gecko/js/src/jsparse.cpp

9118 lines
295 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=99:
*
* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla Communicator client code, released
* March 31, 1998.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either of the GNU General Public License Version 2 or later (the "GPL"),
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* JS parser.
*
* This is a recursive-descent parser for the JavaScript language specified by
* "The JavaScript 1.5 Language Specification". It uses lexical and semantic
* feedback to disambiguate non-LL(1) structures. It generates trees of nodes
* induced by the recursive parsing (not precise syntax trees, see jsparse.h).
* After tree construction, it rewrites trees to fold constants and evaluate
* compile-time expressions. Finally, it calls js_EmitTree (see jsemit.h) to
* generate bytecode.
*
* This parser attempts no error recovery.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "jstypes.h"
#include "jsstdint.h"
#include "jsarena.h" /* Added by JSIFY */
#include "jsutil.h" /* Added by JSIFY */
#include "jsapi.h"
#include "jsarray.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jsversion.h"
#include "jsemit.h"
#include "jsfun.h"
#include "jsinterp.h"
#include "jsiter.h"
#include "jslock.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jsopcode.h"
#include "jsparse.h"
#include "jsscan.h"
#include "jsscope.h"
#include "jsscript.h"
#include "jsstr.h"
#include "jsstaticcheck.h"
#include "jslibmath.h"
#include "jsvector.h"
#if JS_HAS_XML_SUPPORT
#include "jsxml.h"
#endif
#if JS_HAS_DESTRUCTURING
#include "jsdhash.h"
#endif
/*
* Asserts to verify assumptions behind pn_ macros.
*/
#define pn_offsetof(m) offsetof(JSParseNode, m)
JS_STATIC_ASSERT(pn_offsetof(pn_link) == pn_offsetof(dn_uses));
JS_STATIC_ASSERT(pn_offsetof(pn_u.name.atom) == pn_offsetof(pn_u.apair.atom));
#undef pn_offsetof
/*
* JS parsers, from lowest to highest precedence.
*
* Each parser takes a context, a token stream, and a tree context struct.
* Each returns a parse node tree or null on error.
*/
typedef JSParseNode *
JSParser(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc);
typedef JSParseNode *
JSVariablesParser(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
bool inLetHead);
typedef JSParseNode *
JSMemberParser(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSBool allowCallSyntax);
typedef JSParseNode *
JSPrimaryParser(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSTokenType tt, JSBool afterDot);
typedef JSParseNode *
JSParenParser(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSParseNode *pn1, JSBool *genexp);
static JSParser FunctionStmt;
static JSParser FunctionExpr;
static JSParser Statements;
static JSParser Statement;
static JSVariablesParser Variables;
static JSParser Expr;
static JSParser AssignExpr;
static JSParser CondExpr;
static JSParser OrExpr;
static JSParser AndExpr;
static JSParser BitOrExpr;
static JSParser BitXorExpr;
static JSParser BitAndExpr;
static JSParser EqExpr;
static JSParser RelExpr;
static JSParser ShiftExpr;
static JSParser AddExpr;
static JSParser MulExpr;
static JSParser UnaryExpr;
static JSMemberParser MemberExpr;
static JSPrimaryParser PrimaryExpr;
static JSParenParser ParenExpr;
/*
* Insist that the next token be of type tt, or report errno and return null.
* NB: this macro uses cx and ts from its lexical environment.
*/
#define MUST_MATCH_TOKEN(tt, errno) \
JS_BEGIN_MACRO \
if (js_GetToken(cx, ts) != tt) { \
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR, errno); \
return NULL; \
} \
JS_END_MACRO
#ifdef METER_PARSENODES
static uint32 parsenodes = 0;
static uint32 maxparsenodes = 0;
static uint32 recyclednodes = 0;
#endif
void
JSParseNode::become(JSParseNode *pn2)
{
JS_ASSERT(!pn_defn);
JS_ASSERT(!pn2->pn_defn);
JS_ASSERT(!pn_used);
if (pn2->pn_used) {
JSParseNode **pnup = &pn2->pn_lexdef->dn_uses;
while (*pnup != pn2)
pnup = &(*pnup)->pn_link;
*pnup = this;
pn_link = pn2->pn_link;
pn_used = true;
pn2->pn_link = NULL;
pn2->pn_used = false;
}
/* If this is a function node fix up the pn_funbox->node back-pointer. */
if (PN_TYPE(pn2) == TOK_FUNCTION && pn2->pn_arity == PN_FUNC)
pn2->pn_funbox->node = this;
pn_type = pn2->pn_type;
pn_op = pn2->pn_op;
pn_arity = pn2->pn_arity;
pn_parens = pn2->pn_parens;
pn_u = pn2->pn_u;
pn2->clear();
}
void
JSParseNode::clear()
{
pn_type = TOK_EOF;
pn_op = JSOP_NOP;
pn_used = pn_defn = false;
pn_arity = PN_NULLARY;
pn_parens = false;
}
bool
JSCompiler::init(const jschar *base, size_t length,
FILE *fp, const char *filename, uintN lineno)
{
JSContext *cx = context;
tempPoolMark = JS_ARENA_MARK(&cx->tempPool);
if (!tokenStream.init(cx, base, length, fp, filename, lineno)) {
JS_ARENA_RELEASE(&cx->tempPool, tempPoolMark);
return false;
}
/* Root atoms and objects allocated for the parsed tree. */
JS_KEEP_ATOMS(cx->runtime);
JS_PUSH_TEMP_ROOT_COMPILER(cx, this, &tempRoot);
return true;
}
JSCompiler::~JSCompiler()
{
JSContext *cx = context;
if (principals)
JSPRINCIPALS_DROP(cx, principals);
JS_ASSERT(tempRoot.u.compiler == this);
JS_POP_TEMP_ROOT(cx, &tempRoot);
JS_UNKEEP_ATOMS(cx->runtime);
tokenStream.close(cx);
JS_ARENA_RELEASE(&cx->tempPool, tempPoolMark);
}
void
JSCompiler::setPrincipals(JSPrincipals *prin)
{
JS_ASSERT(!principals);
if (prin)
JSPRINCIPALS_HOLD(context, prin);
principals = prin;
}
JSObjectBox *
JSCompiler::newObjectBox(JSObject *obj)
{
JS_ASSERT(obj);
/*
* We use JSContext.tempPool to allocate parsed objects and place them on
* a list in JSTokenStream to ensure GC safety. Thus the tempPool arenas
* containing the entries must be alive until we are done with scanning,
* parsing and code generation for the whole script or top-level function.
*/
JSObjectBox *objbox;
JS_ARENA_ALLOCATE_TYPE(objbox, JSObjectBox, &context->tempPool);
if (!objbox) {
js_ReportOutOfScriptQuota(context);
return NULL;
}
objbox->traceLink = traceListHead;
traceListHead = objbox;
objbox->emitLink = NULL;
objbox->object = obj;
return objbox;
}
JSFunctionBox *
JSCompiler::newFunctionBox(JSObject *obj, JSParseNode *fn, JSTreeContext *tc)
{
JS_ASSERT(obj);
JS_ASSERT(HAS_FUNCTION_CLASS(obj));
/*
* We use JSContext.tempPool to allocate parsed objects and place them on
* a list in JSTokenStream to ensure GC safety. Thus the tempPool arenas
* containing the entries must be alive until we are done with scanning,
* parsing and code generation for the whole script or top-level function.
*/
JSFunctionBox *funbox;
JS_ARENA_ALLOCATE_TYPE(funbox, JSFunctionBox, &context->tempPool);
if (!funbox) {
js_ReportOutOfScriptQuota(context);
return NULL;
}
funbox->traceLink = traceListHead;
traceListHead = funbox;
funbox->emitLink = NULL;
funbox->object = obj;
funbox->node = fn;
funbox->siblings = tc->functionList;
tc->functionList = funbox;
++tc->compiler->functionCount;
funbox->kids = NULL;
funbox->parent = tc->funbox;
funbox->queued = false;
funbox->inLoop = false;
for (JSStmtInfo *stmt = tc->topStmt; stmt; stmt = stmt->down) {
if (STMT_IS_LOOP(stmt)) {
funbox->inLoop = true;
break;
}
}
funbox->level = tc->staticLevel;
funbox->tcflags = TCF_IN_FUNCTION | (tc->flags & TCF_COMPILE_N_GO);
return funbox;
}
void
JSCompiler::trace(JSTracer *trc)
{
JSObjectBox *objbox;
JS_ASSERT(tempRoot.u.compiler == this);
objbox = traceListHead;
while (objbox) {
JS_CALL_OBJECT_TRACER(trc, objbox->object, "parser.object");
objbox = objbox->traceLink;
}
}
static void
UnlinkFunctionBoxes(JSParseNode *pn, JSTreeContext *tc);
static void
UnlinkFunctionBox(JSParseNode *pn, JSTreeContext *tc)
{
JSFunctionBox *funbox = pn->pn_funbox;
if (funbox) {
JS_ASSERT(funbox->node == pn);
funbox->node = NULL;
JSFunctionBox **funboxp = &tc->functionList;
while (*funboxp) {
if (*funboxp == funbox) {
*funboxp = funbox->siblings;
break;
}
funboxp = &(*funboxp)->siblings;
}
uint16 oldflags = tc->flags;
JSFunctionBox *oldlist = tc->functionList;
tc->flags = (uint16) funbox->tcflags;
tc->functionList = funbox->kids;
UnlinkFunctionBoxes(pn->pn_body, tc);
funbox->kids = tc->functionList;
tc->flags = oldflags;
tc->functionList = oldlist;
// FIXME: use a funbox freelist (consolidate aleFreeList and nodeList).
pn->pn_funbox = NULL;
}
}
static void
UnlinkFunctionBoxes(JSParseNode *pn, JSTreeContext *tc)
{
if (pn) {
switch (pn->pn_arity) {
case PN_NULLARY:
return;
case PN_UNARY:
UnlinkFunctionBoxes(pn->pn_kid, tc);
return;
case PN_BINARY:
UnlinkFunctionBoxes(pn->pn_left, tc);
UnlinkFunctionBoxes(pn->pn_right, tc);
return;
case PN_TERNARY:
UnlinkFunctionBoxes(pn->pn_kid1, tc);
UnlinkFunctionBoxes(pn->pn_kid2, tc);
UnlinkFunctionBoxes(pn->pn_kid3, tc);
return;
case PN_LIST:
for (JSParseNode *pn2 = pn->pn_head; pn2; pn2 = pn2->pn_next)
UnlinkFunctionBoxes(pn2, tc);
return;
case PN_FUNC:
UnlinkFunctionBox(pn, tc);
return;
case PN_NAME:
UnlinkFunctionBoxes(pn->maybeExpr(), tc);
return;
case PN_NAMESET:
UnlinkFunctionBoxes(pn->pn_tree, tc);
}
}
}
static void
RecycleFuncNameKids(JSParseNode *pn, JSTreeContext *tc);
static JSParseNode *
RecycleTree(JSParseNode *pn, JSTreeContext *tc)
{
JSParseNode *next, **head;
if (!pn)
return NULL;
/* Catch back-to-back dup recycles. */
JS_ASSERT(pn != tc->compiler->nodeList);
next = pn->pn_next;
if (pn->pn_used || pn->pn_defn) {
/*
* JSAtomLists own definition nodes along with their used-node chains.
* Defer recycling such nodes until we unwind to top level to avoid
* linkage overhead or (alternatively) unlinking runtime complexity.
* Yes, this means dead code can contribute to static analysis results!
*
* Do recycle kids here, since they are no longer needed.
*/
pn->pn_next = NULL;
RecycleFuncNameKids(pn, tc);
} else {
UnlinkFunctionBoxes(pn, tc);
head = &tc->compiler->nodeList;
pn->pn_next = *head;
*head = pn;
#ifdef METER_PARSENODES
recyclednodes++;
#endif
}
return next;
}
static void
RecycleFuncNameKids(JSParseNode *pn, JSTreeContext *tc)
{
switch (pn->pn_arity) {
case PN_FUNC:
UnlinkFunctionBox(pn, tc);
/* FALL THROUGH */
case PN_NAME:
/*
* Only a definition node might have a non-null strong pn_expr link
* to recycle, but we test !pn_used to handle PN_FUNC fall through.
* Every node with the pn_used flag set has a non-null pn_lexdef
* weak reference to its definition node.
