more than a few hundred of them, so this shouldn't be a
|
|
// problem in practice.
|
|
|
|
class TimerEventAllocator
|
|
{
|
|
private:
|
|
struct FreeEntry
|
|
{
|
|
FreeEntry* mNext;
|
|
};
|
|
|
|
PLArenaPool mPool;
|
|
FreeEntry* mFirstFree;
|
|
mozilla::Monitor mMonitor;
|
|
|
|
public:
|
|
TimerEventAllocator()
|
|
: mFirstFree(nullptr)
|
|
, mMonitor("TimerEventAllocator")
|
|
{
|
|
PL_InitArenaPool(&mPool, "TimerEventPool", 4096, /* align = */ 0);
|
|
}
|
|
|
|
~TimerEventAllocator()
|
|
{
|
|
PL_FinishArenaPool(&mPool);
|
|
}
|
|
|
|
void* Alloc(size_t aSize);
|
|
void Free(void* aPtr);
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
class nsTimerEvent : public nsRunnable
|
|
{
|
|
public:
|
|
NS_IMETHOD Run();
|
|
|
|
nsTimerEvent()
|
|
: mTimer()
|
|
, mGeneration(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsTimerEvent);
|
|
|
|
MOZ_ASSERT(gThread->IsOnTimerThread(),
|
|
"nsTimer must always be allocated on the timer thread");
|
|
|
|
sAllocatorUsers++;
|
|
}
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
TimeStamp mInitTime;
|
|
#endif
|
|
|
|
static void Init();
|
|
static void Shutdown();
|
|
static void DeleteAllocatorIfNeeded();
|
|
|
|
static void* operator new(size_t aSize) CPP_THROW_NEW
|
|
{
|
|
return sAllocator->Alloc(aSize);
|
|
}
|
|
void operator delete(void* aPtr)
|
|
{
|
|
sAllocator->Free(aPtr);
|
|
DeleteAllocatorIfNeeded();
|
|
}
|
|
|
|
already_AddRefed<nsTimerImpl> ForgetTimer()
|
|
{
|
|
return mTimer.forget();
|
|
}
|
|
|
|
void SetTimer(already_AddRefed<nsTimerImpl> aTimer)
|
|
{
|
|
mTimer = aTimer;
|
|
mGeneration = mTimer->GetGeneration();
|
|
}
|
|
|
|
private:
|
|
~nsTimerEvent()
|
|
{
|
|
MOZ_COUNT_DTOR(nsTimerEvent);
|
|
|
|
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
|
|
"This will result in us attempting to deallocate the nsTimerEvent allocator twice");
|
|
sAllocatorUsers--;
|
|
}
|
|
|
|
nsRefPtr<nsTimerImpl> mTimer;
|
|
int32_t mGeneration;
|
|
|
|
static TimerEventAllocator* sAllocator;
|
|
static Atomic<int32_t> sAllocatorUsers;
|
|
static bool sCanDeleteAllocator;
|
|
};
|
|
|
|
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
|
|
Atomic<int32_t> nsTimerEvent::sAllocatorUsers;
|
|
bool nsTimerEvent::sCanDeleteAllocator = false;
|
|
|
|
namespace {
|
|
|
|
void*
|
|
TimerEventAllocator::Alloc(size_t aSize)
|
|
{
|
|
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
|
|
|
|
mozilla::MonitorAutoLock lock(mMonitor);
|
|
|
|
void* p;
|
|
if (mFirstFree) {
|
|
p = mFirstFree;
|
|
mFirstFree = mFirstFree->mNext;
|
|
} else {
|
|
PL_ARENA_ALLOCATE(p, &mPool, aSize);
|
|
if (!p) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void
|
|
TimerEventAllocator::Free(void* aPtr)
|
|
{
|
|
mozilla::MonitorAutoLock lock(mMonitor);
|
|
|
|
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
|
|
|
|
entry->mNext = mFirstFree;
|
|
mFirstFree = entry;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
NS_IMPL_QUERY_INTERFACE(nsTimerImpl, nsITimer)
|
|
NS_IMPL_ADDREF(nsTimerImpl)
|
|
|
|
NS_IMETHODIMP_(MozExternalRefCountType)
|
|
nsTimerImpl::Release(void)
|
|
{
|
|
nsrefcnt count;
|
|
|
|
MOZ_ASSERT(int32_t(mRefCnt) > 0, "dup release");
|
|
count = --mRefCnt;
|
|
NS_LOG_RELEASE(this, count, "nsTimerImpl");
|
|
if (count == 0) {
|
|
mRefCnt = 1; /* stabilize */
|
|
|
|
/* enable this to find non-threadsafe destructors: */
|
|
/* NS_ASSERT_OWNINGTHREAD(nsTimerImpl); */
|
|
delete this;
|
|
return 0;
|
|
}
|
|
|
|
// If only one reference remains, and mArmed is set, then the ref must be
|
|
// from the TimerThread::mTimers array, so we Cancel this timer to remove
|
|
// the mTimers element, and return 0 if Cancel in fact disarmed the timer.