*/
if (!pn->pn_used && pn->pn_expr) {
RecycleTree(pn->pn_expr, tc);
pn->pn_expr = NULL;
}
break;
default:
JS_ASSERT(PN_TYPE(pn) == TOK_FUNCTION);
}
}
static JSParseNode *
NewOrRecycledNode(JSTreeContext *tc)
{
JSParseNode *pn, *pn2;
pn = tc->compiler->nodeList;
if (!pn) {
JSContext *cx = tc->compiler->context;
JS_ARENA_ALLOCATE_TYPE(pn, JSParseNode, &cx->tempPool);
if (!pn)
js_ReportOutOfScriptQuota(cx);
} else {
tc->compiler->nodeList = pn->pn_next;
/* Recycle immediate descendents only, to save work and working set. */
switch (pn->pn_arity) {
case PN_FUNC:
RecycleTree(pn->pn_body, tc);
break;
case PN_LIST:
pn2 = pn->pn_head;
if (pn2) {
while (pn2 && !pn2->pn_used && !pn2->pn_defn)
pn2 = pn2->pn_next;
if (pn2) {
pn2 = pn->pn_head;
do {
pn2 = RecycleTree(pn2, tc);
} while (pn2);
} else {
*pn->pn_tail = tc->compiler->nodeList;
tc->compiler->nodeList = pn->pn_head;
#ifdef METER_PARSENODES
recyclednodes += pn->pn_count;
#endif
break;
}
}
break;
case PN_TERNARY:
RecycleTree(pn->pn_kid1, tc);
RecycleTree(pn->pn_kid2, tc);
RecycleTree(pn->pn_kid3, tc);
break;
case PN_BINARY:
if (pn->pn_left != pn->pn_right)
RecycleTree(pn->pn_left, tc);
RecycleTree(pn->pn_right, tc);
break;
case PN_UNARY:
RecycleTree(pn->pn_kid, tc);
break;
case PN_NAME:
if (!pn->pn_used)
RecycleTree(pn->pn_expr, tc);
break;
case PN_NULLARY:
break;
}
}
if (pn) {
#ifdef METER_PARSENODES
parsenodes++;
if (parsenodes - recyclednodes > maxparsenodes)
maxparsenodes = parsenodes - recyclednodes;
#endif
pn->pn_used = pn->pn_defn = false;
memset(&pn->pn_u, 0, sizeof pn->pn_u);
pn->pn_next = NULL;
}
return pn;
}
static inline void
InitParseNode(JSParseNode *pn, JSTokenType type, JSOp op, JSParseNodeArity arity)
{
pn->pn_type = type;
pn->pn_op = op;
pn->pn_arity = arity;
pn->pn_parens = false;
JS_ASSERT(!pn->pn_used);
JS_ASSERT(!pn->pn_defn);
pn->pn_next = pn->pn_link = NULL;
}
/*
* Allocate a JSParseNode from tc's node freelist or, failing that, from cx's
* temporary arena.
*/
static JSParseNode *
NewParseNode(JSParseNodeArity arity, JSTreeContext *tc)
{
JSParseNode *pn;
JSToken *tp;
pn = NewOrRecycledNode(tc);
if (!pn)
return NULL;
tp = &CURRENT_TOKEN(&tc->compiler->tokenStream);
InitParseNode(pn, tp->type, JSOP_NOP, arity);
pn->pn_pos = tp->pos;
return pn;
}
static inline void
InitNameNodeCommon(JSParseNode *pn, JSTreeContext *tc)
{
pn->pn_expr = NULL;
pn->pn_cookie = FREE_UPVAR_COOKIE;
pn->pn_dflags = tc->atTopLevel() ? PND_TOPLEVEL : 0;
if (!tc->topStmt || tc->topStmt->type == STMT_BLOCK)
pn->pn_dflags |= PND_BLOCKCHILD;
pn->pn_blockid = tc->blockid();
}
static JSParseNode *
NewNameNode(JSContext *cx, JSTokenStream *ts, JSAtom *atom, JSTreeContext *tc)
{
JSParseNode *pn;
pn = NewParseNode(PN_NAME, tc);
if (pn) {
pn->pn_atom = atom;
InitNameNodeCommon(pn, tc);
}
return pn;
}
static JSParseNode *
NewBinary(JSTokenType tt, JSOp op, JSParseNode *left, JSParseNode *right,
JSTreeContext *tc)
{
JSParseNode *pn, *pn1, *pn2;
if (!left || !right)
return NULL;
/*
* Flatten a left-associative (left-heavy) tree of a given operator into
* a list, to reduce js_FoldConstants and js_EmitTree recursion.
*/
if (PN_TYPE(left) == tt &&
PN_OP(left) == op &&
(js_CodeSpec[op].format & JOF_LEFTASSOC)) {
if (left->pn_arity != PN_LIST) {
pn1 = left->pn_left, pn2 = left->pn_right;
left->pn_arity = PN_LIST;
left->pn_parens = false;
left->initList(pn1);
left->append(pn2);
if (tt == TOK_PLUS) {
if (pn1->pn_type == TOK_STRING)
left->pn_xflags |= PNX_STRCAT;
else if (pn1->pn_type != TOK_NUMBER)
left->pn_xflags |= PNX_CANTFOLD;
if (pn2->pn_type == TOK_STRING)
left->pn_xflags |= PNX_STRCAT;
else if (pn2->pn_type != TOK_NUMBER)
left->pn_xflags |= PNX_CANTFOLD;
}
}
left->append(right);
left->pn_pos.end = right->pn_pos.end;
if (tt == TOK_PLUS) {
if (right->pn_type == TOK_STRING)
left->pn_xflags |= PNX_STRCAT;
else if (right->pn_type != TOK_NUMBER)
left->pn_xflags |= PNX_CANTFOLD;
}
return left;
}
/*
* Fold constant addition immediately, to conserve node space and, what's
* more, so js_FoldConstants never sees mixed addition and concatenation
* operations with more than one leading non-string operand in a PN_LIST
* generated for expressions such as 1 + 2 + "pt" (which should evaluate
* to "3pt", not "12pt").
*/
if (tt == TOK_PLUS &&
left->pn_type == TOK_NUMBER &&
right->pn_type == TOK_NUMBER) {
left->pn_dval += right->pn_dval;
left->pn_pos.end = right->pn_pos.end;
RecycleTree(right, tc);
return left;
}
pn = NewOrRecycledNode(tc);
if (!pn)
return NULL;
InitParseNode(pn, tt, op, PN_BINARY);
pn->pn_pos.begin = left->pn_pos.begin;
pn->pn_pos.end = right->pn_pos.end;
pn->pn_left = left;
pn->pn_right = right;
return pn;
}
#if JS_HAS_GETTER_SETTER
static JSTokenType
CheckGetterOrSetter(JSContext *cx, JSTokenStream *ts, JSTokenType tt)
{
JSAtom *atom;
JSRuntime *rt;
JSOp op;
const char *name;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_NAME);
atom = CURRENT_TOKEN(ts).t_atom;
rt = cx->runtime;
if (atom == rt->atomState.getterAtom)
op = JSOP_GETTER;
else if (atom == rt->atomState.setterAtom)
op = JSOP_SETTER;
else
return TOK_NAME;
if (js_PeekTokenSameLine(cx, ts) != tt)
return TOK_NAME;
(void) js_GetToken(cx, ts);
if (CURRENT_TOKEN(ts).t_op != JSOP_NOP) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_GETTER_OR_SETTER,
(op == JSOP_GETTER)
? js_getter_str
: js_setter_str);
return TOK_ERROR;
}
CURRENT_TOKEN(ts).t_op = op;
if (JS_HAS_STRICT_OPTION(cx)) {
name = js_AtomToPrintableString(cx, atom);
if (!name ||
!js_ReportCompileErrorNumber(cx, ts, NULL,
JSREPORT_WARNING | JSREPORT_STRICT,
JSMSG_DEPRECATED_USAGE,
name)) {
return TOK_ERROR;
}
}
return tt;
}
#endif
static bool
GenerateBlockId(JSTreeContext *tc, uint32& blockid)
{
if (tc->blockidGen == JS_BIT(20)) {
JS_ReportErrorNumber(tc->compiler->context, js_GetErrorMessage, NULL,
JSMSG_NEED_DIET, "program");
return false;
}
blockid = tc->blockidGen++;
return true;
}
static bool
GenerateBlockIdForStmtNode(JSParseNode *pn, JSTreeContext *tc)
{
JS_ASSERT(tc->topStmt);
JS_ASSERT(STMT_MAYBE_SCOPE(tc->topStmt));
JS_ASSERT(pn->pn_type == TOK_LC || pn->pn_type == TOK_LEXICALSCOPE);
if (!GenerateBlockId(tc, tc->topStmt->blockid))
return false;
pn->pn_blockid = tc->topStmt->blockid;
return true;
}
/*
* Parse a top-level JS script.
*/
JSParseNode *
JSCompiler::parse(JSObject *chain)
{
/*
* Protect atoms from being collected by a GC activation, which might
* - nest on this thread due to out of memory (the so-called "last ditch"
* GC attempted within js_NewGCThing), or
* - run for any reason on another thread if this thread is suspended on
* an object lock before it finishes generating bytecode into a script
* protected from the GC by a root or a stack frame reference.
*/
JSTreeContext tc(this);
tc.scopeChain = chain;
if (!GenerateBlockId(&tc, tc.bodyid))
return NULL;
JSParseNode *pn = Statements(context, TS(this), &tc);
if (pn) {
if (!js_MatchToken(context, TS(this), TOK_EOF)) {
js_ReportCompileErrorNumber(context, TS(this), NULL, JSREPORT_ERROR,
JSMSG_SYNTAX_ERROR);
pn = NULL;
} else {
if (!js_FoldConstants(context, pn, &tc))
pn = NULL;
}
}
return pn;
}
JS_STATIC_ASSERT(FREE_STATIC_LEVEL == JS_BITMASK(JSFB_LEVEL_BITS));
static inline bool
SetStaticLevel(JSTreeContext *tc, uintN staticLevel)
{
/*
* Reserve FREE_STATIC_LEVEL (0xffff) in order to reserve FREE_UPVAR_COOKIE
* (0xffffffff) and other cookies with that level.
*
* This is a lot simpler than error-checking every MAKE_UPVAR_COOKIE, and
* practically speaking it leaves more than enough room for upvars. In fact
* we might want to split cookie fields giving fewer bits for skip and more
* for slot, but only based on evidence.
*/
if (staticLevel >= FREE_STATIC_LEVEL) {
JS_ReportErrorNumber(tc->compiler->context, js_GetErrorMessage, NULL,
JSMSG_TOO_DEEP, js_function_str);
return false;
}
tc->staticLevel = staticLevel;
return true;
}
/*
* Compile a top-level script.
*/
JSScript *
JSCompiler::compileScript(JSContext *cx, JSObject *scopeChain, JSStackFrame *callerFrame,
JSPrincipals *principals, uint32 tcflags,
const jschar *chars, size_t length,
FILE *file, const char *filename, uintN lineno,
JSString *source /* = NULL */)
{
JSCompiler jsc(cx, principals, callerFrame);
JSArenaPool codePool, notePool;
JSTokenType tt;
JSParseNode *pn;
uint32 scriptGlobals;
JSScript *script;
#ifdef METER_PARSENODES
void *sbrk(ptrdiff_t), *before = sbrk(0);
#endif
JS_ASSERT(!(tcflags & ~(TCF_COMPILE_N_GO | TCF_NO_SCRIPT_RVAL |
TCF_STATIC_LEVEL_MASK)));
/*
* The scripted callerFrame can only be given for compile-and-go scripts
* and non-zero static level requires callerFrame.
*/
JS_ASSERT_IF(callerFrame, tcflags & TCF_COMPILE_N_GO);
JS_ASSERT_IF(TCF_GET_STATIC_LEVEL(tcflags) != 0, callerFrame);
if (!jsc.init(chars, length, file, filename, lineno))
return NULL;
JS_INIT_ARENA_POOL(&codePool, "code", 1024, sizeof(jsbytecode),
&cx->scriptStackQuota);
JS_INIT_ARENA_POOL(&notePool, "note", 1024, sizeof(jssrcnote),
&cx->scriptStackQuota);
JSCodeGenerator cg(&jsc, &codePool, &notePool, jsc.tokenStream.lineno);
MUST_FLOW_THROUGH("out");
/* Null script early in case of error, to reduce our code footprint. */
script = NULL;
cg.flags |= uint16(tcflags);
cg.scopeChain = scopeChain;
if (!SetStaticLevel(&cg, TCF_GET_STATIC_LEVEL(tcflags)))
goto out;
/*
* If funbox is non-null after we create the new script, callerFrame->fun
* was saved in the 0th object table entry.
*/
JSObjectBox *funbox;
funbox = NULL;
if (tcflags & TCF_COMPILE_N_GO) {
if (source) {
/*
* Save eval program source in script->atomMap.vector[0] for the
* eval cache (see obj_eval in jsobj.cpp).
*/
JSAtom *atom = js_AtomizeString(cx, source, 0);
if (!atom || !cg.atomList.add(&jsc, atom))
goto out;
}
if (callerFrame && callerFrame->fun) {
/*
* An eval script in a caller frame needs to have its enclosing
* function captured in case it refers to an upvar, and someone
* wishes to decompile it while it's running.
*/
funbox = jsc.newObjectBox(FUN_OBJECT(callerFrame->fun));
if (!funbox)
goto out;
funbox->emitLink = cg.objectList.lastbox;
cg.objectList.lastbox = funbox;
cg.objectList.length++;
}
}
/*
* Inline Statements to emit as we go to save AST space. We must generate
* our script-body blockid since we aren't calling Statements.