|
|
//
|
|
// We use an inlined version of nsTimerImpl::Cancel here to check for the
|
|
// NS_ERROR_NOT_AVAILABLE code returned by gThread->RemoveTimer when this
|
|
// timer is not found in the mTimers array -- i.e., when the timer was not
|
|
// in fact armed once we acquired TimerThread::mLock, in spite of mArmed
|
|
// being true here. That can happen if the armed timer is being fired by
|
|
// TimerThread::Run as we race and test mArmed just before it is cleared by
|
|
// the timer thread. If the RemoveTimer call below doesn't find this timer
|
|
// in the mTimers array, then the last ref to this timer is held manually
|
|
// and temporarily by the TimerThread, so we should fall through to the
|
|
// final return and return 1, not 0.
|
|
//
|
|
// The original version of this thread-based timer code kept weak refs from
|
|
// TimerThread::mTimers, removing this timer's weak ref in the destructor,
|
|
// but that leads to double-destructions in the race described above, and
|
|
// adding mArmed doesn't help, because destructors can't be deferred, once
|
|
// begun. But by combining reference-counting and a specialized Release
|
|
// method with "is this timer still in the mTimers array once we acquire
|
|
// the TimerThread's lock" testing, we defer destruction until we're sure
|
|
// that only one thread has its hot little hands on this timer.
|
|
//
|
|
// Note that both approaches preclude a timer creator, and everyone else
|
|
// except the TimerThread who might have a strong ref, from dropping all
|
|
// their strong refs without implicitly canceling the timer. Timers need
|
|
// non-mTimers-element strong refs to stay alive.
|
|
|
|
if (count == 1 && mArmed) {
|
|
mCanceled = true;
|
|
|
|
MOZ_ASSERT(gThread, "Armed timer exists after the thread timer stopped.");
|
|
if (NS_SUCCEEDED(gThread->RemoveTimer(this))) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
nsTimerImpl::nsTimerImpl() :
|
|
mClosure(nullptr),
|
|
mCallbackType(CALLBACK_TYPE_UNKNOWN),
|
|
mFiring(false),
|
|
mArmed(false),
|
|
mCanceled(false),
|
|
mGeneration(0),
|
|
mDelay(0)
|
|
{
|
|
// XXXbsmedberg: shouldn't this be in Init()?