*/
uint32 bodyid;
if (!GenerateBlockId(&cg, bodyid))
goto out;
cg.bodyid = bodyid;
#if JS_HAS_XML_SUPPORT
pn = NULL;
bool onlyXML;
onlyXML = true;
#endif
for (;;) {
jsc.tokenStream.flags |= TSF_OPERAND;
tt = js_PeekToken(cx, &jsc.tokenStream);
jsc.tokenStream.flags &= ~TSF_OPERAND;
if (tt <= TOK_EOF) {
if (tt == TOK_EOF)
break;
JS_ASSERT(tt == TOK_ERROR);
goto out;
}
pn = Statement(cx, &jsc.tokenStream, &cg);
if (!pn)
goto out;
JS_ASSERT(!cg.blockNode);
if (!js_FoldConstants(cx, pn, &cg))
goto out;
if (cg.functionList) {
if (!jsc.analyzeFunctions(cg.functionList, cg.flags))
goto out;
cg.functionList = NULL;
}
if (!js_EmitTree(cx, &cg, pn))
goto out;
#if JS_HAS_XML_SUPPORT
if (PN_TYPE(pn) != TOK_SEMI ||
!pn->pn_kid ||
!TREE_TYPE_IS_XML(PN_TYPE(pn->pn_kid))) {
onlyXML = false;
}
#endif
RecycleTree(pn, &cg);
}
#if JS_HAS_XML_SUPPORT
/*
* Prevent XML data theft via <script src="http://victim.com/foo.xml">.
* For background, see:
*
* https://bugzilla.mozilla.org/show_bug.cgi?id=336551
*/
if (pn && onlyXML && (tcflags & TCF_NO_SCRIPT_RVAL)) {
js_ReportCompileErrorNumber(cx, &jsc.tokenStream, NULL, JSREPORT_ERROR,
JSMSG_XML_WHOLE_PROGRAM);
goto out;
}
#endif
/*
* Global variables and regexps share the index space with locals. Due to
* incremental code generation we need to patch the bytecode to adjust the
* local references to skip the globals.
*/
scriptGlobals = cg.ngvars + cg.regexpList.length;
if (scriptGlobals != 0) {
jsbytecode *code, *end;
JSOp op;
const JSCodeSpec *cs;
uintN len, slot;
if (scriptGlobals >= SLOTNO_LIMIT)
goto too_many_slots;
code = CG_BASE(&cg);
for (end = code + CG_OFFSET(&cg); code != end; code += len) {
JS_ASSERT(code < end);
op = (JSOp) *code;
cs = &js_CodeSpec[op];
len = (cs->length > 0)
? (uintN) cs->length
: js_GetVariableBytecodeLength(code);
if (JOF_TYPE(cs->format) == JOF_LOCAL ||
(JOF_TYPE(cs->format) == JOF_SLOTATOM)) {
/*
* JSOP_GETARGPROP also has JOF_SLOTATOM type, but it may be
* emitted only for a function.
*/
JS_ASSERT((JOF_TYPE(cs->format) == JOF_SLOTATOM) ==
(op == JSOP_GETLOCALPROP));
slot = GET_SLOTNO(code);
slot += scriptGlobals;
if (slot >= SLOTNO_LIMIT)
goto too_many_slots;
SET_SLOTNO(code, slot);
}
}
}
#ifdef METER_PARSENODES
printf("Parser growth: %d (%u nodes, %u max, %u unrecycled)\n",
(char *)sbrk(0) - (char *)before,
parsenodes,
maxparsenodes,
parsenodes - recyclednodes);
before = sbrk(0);
#endif
/*
* Nowadays the threaded interpreter needs a stop instruction, so we
* do have to emit that here.
*/
if (js_Emit1(cx, &cg, JSOP_STOP) < 0)
goto out;
#ifdef METER_PARSENODES
printf("Code-gen growth: %d (%u bytecodes, %u srcnotes)\n",
(char *)sbrk(0) - (char *)before, CG_OFFSET(&cg), cg.noteCount);
#endif
#ifdef JS_ARENAMETER
JS_DumpArenaStats(stdout);
#endif
script = js_NewScriptFromCG(cx, &cg);
if (script && funbox)
script->flags |= JSSF_SAVED_CALLER_FUN;
#ifdef JS_SCOPE_DEPTH_METER
if (script) {
JSObject *obj = scopeChain;
uintN depth = 1;
while ((obj = OBJ_GET_PARENT(cx, obj)) != NULL)
++depth;
JS_BASIC_STATS_ACCUM(&cx->runtime->hostenvScopeDepthStats, depth);
}
#endif
out:
JS_FinishArenaPool(&codePool);
JS_FinishArenaPool(&notePool);
return script;
too_many_slots:
js_ReportCompileErrorNumber(cx, &jsc.tokenStream, NULL,
JSREPORT_ERROR, JSMSG_TOO_MANY_LOCALS);
script = NULL;
goto out;
}
/*
* Insist on a final return before control flows out of pn. Try to be a bit
* smart about loops: do {...; return e2;} while(0) at the end of a function
* that contains an early return e1 will get a strict warning. Similarly for
* iloops: while (true){...} is treated as though ... returns.
*/
#define ENDS_IN_OTHER 0
#define ENDS_IN_RETURN 1
#define ENDS_IN_BREAK 2
static int
HasFinalReturn(JSParseNode *pn)
{
JSParseNode *pn2, *pn3;
uintN rv, rv2, hasDefault;
switch (pn->pn_type) {
case TOK_LC:
if (!pn->pn_head)
return ENDS_IN_OTHER;
return HasFinalReturn(pn->last());
case TOK_IF:
if (!pn->pn_kid3)
return ENDS_IN_OTHER;
return HasFinalReturn(pn->pn_kid2) & HasFinalReturn(pn->pn_kid3);
case TOK_WHILE:
pn2 = pn->pn_left;
if (pn2->pn_type == TOK_PRIMARY && pn2->pn_op == JSOP_TRUE)
return ENDS_IN_RETURN;
if (pn2->pn_type == TOK_NUMBER && pn2->pn_dval)
return ENDS_IN_RETURN;
return ENDS_IN_OTHER;
case TOK_DO:
pn2 = pn->pn_right;
if (pn2->pn_type == TOK_PRIMARY) {
if (pn2->pn_op == JSOP_FALSE)
return HasFinalReturn(pn->pn_left);
if (pn2->pn_op == JSOP_TRUE)
return ENDS_IN_RETURN;
}
if (pn2->pn_type == TOK_NUMBER) {
if (pn2->pn_dval == 0)
return HasFinalReturn(pn->pn_left);
return ENDS_IN_RETURN;
}
return ENDS_IN_OTHER;
case TOK_FOR:
pn2 = pn->pn_left;
if (pn2->pn_arity == PN_TERNARY && !pn2->pn_kid2)
return ENDS_IN_RETURN;
return ENDS_IN_OTHER;
case TOK_SWITCH:
rv = ENDS_IN_RETURN;
hasDefault = ENDS_IN_OTHER;
pn2 = pn->pn_right;
if (pn2->pn_type == TOK_LEXICALSCOPE)
pn2 = pn2->expr();
for (pn2 = pn2->pn_head; rv && pn2; pn2 = pn2->pn_next) {
if (pn2->pn_type == TOK_DEFAULT)
hasDefault = ENDS_IN_RETURN;
pn3 = pn2->pn_right;
JS_ASSERT(pn3->pn_type == TOK_LC);
if (pn3->pn_head) {
rv2 = HasFinalReturn(pn3->last());
if (rv2 == ENDS_IN_OTHER && pn2->pn_next)
/* Falling through to next case or default. */;
else
rv &= rv2;
}
}
/* If a final switch has no default case, we judge it harshly. */
rv &= hasDefault;
return rv;
case TOK_BREAK:
return ENDS_IN_BREAK;
case TOK_WITH:
return HasFinalReturn(pn->pn_right);
case TOK_RETURN:
return ENDS_IN_RETURN;
case TOK_COLON:
case TOK_LEXICALSCOPE:
return HasFinalReturn(pn->expr());
case TOK_THROW:
return ENDS_IN_RETURN;
case TOK_TRY:
/* If we have a finally block that returns, we are done. */
if (pn->pn_kid3) {
rv = HasFinalReturn(pn->pn_kid3);
if (rv == ENDS_IN_RETURN)
return rv;
}
/* Else check the try block and any and all catch statements. */
rv = HasFinalReturn(pn->pn_kid1);
if (pn->pn_kid2) {
JS_ASSERT(pn->pn_kid2->pn_arity == PN_LIST);
for (pn2 = pn->pn_kid2->pn_head; pn2; pn2 = pn2->pn_next)
rv &= HasFinalReturn(pn2);
}
return rv;
case TOK_CATCH:
/* Check this catch block's body. */
return HasFinalReturn(pn->pn_kid3);
case TOK_LET:
/* Non-binary let statements are let declarations. */
if (pn->pn_arity != PN_BINARY)
return ENDS_IN_OTHER;
return HasFinalReturn(pn->pn_right);
default:
return ENDS_IN_OTHER;
}
}
static JSBool
ReportBadReturn(JSContext *cx, JSTreeContext *tc, uintN flags, uintN errnum,
uintN anonerrnum)
{
const char *name;
JS_ASSERT(tc->flags & TCF_IN_FUNCTION);
if (tc->fun->atom) {
name = js_AtomToPrintableString(cx, tc->fun->atom);
} else {
errnum = anonerrnum;
name = NULL;
}
return js_ReportCompileErrorNumber(cx, TS(tc->compiler), NULL, flags,
errnum, name);
}
static JSBool
CheckFinalReturn(JSContext *cx, JSTreeContext *tc, JSParseNode *pn)
{
JS_ASSERT(tc->flags & TCF_IN_FUNCTION);
return HasFinalReturn(pn) == ENDS_IN_RETURN ||
ReportBadReturn(cx, tc, JSREPORT_WARNING | JSREPORT_STRICT,
JSMSG_NO_RETURN_VALUE, JSMSG_ANON_NO_RETURN_VALUE);
}
static JSParseNode *
FunctionBody(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSStmtInfo stmtInfo;
uintN oldflags, firstLine;
JSParseNode *pn;
JS_ASSERT(tc->flags & TCF_IN_FUNCTION);
js_PushStatement(tc, &stmtInfo, STMT_BLOCK, -1);
stmtInfo.flags = SIF_BODY_BLOCK;
oldflags = tc->flags;
tc->flags &= ~(TCF_RETURN_EXPR | TCF_RETURN_VOID);
/*
* Save the body's first line, and store it in pn->pn_pos.begin.lineno
* later, because we may have not peeked in ts yet, so Statements won't
* acquire a valid pn->pn_pos.begin from the current token.
*/
firstLine = ts->lineno;
#if JS_HAS_EXPR_CLOSURES
if (CURRENT_TOKEN(ts).type == TOK_LC) {
pn = Statements(cx, ts, tc);
} else {
pn = NewParseNode(PN_UNARY, tc);
if (pn) {
pn->pn_kid = AssignExpr(cx, ts, tc);
if (!pn->pn_kid) {
pn = NULL;
} else {
if (tc->flags & TCF_FUN_IS_GENERATOR) {
ReportBadReturn(cx, tc, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_RETURN,
JSMSG_BAD_ANON_GENERATOR_RETURN);
pn = NULL;
} else {
pn->pn_type = TOK_RETURN;
pn->pn_op = JSOP_RETURN;
pn->pn_pos.end = pn->pn_kid->pn_pos.end;
}
}
}
}
#else
pn = Statements(cx, ts, tc);
#endif
if (pn) {
JS_ASSERT(!(tc->topStmt->flags & SIF_SCOPE));
js_PopStatement(tc);
pn->pn_pos.begin.lineno = firstLine;
/* Check for falling off the end of a function that returns a value. */
if (JS_HAS_STRICT_OPTION(cx) && (tc->flags & TCF_RETURN_EXPR) &&
!CheckFinalReturn(cx, tc, pn)) {
pn = NULL;
}
}
tc->flags = oldflags | (tc->flags & TCF_FUN_FLAGS);
return pn;
}
static JSAtomListElement *
MakePlaceholder(JSParseNode *pn, JSTreeContext *tc)
{
JSAtomListElement *ale = tc->lexdeps.add(tc->compiler, pn->pn_atom);
if (!ale)
return NULL;
JSDefinition *dn = (JSDefinition *)
NewNameNode(tc->compiler->context, TS(tc->compiler), pn->pn_atom, tc);
if (!dn)
return NULL;
ALE_SET_DEFN(ale, dn);
dn->pn_defn = true;
dn->pn_dflags |= PND_PLACEHOLDER;
return ale;
}
static bool
Define(JSParseNode *pn, JSAtom *atom, JSTreeContext *tc, bool let = false)
{
JS_ASSERT(!pn->pn_used);
JS_ASSERT_IF(pn->pn_defn, pn->isPlaceholder());
JSHashEntry **hep;
JSAtomListElement *ale = NULL;
JSAtomList *list = NULL;
if (let)
ale = (list = &tc->decls)->rawLookup(atom, hep);
if (!ale)
ale = (list = &tc->lexdeps)->rawLookup(atom, hep);
if (ale) {
JSDefinition *dn = ALE_DEFN(ale);
if (dn != pn) {
JSParseNode **pnup = &dn->dn_uses;
JSParseNode *pnu;
uintN start = let ? pn->pn_blockid : tc->bodyid;
while ((pnu = *pnup) != NULL && pnu->pn_blockid >= start) {
JS_ASSERT(pnu->pn_used);
pnu->pn_lexdef = (JSDefinition *) pn;
pn->pn_dflags |= pnu->pn_dflags & PND_USE2DEF_FLAGS;
pnup = &pnu->pn_link;
}
if (pnu != dn->dn_uses) {
*pnup = pn->dn_uses;
pn->dn_uses = dn->dn_uses;
dn->dn_uses = pnu;
if ((!pnu || pnu->pn_blockid < tc->bodyid) && list != &tc->decls)
list->rawRemove(tc->compiler, ale, hep);
}
}
}
ale = tc->decls.add(tc->compiler, atom, let ? JSAtomList::SHADOW : JSAtomList::UNIQUE);
if (!ale)
return false;
ALE_SET_DEFN(ale, pn);
pn->pn_defn = true;
pn->pn_dflags &= ~PND_PLACEHOLDER;
return true;
}
static void
LinkUseToDef(JSParseNode *pn, JSDefinition *dn, JSTreeContext *tc)
{
JS_ASSERT(!pn->pn_used);
JS_ASSERT(!pn->pn_defn);
JS_ASSERT(pn != dn->dn_uses);
pn->pn_link = dn->dn_uses;
dn->dn_uses = pn;
pn->pn_used = true;
pn->pn_lexdef = dn;
}
static void
ForgetUse(JSParseNode *pn)
{
if (!pn->pn_used) {
JS_ASSERT(!pn->pn_defn);
return;
}
JSParseNode **pnup = &pn->lexdef()->dn_uses;
JSParseNode *pnu;
while ((pnu = *pnup) != pn)
pnup = &pnu->pn_link;
*pnup = pn->pn_link;
pn->pn_used = false;
}
static JSParseNode *
MakeAssignment(JSParseNode *pn, JSParseNode *rhs, JSTreeContext *tc)
{
JSParseNode *lhs = NewOrRecycledNode(tc);
if (!lhs)
return NULL;
*lhs = *pn;
if (pn->pn_used) {
JSDefinition *dn = pn->pn_lexdef;
JSParseNode **pnup = &dn->dn_uses;
while (*pnup != pn)
pnup = &(*pnup)->pn_link;
*pnup = lhs;
lhs->pn_link = pn->pn_link;
pn->pn_link = NULL;
}
pn->pn_type = TOK_ASSIGN;
pn->pn_op = JSOP_NOP;
pn->pn_arity = PN_BINARY;
pn->pn_parens = false;
pn->pn_used = pn->pn_defn = false;
pn->pn_left = lhs;
pn->pn_right = rhs;
return lhs;
}
static JSParseNode *
MakeDefIntoUse(JSDefinition *dn, JSParseNode *pn, JSAtom *atom, JSTreeContext *tc)
{
/*
* If dn is var, const, or let, and it has an initializer, then we must
* rewrite it to be an assignment node, whose freshly allocated left-hand
* side becomes a use of pn.
*/
if (dn->isBindingForm()) {
JSParseNode *rhs = dn->expr();
if (rhs) {
JSParseNode *lhs = MakeAssignment(dn, rhs, tc);
if (!lhs)
return NULL;
//pn->dn_uses = lhs;
dn = (JSDefinition *) lhs;
}
dn->pn_op = (js_CodeSpec[dn->pn_op].format & JOF_SET) ? JSOP_SETNAME : JSOP_NAME;
} else if (dn->kind() == JSDefinition::FUNCTION) {
JS_ASSERT(dn->isTopLevel());
JS_ASSERT(dn->pn_op == JSOP_NOP);
dn->pn_type = TOK_NAME;
dn->pn_arity = PN_NAME;
dn->pn_atom = atom;
}
/* Now make dn no longer a definition, rather a use of pn. */
JS_ASSERT(dn->pn_type == TOK_NAME);
JS_ASSERT(dn->pn_arity == PN_NAME);
JS_ASSERT(dn->pn_atom == atom);
for (JSParseNode *pnu = dn->dn_uses; pnu; pnu = pnu->pn_link) {
JS_ASSERT(pnu->pn_used);
JS_ASSERT(!pnu->pn_defn);
pnu->pn_lexdef = (JSDefinition *) pn;
pn->pn_dflags |= pnu->pn_dflags & PND_USE2DEF_FLAGS;
}
pn->pn_dflags |= dn->pn_dflags & PND_USE2DEF_FLAGS;
pn->dn_uses = dn;
dn->pn_defn = false;
dn->pn_used = true;
dn->pn_lexdef = (JSDefinition *) pn;
dn->pn_cookie = FREE_UPVAR_COOKIE;
dn->pn_dflags &= ~PND_BOUND;
return dn;
}
static bool
DefineArg(JSParseNode *pn, JSAtom *atom, uintN i, JSTreeContext *tc)
{
JSParseNode *argpn, *argsbody;
/* Flag tc so we don't have to lookup arguments on every use. */
if (atom == tc->compiler->context->runtime->atomState.argumentsAtom)
tc->flags |= TCF_FUN_PARAM_ARGUMENTS;
/*
* Make an argument definition node, distinguished by being in tc->decls
* but having TOK_NAME type and JSOP_NOP op. Insert it in a TOK_ARGSBODY
* list node returned via pn->pn_body.
*/
argpn = NewNameNode(tc->compiler->context, TS(tc->compiler), atom, tc);
if (!argpn)
return false;
JS_ASSERT(PN_TYPE(argpn) == TOK_NAME && PN_OP(argpn) == JSOP_NOP);
/* Arguments are initialized by definition. */
argpn->pn_dflags |= PND_INITIALIZED;
if (!Define(argpn, atom, tc))
return false;
argsbody = pn->pn_body;
if (!argsbody) {
argsbody = NewParseNode(PN_LIST, tc);
if (!argsbody)
return false;
argsbody->pn_type = TOK_ARGSBODY;
argsbody->pn_op = JSOP_NOP;
argsbody->makeEmpty();
pn->pn_body = argsbody;
}
argsbody->append(argpn);
argpn->pn_op = JSOP_GETARG;
argpn->pn_cookie = MAKE_UPVAR_COOKIE(tc->staticLevel, i);
argpn->pn_dflags |= PND_BOUND;
return true;
}
/*
* Compile a JS function body, which might appear as the value of an event
* handler attribute in an HTML <INPUT> tag.
*/
bool
JSCompiler::compileFunctionBody(JSContext *cx, JSFunction *fun, JSPrincipals *principals,
const jschar *chars, size_t length,
const char *filename, uintN lineno)
{
JSCompiler jsc(cx, principals);
if (!jsc.init(chars, length, NULL, filename, lineno))
return false;
/* No early return from after here until the js_FinishArenaPool calls. */
JSArenaPool codePool, notePool;
JS_INIT_ARENA_POOL(&codePool, "code", 1024, sizeof(jsbytecode),
&cx->scriptStackQuota);
JS_INIT_ARENA_POOL(&notePool, "note", 1024, sizeof(jssrcnote),
&cx->scriptStackQuota);
JSCodeGenerator funcg(&jsc, &codePool, &notePool, jsc.tokenStream.lineno);
funcg.flags |= TCF_IN_FUNCTION;
funcg.fun = fun;
if (!GenerateBlockId(&funcg, funcg.bodyid))
return NULL;
/* FIXME: make Function format the source for a function definition. */
jsc.tokenStream.tokens[0].type = TOK_NAME;
JSParseNode *fn = NewParseNode(PN_FUNC, &funcg);
if (fn) {
fn->pn_body = NULL;
fn->pn_cookie = FREE_UPVAR_COOKIE;
uintN nargs = fun->nargs;
if (nargs) {
jsuword *names = js_GetLocalNameArray(cx, fun, &cx->tempPool);
if (!names) {
fn = NULL;
} else {
for (uintN i = 0; i < nargs; i++) {
JSAtom *name = JS_LOCAL_NAME_TO_ATOM(names[i]);
if (!DefineArg(fn, name, i, &funcg)) {
fn = NULL;
break;
}
}
}
}
}
/*
* Farble the body so that it looks like a block statement to js_EmitTree,
* which is called from js_EmitFunctionBody (see jsemit.cpp). After we're
* done parsing, we must fold constants, analyze any nested functions, and
* generate code for this function, including a stop opcode at the end.
*/
CURRENT_TOKEN(&jsc.tokenStream).type = TOK_LC;
JSParseNode *pn = fn ? FunctionBody(cx, &jsc.tokenStream, &funcg) : NULL;
if (pn) {
if (!js_MatchToken(cx, &jsc.tokenStream, TOK_EOF)) {
js_ReportCompileErrorNumber(cx, &jsc.tokenStream, NULL,
JSREPORT_ERROR, JSMSG_SYNTAX_ERROR);
pn = NULL;
} else if (!js_FoldConstants(cx, pn, &funcg)) {
/* js_FoldConstants reported the error already. */
pn = NULL;
} else if (funcg.functionList &&
!jsc.analyzeFunctions(funcg.functionList, funcg.flags)) {
pn = NULL;
} else {
if (fn->pn_body) {
JS_ASSERT(PN_TYPE(fn->pn_body) == TOK_ARGSBODY);
fn->pn_body->append(pn);
fn->pn_body->pn_pos = pn->pn_pos;
pn = fn->pn_body;
}
if (!js_EmitFunctionScript(cx, &funcg, pn))
pn = NULL;
}
}
/* Restore saved state and release code generation arenas. */
JS_FinishArenaPool(&codePool);
JS_FinishArenaPool(&notePool);
return pn != NULL;
}
/*
* Parameter block types for the several Binder functions. We use a common
* helper function signature in order to share code among destructuring and
* simple variable declaration parsers. In the destructuring case, the binder
* function is called indirectly from the variable declaration parser by way
* of CheckDestructuring and its friends.
*/
typedef struct BindData BindData;
typedef JSBool
(*Binder)(JSContext *cx, BindData *data, JSAtom *atom, JSTreeContext *tc);
struct BindData {
BindData() : fresh(true) {}
JSParseNode *pn; /* name node for definition processing and
error source coordinates */
JSOp op; /* prolog bytecode or nop */
Binder binder; /* binder, discriminates u */
union {
struct {
uintN overflow;
} let;
};
bool fresh;
};
static JSBool
BindLocalVariable(JSContext *cx, JSFunction *fun, JSAtom *atom,
JSLocalKind localKind)
{
JS_ASSERT(localKind == JSLOCAL_VAR || localKind == JSLOCAL_CONST);
/*
* Don't bind a variable with the hidden name 'arguments', per ECMA-262.
* Instead 'var arguments' always restates the predefined property of the
* activation objects whose name is 'arguments'. Assignment to such a
* variable must be handled specially.
*/
if (atom == cx->runtime->atomState.argumentsAtom)
return JS_TRUE;
return js_AddLocal(cx, fun, atom, localKind);
}
#if JS_HAS_DESTRUCTURING
/*
* Forward declaration to maintain top-down presentation.
*/
static JSParseNode *
DestructuringExpr(JSContext *cx, BindData *data, JSTreeContext *tc,
JSTokenType tt);
static JSBool
BindDestructuringArg(JSContext *cx, BindData *data, JSAtom *atom,
JSTreeContext *tc)
{
JSAtomListElement *ale;
JSParseNode *pn;
/* Flag tc so we don't have to lookup arguments on every use. */
if (atom == tc->compiler->context->runtime->atomState.argumentsAtom)
tc->flags |= TCF_FUN_PARAM_ARGUMENTS;
JS_ASSERT(tc->flags & TCF_IN_FUNCTION);
ale = tc->decls.lookup(atom);
pn = data->pn;
if (!ale && !Define(pn, atom, tc))
return JS_FALSE;
JSLocalKind localKind = js_LookupLocal(cx, tc->fun, atom, NULL);
if (localKind != JSLOCAL_NONE) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), NULL,
JSREPORT_ERROR, JSMSG_DESTRUCT_DUP_ARG);
return JS_FALSE;
}
uintN index = tc->fun->u.i.nvars;
if (!BindLocalVariable(cx, tc->fun, atom, JSLOCAL_VAR))
return JS_FALSE;
pn->pn_op = JSOP_SETLOCAL;
pn->pn_cookie = MAKE_UPVAR_COOKIE(tc->staticLevel, index);
pn->pn_dflags |= PND_BOUND;
return JS_TRUE;
}
#endif /* JS_HAS_DESTRUCTURING */
JSFunction *
JSCompiler::newFunction(JSTreeContext *tc, JSAtom *atom, uintN lambda)
{
JSObject *parent;
JSFunction *fun;
JS_ASSERT((lambda & ~JSFUN_LAMBDA) == 0);
/*
* Find the global compilation context in order to pre-set the newborn
* function's parent slot to tc->scopeChain. If the global context is a
* compile-and-go one, we leave the pre-set parent intact; otherwise we
* clear parent and proto.