|
|
mEventTarget = static_cast<nsIEventTarget*>(NS_GetCurrentThread());
|
|
|
|
mCallback.c = nullptr;
|
|
}
|
|
|
|
nsTimerImpl::~nsTimerImpl()
|
|
{
|
|
ReleaseCallback();
|
|
}
|
|
|
|
//static
|
|
nsresult
|
|
nsTimerImpl::Startup()
|
|
{
|
|
nsresult rv;
|
|
|
|
nsTimerEvent::Init();
|
|
|
|
gThread = new TimerThread();
|
|
if (!gThread) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
NS_ADDREF(gThread);
|
|
rv = gThread->InitLocks();
|
|
|
|
if (NS_FAILED(rv)) {
|
|
NS_RELEASE(gThread);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
void
|
|
nsTimerImpl::Shutdown()
|
|
{
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
|
|
double mean = 0, stddev = 0;
|
|
myNS_MeanAndStdDev(sDeltaNum, sDeltaSum, sDeltaSumSquared, &mean, &stddev);
|
|
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("sDeltaNum = %f, sDeltaSum = %f, sDeltaSumSquared = %f\n",
|
|
sDeltaNum, sDeltaSum, sDeltaSumSquared));
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("mean: %fms, stddev: %fms\n", mean, stddev));
|
|
}
|
|
#endif
|
|
|
|
if (!gThread) {
|
|
return;
|
|
}
|
|
|
|
gThread->Shutdown();
|
|
NS_RELEASE(gThread);
|
|
|
|
nsTimerEvent::Shutdown();
|
|
}
|
|
|
|
|
|
nsresult
|
|
nsTimerImpl::InitCommon(uint32_t aType, uint32_t aDelay)
|
|
{
|
|
nsresult rv;
|
|
|
|
if (NS_WARN_IF(!gThread)) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
if (!mEventTarget) {
|
|
NS_ERROR("mEventTarget is NULL");
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
rv = gThread->Init();
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
return rv;
|
|
}
|
|
|
|
/**
|
|
* In case of re-Init, both with and without a preceding Cancel, clear the
|
|
* mCanceled flag and assign a new mGeneration. But first, remove any armed
|
|
* timer from the timer thread's list.
|
|
*
|
|
* If we are racing with the timer thread to remove this timer and we lose,
|
|
* the RemoveTimer call made here will fail to find this timer in the timer
|
|
* thread's list, and will return false harmlessly. We test mArmed here to
|
|
* avoid the small overhead in RemoveTimer of locking the timer thread and
|
|
* checking its list for this timer. It's safe to test mArmed even though
|
|
* it might be cleared on another thread in the next cycle (or even already
|
|
* be cleared by another CPU whose store hasn't reached our CPU's cache),
|
|
* because RemoveTimer is idempotent.
|
|
*/
|
|
if (mArmed) {
|
|
gThread->RemoveTimer(this);
|
|
}
|
|
mCanceled = false;
|
|
mTimeout = TimeStamp();
|
|
mGeneration = gGenerator++;
|
|
|
|
mType = (uint8_t)aType;
|
|
SetDelayInternal(aDelay);
|
|
|
|
return gThread->AddTimer(this);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::InitWithFuncCallback(nsTimerCallbackFunc aFunc,
|
|
void* aClosure,
|
|
uint32_t aDelay,
|
|
uint32_t aType)
|
|
{
|
|
if (NS_WARN_IF(!aFunc)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
|
|
ReleaseCallback();
|
|
mCallbackType = CALLBACK_TYPE_FUNC;
|
|
mCallback.c = aFunc;
|
|
mClosure = aClosure;
|
|
|
|
return InitCommon(aType, aDelay);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::InitWithCallback(nsITimerCallback* aCallback,
|
|
uint32_t aDelay,
|
|
uint32_t aType)
|
|
{
|
|
if (NS_WARN_IF(!aCallback)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
|
|
ReleaseCallback();
|
|
mCallbackType = CALLBACK_TYPE_INTERFACE;
|
|
mCallback.i = aCallback;
|
|
NS_ADDREF(mCallback.i);
|
|
|
|
return InitCommon(aType, aDelay);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::Init(nsIObserver* aObserver, uint32_t aDelay, uint32_t aType)
|
|
{
|
|
if (NS_WARN_IF(!aObserver)) {
|
|
return NS_ERROR_INVALID_ARG;
|
|
}
|
|
|
|
ReleaseCallback();
|
|
mCallbackType = CALLBACK_TYPE_OBSERVER;
|
|
mCallback.o = aObserver;
|
|
NS_ADDREF(mCallback.o);
|
|
|
|
return InitCommon(aType, aDelay);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::Cancel()
|
|
{
|
|
mCanceled = true;
|
|
|
|
if (gThread) {
|
|
gThread->RemoveTimer(this);
|
|
}
|
|
|
|
ReleaseCallback();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::SetDelay(uint32_t aDelay)
|
|
{
|
|
if (mCallbackType == CALLBACK_TYPE_UNKNOWN && mType == TYPE_ONE_SHOT) {
|
|
// This may happen if someone tries to re-use a one-shot timer
|
|
// by re-setting delay instead of reinitializing the timer.
|
|
NS_ERROR("nsITimer->SetDelay() called when the "
|
|
"one-shot timer is not set up.");
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
// If we're already repeating precisely, update mTimeout now so that the
|
|
// new delay takes effect in the future.
|
|
if (!mTimeout.IsNull() && mType == TYPE_REPEATING_PRECISE) {
|
|
mTimeout = TimeStamp::Now();
|
|
}
|
|
|
|
SetDelayInternal(aDelay);
|
|
|
|
if (!mFiring && gThread) {
|
|
gThread->TimerDelayChanged(this);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::GetDelay(uint32_t* aDelay)
|
|
{
|
|
*aDelay = mDelay;
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::SetType(uint32_t aType)
|
|
{
|
|
mType = (uint8_t)aType;
|
|
// XXX if this is called, we should change the actual type.. this could effect
|
|
// repeating timers. we need to ensure in Fire() that if mType has changed
|
|
// during the callback that we don't end up with the timer in the queue twice.
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::GetType(uint32_t* aType)
|
|
{
|
|
*aType = mType;
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::GetClosure(void** aClosure)
|
|
{
|
|
*aClosure = mClosure;
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::GetCallback(nsITimerCallback** aCallback)
|
|
{
|
|
if (mCallbackType == CALLBACK_TYPE_INTERFACE) {
|
|
NS_IF_ADDREF(*aCallback = mCallback.i);
|
|
} else if (mTimerCallbackWhileFiring) {
|
|
NS_ADDREF(*aCallback = mTimerCallbackWhileFiring);
|
|
} else {
|
|
*aCallback = nullptr;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::GetTarget(nsIEventTarget** aTarget)
|
|
{
|
|
NS_IF_ADDREF(*aTarget = mEventTarget);
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerImpl::SetTarget(nsIEventTarget* aTarget)
|
|
{
|
|
if (NS_WARN_IF(mCallbackType != CALLBACK_TYPE_UNKNOWN)) {
|
|
return NS_ERROR_ALREADY_INITIALIZED;
|
|
}
|
|
|
|
if (aTarget) {
|
|
mEventTarget = aTarget;
|
|
} else {
|
|
mEventTarget = static_cast<nsIEventTarget*>(NS_GetCurrentThread());
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
|
|
void
|
|
nsTimerImpl::Fire()
|
|
{
|
|
if (mCanceled) {
|
|
return;
|
|
}
|
|
|
|
PROFILER_LABEL("Timer", "Fire",
|
|
js::ProfileEntry::Category::OTHER);
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
mozilla::tasktracer::AutoRunFakeTracedTask runTracedTask(mTracedTask);
|
|
#endif
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
TimeStamp now = TimeStamp::Now();
|
|
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
|
|
TimeDuration a = now - mStart; // actual delay in intervals
|
|
TimeDuration b = TimeDuration::FromMilliseconds(mDelay); // expected delay in intervals
|
|
TimeDuration delta = (a > b) ? a - b : b - a;
|
|
uint32_t d = delta.ToMilliseconds(); // delta in ms
|
|
sDeltaSum += d;
|
|
sDeltaSumSquared += double(d) * double(d);
|
|
sDeltaNum++;
|
|
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("[this=%p] expected delay time %4ums\n", this, mDelay));
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("[this=%p] actual delay time %fms\n", this,
|
|
a.ToMilliseconds()));
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("[this=%p] (mType is %d) -------\n", this, mType));
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("[this=%p] delta %4dms\n",
|
|
this, (a > b) ? (int32_t)d : -(int32_t)d));
|
|
|
|
mStart = mStart2;
|
|
mStart2 = TimeStamp();
|
|
}
|
|
#endif
|
|
|
|
TimeStamp timeout = mTimeout;
|
|
if (IsRepeatingPrecisely()) {
|
|
// Precise repeating timers advance mTimeout by mDelay without fail before
|
|
// calling Fire().