*/
while (tc->parent)
tc = tc->parent;
parent = (tc->flags & TCF_IN_FUNCTION) ? NULL : tc->scopeChain;
fun = js_NewFunction(context, NULL, NULL, 0, JSFUN_INTERPRETED | lambda,
parent, atom);
if (fun && !(tc->flags & TCF_COMPILE_N_GO)) {
STOBJ_CLEAR_PARENT(FUN_OBJECT(fun));
STOBJ_CLEAR_PROTO(FUN_OBJECT(fun));
}
return fun;
}
static JSBool
MatchOrInsertSemicolon(JSContext *cx, JSTokenStream *ts)
{
JSTokenType tt;
ts->flags |= TSF_OPERAND;
tt = js_PeekTokenSameLine(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_ERROR)
return JS_FALSE;
if (tt != TOK_EOF && tt != TOK_EOL && tt != TOK_SEMI && tt != TOK_RC) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_SEMI_BEFORE_STMNT);
return JS_FALSE;
}
(void) js_MatchToken(cx, ts, TOK_SEMI);
return JS_TRUE;
}
bool
JSCompiler::analyzeFunctions(JSFunctionBox *funbox, uint16& tcflags)
{
if (!markFunArgs(funbox, tcflags))
return false;
setFunctionKinds(funbox, tcflags);
return true;
}
/*
* Mark as funargs any functions that reach up to one or more upvars across an
* already-known funarg. The parser will flag the o_m lambda as a funarg in:
*
* function f(o, p) {
* o.m = function o_m(a) {
* function g() { return p; }
* function h() { return a; }
* return g() + h();
* }
* }
*
* but without this extra marking phase, function g will not be marked as a
* funarg since it is called from within its parent scope. But g reaches up to
* f's parameter p, so if o_m escapes f's activation scope, g does too and
* cannot use JSOP_GETUPVAR to reach p. In contast function h neither escapes
* nor uses an upvar "above" o_m's level.
*
* If function g itself contained lambdas that contained non-lambdas that reach
* up above its level, then those non-lambdas would have to be marked too. This
* process is potentially exponential in the number of functions, but generally
* not so complex. But it can't be done during a single recursive traversal of
* the funbox tree, so we must use a work queue.
*
* Return the minimal "skipmin" for funbox and its siblings. This is the delta
* between the static level of the bodies of funbox and its peers (which must
* be funbox->level + 1), and the static level of the nearest upvar among all
* the upvars contained by funbox and its peers. If there are no upvars, return
* FREE_STATIC_LEVEL. Thus this function never returns 0.
*/
static uintN
FindFunArgs(JSFunctionBox *funbox, int level, JSFunctionBoxQueue *queue)
{
uintN allskipmin = FREE_STATIC_LEVEL;
do {
JSParseNode *fn = funbox->node;
JSFunction *fun = (JSFunction *) funbox->object;
int fnlevel = level;
/*
* An eval can leak funbox, functions along its ancestor line, and its
* immediate kids. Since FindFunArgs uses DFS and the parser propagates
* TCF_FUN_HEAVYWEIGHT bottom up, funbox's ancestor function nodes have
* already been marked as funargs by this point. Therefore we have to
* flag only funbox->node and funbox->kids' nodes here.
*/
if (funbox->tcflags & TCF_FUN_HEAVYWEIGHT) {
fn->setFunArg();
for (JSFunctionBox *kid = funbox->kids; kid; kid = kid->siblings)
kid->node->setFunArg();
}
/*
* Compute in skipmin the least distance from fun's static level up to
* an upvar, whether used directly by fun, or indirectly by a function
* nested in fun.
*/
uintN skipmin = FREE_STATIC_LEVEL;
JSParseNode *pn = fn->pn_body;
if (pn->pn_type == TOK_UPVARS) {
JSAtomList upvars(pn->pn_names);
JS_ASSERT(upvars.count != 0);
JSAtomListIterator iter(&upvars);
JSAtomListElement *ale;
while ((ale = iter()) != NULL) {
JSDefinition *lexdep = ALE_DEFN(ale)->resolve();
if (!lexdep->isFreeVar()) {
uintN upvarLevel = lexdep->frameLevel();
if (int(upvarLevel) <= fnlevel)
fn->setFunArg();
uintN skip = (funbox->level + 1) - upvarLevel;
if (skip < skipmin)
skipmin = skip;
}
}
}
/*
* If this function escapes, whether directly (the parser detects such
* escapes) or indirectly (because this non-escaping function uses an
* upvar that reaches across an outer function boundary where the outer
* function escapes), enqueue it for further analysis, and bump fnlevel
* to trap any non-escaping children.
*/
if (fn->isFunArg()) {
queue->push(funbox);
fnlevel = int(funbox->level);
}
/*
* Now process the current function's children, and recalibrate their
* cumulative skipmin to be relative to the current static level.
*/
if (funbox->kids) {
uintN kidskipmin = FindFunArgs(funbox->kids, fnlevel, queue);
JS_ASSERT(kidskipmin != 0);
if (kidskipmin != FREE_STATIC_LEVEL) {
--kidskipmin;
if (kidskipmin != 0 && kidskipmin < skipmin)
skipmin = kidskipmin;
}
}
/*
* Finally, after we've traversed all of the current function's kids,
* minimize fun's skipmin against our accumulated skipmin. Do likewise
* with allskipmin, but minimize across funbox and all of its siblings,
* to compute our return value.
*/
if (skipmin != FREE_STATIC_LEVEL) {
fun->u.i.skipmin = skipmin;
if (skipmin < allskipmin)
allskipmin = skipmin;
}
} while ((funbox = funbox->siblings) != NULL);
return allskipmin;
}
bool
JSCompiler::markFunArgs(JSFunctionBox *funbox, uintN tcflags)
{
JSFunctionBoxQueue queue;
if (!queue.init(functionCount))
return false;
FindFunArgs(funbox, -1, &queue);
while ((funbox = queue.pull()) != NULL) {
JSParseNode *fn = funbox->node;
JS_ASSERT(fn->isFunArg());
JSParseNode *pn = fn->pn_body;
if (pn->pn_type == TOK_UPVARS) {
JSAtomList upvars(pn->pn_names);
JS_ASSERT(upvars.count != 0);
JSAtomListIterator iter(&upvars);
JSAtomListElement *ale;
while ((ale = iter()) != NULL) {
JSDefinition *lexdep = ALE_DEFN(ale)->resolve();
if (!lexdep->isFreeVar() &&
!lexdep->isFunArg() &&
lexdep->kind() == JSDefinition::FUNCTION) {
/*
* Mark this formerly-Algol-like function as an escaping
* function (i.e., as a funarg), because it is used from a
* funarg and therefore can not use JSOP_{GET,CALL}UPVAR to
* access upvars.
*
* Progress is guaranteed because we set the funarg flag
* here, which suppresses revisiting this function (thanks
* to the !lexdep->isFunArg() test just above).
*/
lexdep->setFunArg();
JSFunctionBox *afunbox = lexdep->pn_funbox;
queue.push(afunbox);
/*
* Walk over nested functions again, now that we have
* changed the level across which it is unsafe to access
* upvars using the runtime dynamic link (frame chain).
*/
if (afunbox->kids)
FindFunArgs(afunbox->kids, afunbox->level, &queue);
}
}
}
}
return true;
}
static uint32
MinBlockId(JSParseNode *fn, uint32 id)
{
if (fn->pn_blockid < id)
return false;
if (fn->pn_defn) {
for (JSParseNode *pn = fn->dn_uses; pn; pn = pn->pn_link) {
if (pn->pn_blockid < id)
return false;
}
}
return true;
}
static bool
OneBlockId(JSParseNode *fn, uint32 id)
{
if (fn->pn_blockid != id)
return false;
if (fn->pn_defn) {
for (JSParseNode *pn = fn->dn_uses; pn; pn = pn->pn_link) {
if (pn->pn_blockid != id)
return false;
}
}
return true;
}
void
JSCompiler::setFunctionKinds(JSFunctionBox *funbox, uint16& tcflags)
{
#ifdef JS_FUNCTION_METERING
# define FUN_METER(x) JS_RUNTIME_METER(context->runtime, functionMeter.x)
#else
# define FUN_METER(x) ((void)0)
#endif
JSFunctionBox *parent = funbox->parent;
for (;;) {
JSParseNode *fn = funbox->node;
if (funbox->kids)
setFunctionKinds(funbox->kids, tcflags);
JSParseNode *pn = fn->pn_body;
JSFunction *fun = (JSFunction *) funbox->object;
FUN_METER(allfun);
if (funbox->tcflags & TCF_FUN_HEAVYWEIGHT) {
FUN_METER(heavy);
JS_ASSERT(FUN_KIND(fun) == JSFUN_INTERPRETED);
} else if (pn->pn_type != TOK_UPVARS) {
/*
* No lexical dependencies => null closure, for best performance.
* A null closure needs no scope chain, but alas we've coupled
* principals-finding to scope (for good fundamental reasons, but
* the implementation overloads the parent slot and we should fix
* that). See, e.g., the JSOP_LAMBDA case in jsinterp.cpp.
*
* In more detail: the ES3 spec allows the implementation to create
* "joined function objects", or not, at its discretion. But real-
* world implementations always create unique function objects for
* closures, and this can be detected via mutation. Open question:
* do popular implementations create unique function objects for
* null closures?
*
* FIXME: bug 476950.
*/
FUN_METER(nofreeupvar);
FUN_SET_KIND(fun, JSFUN_NULL_CLOSURE);
} else {
JSAtomList upvars(pn->pn_names);
JS_ASSERT(upvars.count != 0);
JSAtomListIterator iter(&upvars);
JSAtomListElement *ale;
if (!fn->isFunArg()) {
/*
* This function is Algol-like, it never escapes. So long as it
* does not assign to outer variables, it needs only an upvars
* array in its script and JSOP_{GET,CALL}UPVAR opcodes in its
* bytecode to reach up the frame stack at runtime based on
* those upvars' cookies.
*
* Any assignments to upvars from functions called by this one
* will be coherent because of the JSOP_{GET,CALL}UPVAR ops,
* which load from stack homes when interpreting or from native
* stack slots when executing a trace.
*
* We could add JSOP_SETUPVAR, etc., but it is uncommon for a
* nested function to assign to an outer lexical variable, so
* we defer adding yet more code footprint in the absence of
* evidence motivating these opcodes.
*/
bool mutation = !!(funbox->tcflags & TCF_FUN_SETS_OUTER_NAME);
uintN nupvars = 0;
/*
* Check that at least one outer lexical binding was assigned
* to (global variables don't count). This is conservative: we
* could limit assignments to those in the current function,
* but that's too much work. As with flat closures (handled
* below), we optimize for the case where outer bindings are
* not reassigned anywhere.
*/
while ((ale = iter()) != NULL) {
JSDefinition *lexdep = ALE_DEFN(ale)->resolve();
if (!lexdep->isFreeVar()) {
JS_ASSERT(lexdep->frameLevel() <= funbox->level);
++nupvars;
if (lexdep->isAssigned())
break;
}
}
if (!ale)
mutation = false;
if (nupvars == 0) {
FUN_METER(onlyfreevar);
FUN_SET_KIND(fun, JSFUN_NULL_CLOSURE);
} else if (!mutation && !(funbox->tcflags & TCF_FUN_IS_GENERATOR)) {
/*
* Algol-like functions can read upvars using the dynamic
* link (cx->fp/fp->down). They do not need to entrain and
* search their environment.
*/
FUN_METER(display);
FUN_SET_KIND(fun, JSFUN_NULL_CLOSURE);
} else {
if (!(funbox->tcflags & TCF_FUN_IS_GENERATOR))
FUN_METER(setupvar);
}
} else {
uintN nupvars = 0;
/*
* For each lexical dependency from this closure to an outer
* binding, analyze whether it is safe to copy the binding's
* value into a flat closure slot when the closure is formed.
*/
while ((ale = iter()) != NULL) {
JSDefinition *lexdep = ALE_DEFN(ale)->resolve();
if (!lexdep->isFreeVar()) {
++nupvars;
/*
* Consider the current function (the lambda, innermost
* below) using a var x defined two static levels up:
*
* function f() {
* // z = g();
* var x = 42;
* function g() {
* return function () { return x; };
* }
* return g();
* }
*
* So long as (1) the initialization in 'var x = 42'
* dominates all uses of g and (2) x is not reassigned,
* it is safe to optimize the lambda to a flat closure.
* Uncommenting the early call to g makes it unsafe to
* so optimize (z could name a global setter that calls
* its argument).
*/
JSFunctionBox *afunbox = funbox;
uintN lexdepLevel = lexdep->frameLevel();
JS_ASSERT(lexdepLevel <= funbox->level);
while (afunbox->level != lexdepLevel) {
afunbox = afunbox->parent;
/*
* afunbox can't be null because we are sure
* to find a function box whose level == lexdepLevel
* before walking off the top of the funbox tree.
* See bug 493260 comments 16-18.
*
* Assert but check anyway, to check future changes
* that bind eval upvars in the parser.
*/
JS_ASSERT(afunbox);
/*
* If this function is reaching up across an
* enclosing funarg, we cannot make a flat
* closure. The display stops working once the
* funarg escapes.
*/
if (!afunbox || afunbox->node->isFunArg())
goto break2;
}
/*
* If afunbox's function (which is at the same level as
* lexdep) is in a loop, pessimistically assume the
* variable initializer may be in the same loop. A flat
* closure would then be unsafe, as the captured
* variable could be assigned after the closure is
* created. See bug 493232.
*/
if (afunbox->inLoop)
break;
/*
* with and eval defeat lexical scoping; eval anywhere
* in a variable's scope can assign to it. Both defeat
* the flat closure optimization. The parser detects
* these cases and flags the function heavyweight.
*/
if ((afunbox->parent ? afunbox->parent->tcflags : tcflags)
& TCF_FUN_HEAVYWEIGHT) {
break;
}
/*
* If afunbox's function is not a lambda, it will be
* hoisted, so it could capture the undefined value
* that by default initializes var/let/const
* bindings. And if lexdep is a function that comes at
* (meaning a function refers to its own name) or
* strictly after afunbox, we also break to defeat the
* flat closure optimization.
*/
JSFunction *afun = (JSFunction *) afunbox->object;
if (!(afun->flags & JSFUN_LAMBDA)) {
if (lexdep->isBindingForm())
break;
if (lexdep->pn_pos >= afunbox->node->pn_pos)
break;
}
if (!lexdep->isInitialized())
break;
JSDefinition::Kind lexdepKind = lexdep->kind();
if (lexdepKind != JSDefinition::CONST) {
if (lexdep->isAssigned())
break;
/*
* Any formal could be mutated behind our back via
* the arguments object, so deoptimize if the outer
* function uses arguments.
*
* In a Function constructor call where the final
* argument -- the body source for the function to
* create -- contains a nested function definition
* or expression, afunbox->parent will be null. The
* body source might use |arguments| outside of any
* nested functions it may contain, so we have to
* check the tcflags parameter that was passed in
* from JSCompiler::compileFunctionBody.
*/
if (lexdepKind == JSDefinition::ARG &&
((afunbox->parent ? afunbox->parent->tcflags : tcflags) &
TCF_FUN_USES_ARGUMENTS)) {
break;
}
}
/*
* Check quick-and-dirty dominance relation. Function
* definitions dominate their uses thanks to hoisting.
* Other binding forms hoist as undefined, of course,
* so check forward-reference and blockid relations.
*/
if (lexdepKind != JSDefinition::FUNCTION) {
/*
* Watch out for code such as
*
* (function () {
* ...
* var jQuery = ... = function (...) {
* return new jQuery.foo.bar(baz);
* }
* ...
* })();
*
* where the jQuery var is not reassigned, but of
* course is not initialized at the time that the
* would-be-flat closure containing the jQuery
* upvar is formed.
*/
if (lexdep->pn_pos.end >= afunbox->node->pn_pos.end)
break;
if (lexdep->isTopLevel()
? !MinBlockId(afunbox->node, lexdep->pn_blockid)
: !lexdep->isBlockChild() ||
!afunbox->node->isBlockChild() ||
!OneBlockId(afunbox->node, lexdep->pn_blockid)) {
break;
}
}
}
}
break2:
if (nupvars == 0) {
FUN_METER(onlyfreevar);
FUN_SET_KIND(fun, JSFUN_NULL_CLOSURE);
} else if (!ale) {
/*
* We made it all the way through the upvar loop, so it's
* safe to optimize to a flat closure.
*/
FUN_METER(flat);
FUN_SET_KIND(fun, JSFUN_FLAT_CLOSURE);
switch (PN_OP(fn)) {
case JSOP_DEFFUN:
fn->pn_op = JSOP_DEFFUN_FC;
break;
case JSOP_DEFLOCALFUN:
fn->pn_op = JSOP_DEFLOCALFUN_FC;
break;
case JSOP_LAMBDA:
fn->pn_op = JSOP_LAMBDA_FC;
break;
default:
/* js_EmitTree's case TOK_FUNCTION: will select op. */
JS_ASSERT(PN_OP(fn) == JSOP_NOP);
}
} else {
FUN_METER(badfunarg);
}
}
}
if (FUN_KIND(fun) == JSFUN_INTERPRETED) {
if (pn->pn_type != TOK_UPVARS) {
if (parent)
parent->tcflags |= TCF_FUN_HEAVYWEIGHT;
} else {
JSAtomList upvars(pn->pn_names);
JS_ASSERT(upvars.count != 0);
JSAtomListIterator iter(&upvars);
JSAtomListElement *ale;
/*
* One or more upvars cannot be safely snapshot into a flat
* closure's dslot (see JSOP_GETDSLOT), so we loop again over
* all upvars, and for each non-free upvar, ensure that its
* containing function has been flagged as heavyweight.
*
* The emitter must see TCF_FUN_HEAVYWEIGHT accurately before
* generating any code for a tree of nested functions.
*/
while ((ale = iter()) != NULL) {
JSDefinition *lexdep = ALE_DEFN(ale)->resolve();
if (!lexdep->isFreeVar()) {
JSFunctionBox *afunbox = funbox->parent;
uintN lexdepLevel = lexdep->frameLevel();
while (afunbox) {
/*
* NB: afunbox->level is the static level of
* the definition or expression of the function
* parsed into afunbox, not the static level of
* its body. Therefore we must add 1 to match
* lexdep's level to find the afunbox whose
* body contains the lexdep definition.
*/
if (afunbox->level + 1U == lexdepLevel ||
(lexdepLevel == 0 && lexdep->isLet())) {
afunbox->tcflags |= TCF_FUN_HEAVYWEIGHT;
break;
}
afunbox = afunbox->parent;
}
if (!afunbox && (tcflags & TCF_IN_FUNCTION))
tcflags |= TCF_FUN_HEAVYWEIGHT;
}
}
}
}
funbox = funbox->siblings;
if (!funbox)
break;
JS_ASSERT(funbox->parent == parent);
}
#undef FUN_METER
}
const char js_argument_str[] = "argument";
const char js_variable_str[] = "variable";
const char js_unknown_str[] = "unknown";
const char *
JSDefinition::kindString(Kind kind)
{
static const char *table[] = {
js_var_str, js_const_str, js_let_str,
js_function_str, js_argument_str, js_unknown_str
};
JS_ASSERT(unsigned(kind) <= unsigned(ARG));
return table[kind];
}
static JSFunctionBox *
EnterFunction(JSParseNode *fn, JSTreeContext *tc, JSTreeContext *funtc,
JSAtom *funAtom = NULL, uintN lambda = JSFUN_LAMBDA)
{
JSFunction *fun = tc->compiler->newFunction(tc, funAtom, lambda);
if (!fun)
return NULL;
/* Create box for fun->object early to protect against last-ditch GC. */
JSFunctionBox *funbox = tc->compiler->newFunctionBox(FUN_OBJECT(fun), fn, tc);
if (!funbox)
return NULL;
/* Initialize non-default members of funtc. */
funtc->flags |= funbox->tcflags;
funtc->blockidGen = tc->blockidGen;
if (!GenerateBlockId(funtc, funtc->bodyid))
return NULL;
funtc->fun = fun;
funtc->funbox = funbox;
funtc->parent = tc;
if (!SetStaticLevel(funtc, tc->staticLevel + 1))
return NULL;
return funbox;
}
static bool
LeaveFunction(JSParseNode *fn, JSTreeContext *funtc, JSTreeContext *tc,
JSAtom *funAtom = NULL, uintN lambda = JSFUN_LAMBDA)
{
tc->blockidGen = funtc->blockidGen;
fn->pn_funbox->tcflags |= funtc->flags & (TCF_FUN_FLAGS | TCF_COMPILE_N_GO);
fn->pn_dflags |= PND_INITIALIZED;
JS_ASSERT_IF(tc->atTopLevel() && lambda == 0 && funAtom,
fn->pn_dflags & PND_TOPLEVEL);
if (!tc->topStmt || tc->topStmt->type == STMT_BLOCK)
fn->pn_dflags |= PND_BLOCKCHILD;
/*
* Propagate unresolved lexical names up to tc->lexdeps, and save a copy
* of funtc->lexdeps in a TOK_UPVARS node wrapping the function's formal
* params and body. We do this only if there are lexical dependencies not
* satisfied by the function's declarations, to avoid penalizing functions
* that use only their arguments and other local bindings.
*/
if (funtc->lexdeps.count != 0) {
JSAtomListIterator iter(&funtc->lexdeps);
JSAtomListElement *ale;
int foundCallee = 0;
while ((ale = iter()) != NULL) {
JSAtom *atom = ALE_ATOM(ale);
JSDefinition *dn = ALE_DEFN(ale);
JS_ASSERT(dn->isPlaceholder());
if (atom == funAtom && lambda != 0) {
dn->pn_op = JSOP_CALLEE;
dn->pn_cookie = MAKE_UPVAR_COOKIE(funtc->staticLevel, CALLEE_UPVAR_SLOT);
dn->pn_dflags |= PND_BOUND;
/*
* If this named function expression uses its own name other
* than to call itself, flag this function as using arguments,
* as if it had used arguments.callee instead of its own name.
*
* This abuses the plain sense of TCF_FUN_USES_ARGUMENTS, but
* we are out of tcflags bits at the moment. If it deoptimizes
* code unfairly (see JSCompiler::setFunctionKinds, where this
* flag is interpreted in its broader sense, not only to mean
* "this function might leak arguments.callee"), we can perhaps
* try to work harder to add a TCF_FUN_LEAKS_ITSELF flag and
* use that more precisely, both here and for unnamed function
* expressions.
*/
if (dn->isFunArg())
fn->pn_funbox->tcflags |= TCF_FUN_USES_ARGUMENTS;
foundCallee = 1;
continue;
}
if (!(fn->pn_funbox->tcflags & TCF_FUN_SETS_OUTER_NAME) &&
dn->isAssigned()) {
/*
* Make sure we do not fail to set TCF_FUN_SETS_OUTER_NAME if
* any use of dn in funtc assigns. See NoteLValue for the easy
* backward-reference case; this is the hard forward-reference
* case where we pay a higher price.
*/
for (JSParseNode *pnu = dn->dn_uses; pnu; pnu = pnu->pn_link) {
if (pnu->isAssigned() && pnu->pn_blockid >= funtc->bodyid) {
fn->pn_funbox->tcflags |= TCF_FUN_SETS_OUTER_NAME;
break;
}
}
}
JSAtomListElement *outer_ale = tc->decls.lookup(atom);
if (!outer_ale)
outer_ale = tc->lexdeps.lookup(atom);
if (outer_ale) {
/*
* Insert dn's uses list at the front of outer_dn's list.
*
* Without loss of generality or correctness, we allow a dn to
* be in inner and outer lexdeps, since the purpose of lexdeps
* is one-pass coordination of name use and definition across
* functions, and if different dn's are used we'll merge lists
* when leaving the inner function.
*
* The dn == outer_dn case arises with generator expressions
* (see CompExprTransplanter::transplant, the PN_FUNC/PN_NAME
* case), and nowhere else, currently.
*/
JSDefinition *outer_dn = ALE_DEFN(outer_ale);
if (dn != outer_dn) {
JSParseNode **pnup = &dn->dn_uses;
JSParseNode *pnu;
while ((pnu = *pnup) != NULL) {
pnu->pn_lexdef = outer_dn;
pnup = &pnu->pn_link;
}
/*
* Make dn be a use that redirects to outer_dn, because we
* can't replace dn with outer_dn in all the pn_namesets in
* the AST where it may be. Instead we make it forward to
* outer_dn. See JSDefinition::resolve.
*/
*pnup = outer_dn->dn_uses;
outer_dn->dn_uses = dn;
outer_dn->pn_dflags |= dn->pn_dflags & ~PND_PLACEHOLDER;
dn->pn_defn = false;
dn->pn_used = true;
dn->pn_lexdef = outer_dn;
}
} else {
/* Add an outer lexical dependency for ale's definition. */
outer_ale = tc->lexdeps.add(tc->compiler, atom);
if (!outer_ale)
return false;
ALE_SET_DEFN(outer_ale, ALE_DEFN(ale));
}
}
if (funtc->lexdeps.count - foundCallee != 0) {
JSParseNode *body = fn->pn_body;
fn->pn_body = NewParseNode(PN_NAMESET, tc);
if (!fn->pn_body)
return false;
fn->pn_body->pn_type = TOK_UPVARS;
fn->pn_body->pn_pos = body->pn_pos;
if (foundCallee)
funtc->lexdeps.remove(tc->compiler, funAtom);
fn->pn_body->pn_names = funtc->lexdeps;
fn->pn_body->pn_tree = body;
}
funtc->lexdeps.clear();
}
return true;
}
static JSParseNode *
FunctionDef(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
uintN lambda)
{
JSOp op;
JSParseNode *pn, *body, *result;
JSTokenType tt;
JSAtom *funAtom;
JSAtomListElement *ale;
#if JS_HAS_DESTRUCTURING
JSParseNode *item, *list = NULL;
bool destructuringArg = false, duplicatedArg = false;
#endif
/* Make a TOK_FUNCTION node. */
#if JS_HAS_GETTER_SETTER
op = CURRENT_TOKEN(ts).t_op;
#endif
pn = NewParseNode(PN_FUNC, tc);
if (!pn)
return NULL;
pn->pn_body = NULL;
pn->pn_cookie = FREE_UPVAR_COOKIE;
/*
* If a lambda, give up on JSOP_{GET,CALL}UPVAR usage unless this function
* is immediately applied (we clear PND_FUNARG if so -- see MemberExpr).
*
* Also treat function sub-statements (non-lambda, non-top-level functions)
* as escaping funargs, since we can't statically analyze their definitions
* and uses.