|
|
timeout -= TimeDuration::FromMilliseconds(mDelay);
|
|
}
|
|
|
|
if (mCallbackType == CALLBACK_TYPE_INTERFACE) {
|
|
mTimerCallbackWhileFiring = mCallback.i;
|
|
}
|
|
mFiring = true;
|
|
|
|
// Handle callbacks that re-init the timer, but avoid leaking.
|
|
// See bug 330128.
|
|
CallbackUnion callback = mCallback;
|
|
unsigned callbackType = mCallbackType;
|
|
if (callbackType == CALLBACK_TYPE_INTERFACE) {
|
|
NS_ADDREF(callback.i);
|
|
} else if (callbackType == CALLBACK_TYPE_OBSERVER) {
|
|
NS_ADDREF(callback.o);
|
|
}
|
|
ReleaseCallback();
|
|
|
|
switch (callbackType) {
|
|
case CALLBACK_TYPE_FUNC:
|
|
callback.c(this, mClosure);
|
|
break;
|
|
case CALLBACK_TYPE_INTERFACE:
|
|
callback.i->Notify(this);
|
|
break;
|
|
case CALLBACK_TYPE_OBSERVER:
|
|
callback.o->Observe(static_cast<nsITimer*>(this),
|
|
NS_TIMER_CALLBACK_TOPIC,
|
|
nullptr);
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
|
|
// If the callback didn't re-init the timer, and it's not a one-shot timer,
|
|
// restore the callback state.
|
|
if (mCallbackType == CALLBACK_TYPE_UNKNOWN &&
|
|
mType != TYPE_ONE_SHOT && !mCanceled) {
|
|
mCallback = callback;
|
|
mCallbackType = callbackType;
|
|
} else {
|
|
// The timer was a one-shot, or the callback was reinitialized.
|
|
if (callbackType == CALLBACK_TYPE_INTERFACE) {
|
|
NS_RELEASE(callback.i);
|
|
} else if (callbackType == CALLBACK_TYPE_OBSERVER) {
|
|
NS_RELEASE(callback.o);
|
|
}
|
|
}
|
|
|
|
mFiring = false;
|
|
mTimerCallbackWhileFiring = nullptr;
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("[this=%p] Took %fms to fire timer callback\n",
|
|
this, (TimeStamp::Now() - now).ToMilliseconds()));
|
|
}
|
|
#endif
|
|
|
|
// Reschedule repeating timers, except REPEATING_PRECISE which already did
|
|
// that in PostTimerEvent, but make sure that we aren't armed already (which
|
|
// can happen if the callback reinitialized the timer).
|
|
if (IsRepeating() && mType != TYPE_REPEATING_PRECISE && !mArmed) {
|
|
if (mType == TYPE_REPEATING_SLACK) {
|
|
SetDelayInternal(mDelay); // force mTimeout to be recomputed. For
|
|
}
|
|
// REPEATING_PRECISE_CAN_SKIP timers this has
|
|
// already happened.