*/
bool topLevel = tc->atTopLevel();
pn->pn_dflags = (lambda || !topLevel) ? PND_FUNARG : 0;
/* Scan the optional function name into funAtom. */
ts->flags |= TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
if (tt == TOK_NAME) {
funAtom = CURRENT_TOKEN(ts).t_atom;
} else {
if (lambda == 0 && (cx->options & JSOPTION_ANONFUNFIX)) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_SYNTAX_ERROR);
return NULL;
}
funAtom = NULL;
js_UngetToken(ts);
}
/*
* Record names for function statements in tc->decls so we know when to
* avoid optimizing variable references that might name a function.
*/
if (lambda == 0 && funAtom) {
ale = tc->decls.lookup(funAtom);
if (ale) {
JSDefinition *dn = ALE_DEFN(ale);
JSDefinition::Kind dn_kind = dn->kind();
JS_ASSERT(!dn->pn_used);
JS_ASSERT(dn->pn_defn);
if (JS_HAS_STRICT_OPTION(cx) || dn_kind == JSDefinition::CONST) {
const char *name = js_AtomToPrintableString(cx, funAtom);
if (!name ||
!js_ReportCompileErrorNumber(cx, ts, NULL,
(dn_kind != JSDefinition::CONST)
? JSREPORT_WARNING | JSREPORT_STRICT
: JSREPORT_ERROR,
JSMSG_REDECLARED_VAR,
JSDefinition::kindString(dn_kind),
name)) {
return NULL;
}
}
if (topLevel) {
ALE_SET_DEFN(ale, pn);
pn->pn_defn = true;
pn->dn_uses = dn; /* dn->dn_uses is now pn_link */
if (!MakeDefIntoUse(dn, pn, funAtom, tc))
return NULL;
}
} else if (topLevel) {
/*
* If this function was used before it was defined, claim the
* pre-created definition node for this function that PrimaryExpr
* put in tc->lexdeps on first forward reference, and recycle pn.
*/
JSHashEntry **hep;
ale = tc->lexdeps.rawLookup(funAtom, hep);
if (ale) {
JSDefinition *fn = ALE_DEFN(ale);
JS_ASSERT(fn->pn_defn);
fn->pn_type = TOK_FUNCTION;
fn->pn_arity = PN_FUNC;
fn->pn_pos.begin = pn->pn_pos.begin;
fn->pn_body = NULL;
fn->pn_cookie = FREE_UPVAR_COOKIE;
tc->lexdeps.rawRemove(tc->compiler, ale, hep);
RecycleTree(pn, tc);
pn = fn;
}
if (!Define(pn, funAtom, tc))
return NULL;
}
/*
* A function nested at top level inside another's body needs only a
* local variable to bind its name to its value, and not an activation
* object property (it might also need the activation property, if the
* outer function contains with statements, e.g., but the stack slot
* wins when jsemit.c's BindNameToSlot can optimize a JSOP_NAME into a
* JSOP_GETLOCAL bytecode).
*/
if (topLevel) {
pn->pn_dflags |= PND_TOPLEVEL;
if (tc->flags & TCF_IN_FUNCTION) {
JSLocalKind localKind;
uintN index;
/*
* Define a local in the outer function so that BindNameToSlot
* can properly optimize accesses. Note that we need a local
* variable, not an argument, for the function statement. Thus
* we add a variable even if a parameter with the given name
* already exists.
*/
localKind = js_LookupLocal(cx, tc->fun, funAtom, &index);
switch (localKind) {
case JSLOCAL_NONE:
case JSLOCAL_ARG:
index = tc->fun->u.i.nvars;
if (!js_AddLocal(cx, tc->fun, funAtom, JSLOCAL_VAR))
return NULL;
/* FALL THROUGH */
case JSLOCAL_VAR:
pn->pn_cookie = MAKE_UPVAR_COOKIE(tc->staticLevel, index);
pn->pn_dflags |= PND_BOUND;
break;
default:;
}
}
}
}
/* Initialize early for possible flags mutation via DestructuringExpr. */
JSTreeContext funtc(tc->compiler);
JSFunctionBox *funbox = EnterFunction(pn, tc, &funtc, funAtom, lambda);
if (!funbox)
return NULL;
JSFunction *fun = (JSFunction *) funbox->object;
#if JS_HAS_GETTER_SETTER
if (op != JSOP_NOP)
fun->flags |= (op == JSOP_GETTER) ? JSPROP_GETTER : JSPROP_SETTER;
#endif
/* Now parse formal argument list and compute fun->nargs. */
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_BEFORE_FORMAL);
if (!js_MatchToken(cx, ts, TOK_RP)) {
do {
tt = js_GetToken(cx, ts);
switch (tt) {
#if JS_HAS_DESTRUCTURING
case TOK_LB:
case TOK_LC:
{
BindData data;
JSParseNode *lhs, *rhs;
jsint slot;
/* See comment below in the TOK_NAME case. */
if (duplicatedArg)
goto report_dup_and_destructuring;
destructuringArg = true;
/*
* A destructuring formal parameter turns into one or more
* local variables initialized from properties of a single
* anonymous positional parameter, so here we must tweak our
* binder and its data.
*/
data.pn = NULL;
data.op = JSOP_DEFVAR;
data.binder = BindDestructuringArg;
lhs = DestructuringExpr(cx, &data, &funtc, tt);
if (!lhs)
return NULL;
/*
* Adjust fun->nargs to count the single anonymous positional
* parameter that is to be destructured.
*/
slot = fun->nargs;
if (!js_AddLocal(cx, fun, NULL, JSLOCAL_ARG))
return NULL;
/*
* Synthesize a destructuring assignment from the single
* anonymous positional parameter into the destructuring
* left-hand-side expression and accumulate it in list.
*/
rhs = NewNameNode(cx, ts, cx->runtime->atomState.emptyAtom, &funtc);
if (!rhs)
return NULL;
rhs->pn_type = TOK_NAME;
rhs->pn_op = JSOP_GETARG;
rhs->pn_cookie = MAKE_UPVAR_COOKIE(funtc.staticLevel, slot);
rhs->pn_dflags |= PND_BOUND;
item = NewBinary(TOK_ASSIGN, JSOP_NOP, lhs, rhs, &funtc);
if (!item)
return NULL;
if (!list) {
list = NewParseNode(PN_LIST, &funtc);
if (!list)
return NULL;
list->pn_type = TOK_COMMA;
list->makeEmpty();
}
list->append(item);
break;
}
#endif /* JS_HAS_DESTRUCTURING */
case TOK_NAME:
{
/*
* Check for a duplicate parameter name, a "feature" that
* ECMA-262 requires. This is a SpiderMonkey strict warning,
* soon to be an ES3.1 strict error.
*
* Further, if any argument is a destructuring pattern, forbid
* duplicates. We will report the error either now if we have
* seen a destructuring pattern already, or later when we find
* the first pattern.
*/
JSAtom *atom = CURRENT_TOKEN(ts).t_atom;
if (JS_HAS_STRICT_OPTION(cx) &&
js_LookupLocal(cx, fun, atom, NULL) != JSLOCAL_NONE) {
#if JS_HAS_DESTRUCTURING
if (destructuringArg)
goto report_dup_and_destructuring;
duplicatedArg = true;
#endif
const char *name = js_AtomToPrintableString(cx, atom);
if (!name ||
!js_ReportCompileErrorNumber(cx, TS(funtc.compiler),
NULL,
JSREPORT_WARNING |
JSREPORT_STRICT,
JSMSG_DUPLICATE_FORMAL,
name)) {
return NULL;
}
}
if (!DefineArg(pn, atom, fun->nargs, &funtc))
return NULL;
if (!js_AddLocal(cx, fun, atom, JSLOCAL_ARG))
return NULL;
break;
}
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_MISSING_FORMAL);
/* FALL THROUGH */
case TOK_ERROR:
return NULL;
#if JS_HAS_DESTRUCTURING
report_dup_and_destructuring:
js_ReportCompileErrorNumber(cx, TS(tc->compiler), NULL,
JSREPORT_ERROR,
JSMSG_DESTRUCT_DUP_ARG);
return NULL;
#endif
}
} while (js_MatchToken(cx, ts, TOK_COMMA));
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_FORMAL);
}
#if JS_HAS_EXPR_CLOSURES
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt != TOK_LC) {
js_UngetToken(ts);
fun->flags |= JSFUN_EXPR_CLOSURE;
}
#else
MUST_MATCH_TOKEN(TOK_LC, JSMSG_CURLY_BEFORE_BODY);
#endif
body = FunctionBody(cx, ts, &funtc);
if (!body)
return NULL;
#if JS_HAS_EXPR_CLOSURES
if (tt == TOK_LC)
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_AFTER_BODY);
else if (lambda == 0 && !MatchOrInsertSemicolon(cx, ts))
return NULL;
#else
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_AFTER_BODY);
#endif
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
#if JS_HAS_DESTRUCTURING
/*
* If there were destructuring formal parameters, prepend the initializing
* comma expression that we synthesized to body. If the body is a lexical
* scope node, we must make a special TOK_SEQ node, to prepend the formal
* parameter destructuring code without bracing the decompilation of the
* function body's lexical scope.
*/
if (list) {
if (body->pn_arity != PN_LIST) {
JSParseNode *block;
block = NewParseNode(PN_LIST, tc);
if (!block)
return NULL;
block->pn_type = TOK_SEQ;
block->pn_pos = body->pn_pos;
block->initList(body);
body = block;
}
item = NewParseNode(PN_UNARY, tc);
if (!item)
return NULL;
item->pn_type = TOK_SEMI;
item->pn_pos.begin = item->pn_pos.end = body->pn_pos.begin;
item->pn_kid = list;
item->pn_next = body->pn_head;
body->pn_head = item;
if (body->pn_tail == &body->pn_head)
body->pn_tail = &item->pn_next;
++body->pn_count;
body->pn_xflags |= PNX_DESTRUCT;
}
#endif
/*
* If we collected flags that indicate nested heavyweight functions, or
* this function contains heavyweight-making statements (with statement,
* visible eval call, or assignment to 'arguments'), flag the function as
* heavyweight (requiring a call object per invocation).
*/
if (funtc.flags & TCF_FUN_HEAVYWEIGHT) {
fun->flags |= JSFUN_HEAVYWEIGHT;
tc->flags |= TCF_FUN_HEAVYWEIGHT;
} else {
/*
* If this function is a named statement function not at top-level
* (i.e. not a top-level function definiton or expression), then our
* enclosing function, if any, must be heavyweight.
*/
if (!topLevel && lambda == 0 && funAtom)
tc->flags |= TCF_FUN_HEAVYWEIGHT;
}
result = pn;
if (lambda != 0) {
/*
* ECMA ed. 3 standard: function expression, possibly anonymous.
*/
op = JSOP_LAMBDA;
} else if (!funAtom) {
/*
* If this anonymous function definition is *not* embedded within a
* larger expression, we treat it as an expression statement, not as
* a function declaration -- and not as a syntax error (as ECMA-262
* Edition 3 would have it). Backward compatibility must trump all,
* unless JSOPTION_ANONFUNFIX is set.
*/
result = NewParseNode(PN_UNARY, tc);
if (!result)
return NULL;
result->pn_type = TOK_SEMI;
result->pn_pos = pn->pn_pos;
result->pn_kid = pn;
op = JSOP_LAMBDA;
} else if (!topLevel) {
/*
* ECMA ed. 3 extension: a function expression statement not at the
* top level, e.g., in a compound statement such as the "then" part
* of an "if" statement, binds a closure only if control reaches that
* sub-statement.
*/
op = JSOP_DEFFUN;
} else {
op = JSOP_NOP;
}
funbox->kids = funtc.functionList;
pn->pn_funbox = funbox;
pn->pn_op = op;
if (pn->pn_body) {
pn->pn_body->append(body);
pn->pn_body->pn_pos = body->pn_pos;
} else {
pn->pn_body = body;
}
pn->pn_blockid = tc->blockid();
if (!LeaveFunction(pn, &funtc, tc, funAtom, lambda))
return NULL;
return result;
}
static JSParseNode *
FunctionStmt(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
return FunctionDef(cx, ts, tc, 0);
}
static JSParseNode *
FunctionExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
return FunctionDef(cx, ts, tc, JSFUN_LAMBDA);
}
/*
* Parse the statements in a block, creating a TOK_LC node that lists the
* statements' trees. If called from block-parsing code, the caller must
* match { before and } after.
*/
static JSParseNode *
Statements(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn, *pn2, *saveBlock;
JSTokenType tt;
JS_CHECK_RECURSION(cx, return NULL);
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_LC;
pn->makeEmpty();
pn->pn_blockid = tc->blockid();
saveBlock = tc->blockNode;
tc->blockNode = pn;
for (;;) {
ts->flags |= TSF_OPERAND;
tt = js_PeekToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt <= TOK_EOF || tt == TOK_RC) {
if (tt == TOK_ERROR) {
if (ts->flags & TSF_EOF)
ts->flags |= TSF_UNEXPECTED_EOF;
return NULL;
}
break;
}
pn2 = Statement(cx, ts, tc);
if (!pn2) {
if (ts->flags & TSF_EOF)
ts->flags |= TSF_UNEXPECTED_EOF;
return NULL;
}
if (pn2->pn_type == TOK_FUNCTION) {
/*
* PNX_FUNCDEFS notifies the emitter that the block contains top-
* level function definitions that should be processed before the
* rest of nodes.