|
|
if (gThread) {
|
|
gThread->AddTimer(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
nsTimerEvent::Init()
|
|
{
|
|
sAllocator = new TimerEventAllocator();
|
|
}
|
|
|
|
void
|
|
nsTimerEvent::Shutdown()
|
|
{
|
|
sCanDeleteAllocator = true;
|
|
DeleteAllocatorIfNeeded();
|
|
}
|
|
|
|
void
|
|
nsTimerEvent::DeleteAllocatorIfNeeded()
|
|
{
|
|
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
|
|
delete sAllocator;
|
|
sAllocator = nullptr;
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerEvent::Run()
|
|
{
|
|
if (mGeneration != mTimer->GetGeneration()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
PR_LOG(GetTimerLog(), PR_LOG_DEBUG,
|
|
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n",
|
|
this, (now - mInitTime).ToMilliseconds()));
|
|
}
|
|
#endif
|
|
|
|
mTimer->Fire();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
already_AddRefed<nsTimerImpl>
|
|
nsTimerImpl::PostTimerEvent(already_AddRefed<nsTimerImpl> aTimerRef)
|
|
{
|
|
nsRefPtr<nsTimerImpl> timer(aTimerRef);
|
|
if (!timer->mEventTarget) {
|
|
NS_ERROR("Attempt to post timer event to NULL event target");
|
|
return timer.forget();
|
|
}
|
|
|
|
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
|
|
|
|
// Since TimerThread addref'd 'timer' for us, we don't need to addref here.
|
|
// We will release either in ~nsTimerEvent(), or pass the reference back to
|
|
// the caller. We need to copy the generation number from this timer into the
|
|
// event, so we can avoid firing a timer that was re-initialized after being
|
|
// canceled.
|
|
|
|
// Note: We override operator new for this class, and the override is
|
|
// fallible!
|
|
nsRefPtr<nsTimerEvent> event = new nsTimerEvent;
|
|
if (!event) {
|
|
return timer.forget();
|
|
}
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
|
|
event->mInitTime = TimeStamp::Now();
|
|
}
|
|
#endif
|
|
|
|
// If this is a repeating precise timer, we need to calculate the time for
|
|
// the next timer to fire before we make the callback.
|
|
if (timer->IsRepeatingPrecisely()) {
|
|
timer->SetDelayInternal(timer->mDelay);
|
|
|
|
// But only re-arm REPEATING_PRECISE timers.
|
|
if (gThread && timer->mType == TYPE_REPEATING_PRECISE) {
|
|
nsresult rv = gThread->AddTimer(timer);
|
|
if (NS_FAILED(rv)) {
|
|
return timer.forget();
|
|
}
|
|
}
|
|
}
|
|
|
|
nsIEventTarget* target = timer->mEventTarget;
|
|
event->SetTimer(timer.forget());
|
|
|
|
nsresult rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
|
|
if (NS_FAILED(rv)) {
|
|
timer = event->ForgetTimer();
|
|
if (gThread) {
|
|
gThread->RemoveTimer(timer);
|
|
}
|
|
return timer.forget();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void
|
|
nsTimerImpl::SetDelayInternal(uint32_t aDelay)
|
|
{
|
|
TimeDuration delayInterval = TimeDuration::FromMilliseconds(aDelay);
|
|
|
|
mDelay = aDelay;
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
if (mTimeout.IsNull() || mType != TYPE_REPEATING_PRECISE) {
|
|
mTimeout = now;
|
|
}
|
|
|
|
mTimeout += delayInterval;
|
|
|
|
#ifdef DEBUG_TIMERS
|
|
if (PR_LOG_TEST(GetTimerLog(), PR_LOG_DEBUG)) {
|
|
if (mStart.IsNull()) {
|
|
mStart = now;
|
|
} else {
|
|
mStart2 = now;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
size_t
|
|
nsTimerImpl::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const
|
|
{
|
|
return aMallocSizeOf(this);
|
|
}
|
|
|
|
// NOT FOR PUBLIC CONSUMPTION!
|
|
nsresult
|
|
NS_NewTimer(nsITimer** aResult, nsTimerCallbackFunc aCallback, void* aClosure,
|
|
uint32_t aDelay, uint32_t aType)
|
|
{
|
|
nsTimerImpl* timer = new nsTimerImpl();
|
|
if (!timer) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
NS_ADDREF(timer);
|
|
|
|
nsresult rv = timer->InitWithFuncCallback(aCallback, aClosure,
|
|
aDelay, aType);
|
|
if (NS_FAILED(rv)) {
|
|
NS_RELEASE(timer);
|
|
return rv;
|
|
}
|
|
|
|
*aResult = timer;
|
|
return NS_OK;
|
|
}
|