*
* TCF_HAS_FUNCTION_STMT is for the TOK_LC case in Statement. It
* is relevant only for function definitions not at top-level,
* which we call function statements.
*/
if (tc->atTopLevel())
pn->pn_xflags |= PNX_FUNCDEFS;
else
tc->flags |= TCF_HAS_FUNCTION_STMT;
}
pn->append(pn2);
}
/*
* Handle the case where there was a let declaration under this block. If
* it replaced tc->blockNode with a new block node then we must refresh pn
* and then restore tc->blockNode.
*/
if (tc->blockNode != pn)
pn = tc->blockNode;
tc->blockNode = saveBlock;
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
return pn;
}
static JSParseNode *
Condition(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_BEFORE_COND);
pn = ParenExpr(cx, ts, tc, NULL, NULL);
if (!pn)
return NULL;
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_COND);
/* Check for (a = b) and warn about possible (a == b) mistype. */
if (pn->pn_type == TOK_ASSIGN &&
pn->pn_op == JSOP_NOP &&
!pn->pn_parens &&
!js_ReportCompileErrorNumber(cx, ts, NULL,
JSREPORT_WARNING | JSREPORT_STRICT,
JSMSG_EQUAL_AS_ASSIGN,
"")) {
return NULL;
}
return pn;
}
static JSBool
MatchLabel(JSContext *cx, JSTokenStream *ts, JSParseNode *pn)
{
JSAtom *label;
JSTokenType tt;
tt = js_PeekTokenSameLine(cx, ts);
if (tt == TOK_ERROR)
return JS_FALSE;
if (tt == TOK_NAME) {
(void) js_GetToken(cx, ts);
label = CURRENT_TOKEN(ts).t_atom;
} else {
label = NULL;
}
pn->pn_atom = label;
return JS_TRUE;
}
static JSBool
BindLet(JSContext *cx, BindData *data, JSAtom *atom, JSTreeContext *tc)
{
JSParseNode *pn;
JSObject *blockObj;
JSAtomListElement *ale;
jsint n;
/*
* Top-level 'let' is the same as 'var' currently -- this may change in a
* successor standard to ES3.1 that specifies 'let'.
*/
JS_ASSERT(!tc->atTopLevel());
pn = data->pn;
blockObj = tc->blockChain;
ale = tc->decls.lookup(atom);
if (ale && ALE_DEFN(ale)->pn_blockid == tc->blockid()) {
const char *name = js_AtomToPrintableString(cx, atom);
if (name) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn,
JSREPORT_ERROR, JSMSG_REDECLARED_VAR,
(ale && ALE_DEFN(ale)->isConst())
? js_const_str
: js_variable_str,
name);
}
return JS_FALSE;
}
n = OBJ_BLOCK_COUNT(cx, blockObj);
if (n == JS_BIT(16)) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn,
JSREPORT_ERROR, data->let.overflow);
return JS_FALSE;
}
/*
* Pass push = true to Define so it pushes an ale ahead of any outer scope.
* This is balanced by PopStatement, defined immediately below.
*/
if (!Define(pn, atom, tc, true))
return JS_FALSE;
/*
* Assign block-local index to pn->pn_cookie right away, encoding it as an
* upvar cookie whose skip tells the current static level. The emitter will
* adjust the node's slot based on its stack depth model -- and, for global
* and eval code, JSCompiler::compileScript will adjust the slot again to
* include script->nfixed.
*/
pn->pn_op = JSOP_GETLOCAL;
pn->pn_cookie = MAKE_UPVAR_COOKIE(tc->staticLevel, n);
pn->pn_dflags |= PND_LET | PND_BOUND;
/*
* Use JSPROP_ENUMERATE to aid the disassembler. Define the let binding's
* property before storing pn in a reserved slot, since block_reserveSlots
* depends on OBJ_SCOPE(blockObj)->entryCount.
*/
if (!js_DefineNativeProperty(cx, blockObj, ATOM_TO_JSID(atom), JSVAL_VOID,
NULL, NULL,
JSPROP_ENUMERATE |
JSPROP_PERMANENT |
JSPROP_SHARED,
SPROP_HAS_SHORTID, (int16) n, NULL)) {
return JS_FALSE;
}
/*
* Store pn temporarily in what would be reserved slots in a cloned block
* object (once the prototype's final population is known, after all 'let'
* bindings for this block have been parsed). We will free these reserved
* slots in jsemit.cpp:EmitEnterBlock.
*/
uintN slot = JSSLOT_FREE(&js_BlockClass) + n;
if (slot >= STOBJ_NSLOTS(blockObj) &&
!js_GrowSlots(cx, blockObj, slot + 1)) {
return JS_FALSE;
}
OBJ_SCOPE(blockObj)->freeslot = slot + 1;
STOBJ_SET_SLOT(blockObj, slot, PRIVATE_TO_JSVAL(pn));
return JS_TRUE;
}
static void
PopStatement(JSTreeContext *tc)
{
JSStmtInfo *stmt = tc->topStmt;
if (stmt->flags & SIF_SCOPE) {
JSObject *obj = stmt->blockObj;
JSScope *scope = OBJ_SCOPE(obj);
JS_ASSERT(!OBJ_IS_CLONED_BLOCK(obj));
for (JSScopeProperty *sprop = scope->lastProp; sprop; sprop = sprop->parent) {
JSAtom *atom = JSID_TO_ATOM(sprop->id);
/* Beware the empty destructuring dummy. */
if (atom == tc->compiler->context->runtime->atomState.emptyAtom)
continue;
tc->decls.remove(tc->compiler, atom);
}
/*
* The block scope will not be modified again. It may be shared. Clear
* scope->object to make scope->owned() false.
*/
scope->object = NULL;
}
js_PopStatement(tc);
}
static inline bool
OuterLet(JSTreeContext *tc, JSStmtInfo *stmt, JSAtom *atom)
{
while (stmt->downScope) {
stmt = js_LexicalLookup(tc, atom, NULL, stmt->downScope);
if (!stmt)
return false;
if (stmt->type == STMT_BLOCK)
return true;
}
return false;
}
static JSBool
BindVarOrConst(JSContext *cx, BindData *data, JSAtom *atom, JSTreeContext *tc)
{
JSStmtInfo *stmt = js_LexicalLookup(tc, atom, NULL);
JSParseNode *pn = data->pn;
if (stmt && stmt->type == STMT_WITH) {
pn->pn_op = JSOP_NAME;
data->fresh = false;
return JS_TRUE;
}
JSAtomListElement *ale = tc->decls.lookup(atom);
JSOp op = data->op;
if (stmt || ale) {
JSDefinition *dn = ale ? ALE_DEFN(ale) : NULL;
JSDefinition::Kind dn_kind = dn ? dn->kind() : JSDefinition::VAR;
const char *name;
if (dn_kind == JSDefinition::ARG) {
name = js_AtomToPrintableString(cx, atom);
if (!name)
return JS_FALSE;
if (op == JSOP_DEFCONST) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn,
JSREPORT_ERROR, JSMSG_REDECLARED_PARAM,
name);
return JS_FALSE;
}
if (!js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn,
JSREPORT_WARNING | JSREPORT_STRICT,
JSMSG_VAR_HIDES_ARG, name)) {
return JS_FALSE;
}
} else {
bool error = (op == JSOP_DEFCONST ||
dn_kind == JSDefinition::CONST ||
(dn_kind == JSDefinition::LET &&
(stmt->type != STMT_CATCH || OuterLet(tc, stmt, atom))));
if (JS_HAS_STRICT_OPTION(cx)
? op != JSOP_DEFVAR || dn_kind != JSDefinition::VAR
: error) {
name = js_AtomToPrintableString(cx, atom);
if (!name ||
!js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn,
!error
? JSREPORT_WARNING | JSREPORT_STRICT
: JSREPORT_ERROR,
JSMSG_REDECLARED_VAR,
JSDefinition::kindString(dn_kind),
name)) {
return JS_FALSE;
}
}
}
}
if (!ale) {
if (!Define(pn, atom, tc))
return JS_FALSE;
} else {
/*
* A var declaration never recreates an existing binding, it restates
* it and possibly reinitializes its value. Beware that if pn becomes a
* use of ALE_DEFN(ale), and if we have an initializer for this var or
* const (typically a const would ;-), then pn must be rewritten into a
* TOK_ASSIGN node. See Variables, further below.
*
* A case such as let (x = 1) { var x = 2; print(x); } is even harder.
* There the x definition is hoisted but the x = 2 assignment mutates
* the block-local binding of x.
*/
JSDefinition *dn = ALE_DEFN(ale);
data->fresh = false;
if (!pn->pn_used) {
/* Make pnu be a fresh name node that uses dn. */
JSParseNode *pnu = pn;
if (pn->pn_defn) {
pnu = NewNameNode(cx, TS(tc->compiler), atom, tc);
if (!pnu)
return JS_FALSE;
}
LinkUseToDef(pnu, dn, tc);
pnu->pn_op = JSOP_NAME;
}
while (dn->kind() == JSDefinition::LET) {
do {
ale = ALE_NEXT(ale);
} while (ale && ALE_ATOM(ale) != atom);
if (!ale)
break;
dn = ALE_DEFN(ale);
}
if (ale) {
JS_ASSERT_IF(data->op == JSOP_DEFCONST,
dn->kind() == JSDefinition::CONST);
return JS_TRUE;
}
/*
* A var or const that is shadowed by one or more let bindings of the
* same name, but that has not been declared until this point, must be
* hoisted above the let bindings.
*/
if (!pn->pn_defn) {
JSHashEntry **hep;
ale = tc->lexdeps.rawLookup(atom, hep);
if (ale) {
pn = ALE_DEFN(ale);
tc->lexdeps.rawRemove(tc->compiler, ale, hep);
} else {
JSParseNode *pn2 = NewNameNode(cx, TS(tc->compiler), atom, tc);
if (!pn2)
return JS_FALSE;
/* The token stream may be past the location for pn. */
pn2->pn_type = TOK_NAME;
pn2->pn_pos = pn->pn_pos;
pn = pn2;
}
pn->pn_op = JSOP_NAME;
}
ale = tc->decls.add(tc->compiler, atom, JSAtomList::HOIST);
if (!ale)
return JS_FALSE;
ALE_SET_DEFN(ale, pn);
pn->pn_defn = true;
pn->pn_dflags &= ~PND_PLACEHOLDER;
}
if (data->op == JSOP_DEFCONST)
pn->pn_dflags |= PND_CONST;
if (!(tc->flags & TCF_IN_FUNCTION)) {
/*
* If we are generating global or eval-called-from-global code, bind a
* "gvar" here, as soon as possible. The JSOP_GETGVAR, etc., ops speed
* up global variable access by memoizing name-to-slot mappings in the
* script prolog (via JSOP_DEFVAR/JSOP_DEFCONST). If the memoization
* can't be done due to a pre-existing property of the same name as the
* var or const but incompatible attributes/getter/setter/etc, these
* ops devolve to JSOP_NAME, etc.
*
* For now, don't try to lookup eval frame variables at compile time.
* Seems sub-optimal: why couldn't we find eval-called-from-a-function
* upvars early and possibly simplify jsemit.cpp:BindNameToSlot?
*/
pn->pn_op = JSOP_NAME;
if ((tc->flags & TCF_COMPILING) && !tc->compiler->callerFrame) {
JSCodeGenerator *cg = (JSCodeGenerator *) tc;
/* Index atom so we can map fast global number to name. */
ale = cg->atomList.add(tc->compiler, atom);
if (!ale)
return JS_FALSE;
/* Defend against cg->ngvars 16-bit overflow. */
uintN slot = ALE_INDEX(ale);
if ((slot + 1) >> 16)
return JS_TRUE;
if ((uint16)(slot + 1) > cg->ngvars)
cg->ngvars = (uint16)(slot + 1);
pn->pn_op = JSOP_GETGVAR;
pn->pn_cookie = MAKE_UPVAR_COOKIE(tc->staticLevel, slot);
pn->pn_dflags |= PND_BOUND | PND_GVAR;
}
return JS_TRUE;
}
if (atom == cx->runtime->atomState.argumentsAtom) {
pn->pn_op = JSOP_ARGUMENTS;
pn->pn_dflags |= PND_BOUND;
return JS_TRUE;
}
JSLocalKind localKind = js_LookupLocal(cx, tc->fun, atom, NULL);
if (localKind == JSLOCAL_NONE) {
/*
* Property not found in current variable scope: we have not seen this
* variable before. Define a new local variable by adding a property to
* the function's scope and allocating one slot in the function's vars
* frame. Any locals declared in a with statement body are handled at
* runtime, by script prolog JSOP_DEFVAR opcodes generated for global
* and heavyweight-function-local vars.
*/
localKind = (data->op == JSOP_DEFCONST) ? JSLOCAL_CONST : JSLOCAL_VAR;
uintN index = tc->fun->u.i.nvars;
if (!BindLocalVariable(cx, tc->fun, atom, localKind))
return JS_FALSE;
pn->pn_op = JSOP_GETLOCAL;
pn->pn_cookie = MAKE_UPVAR_COOKIE(tc->staticLevel, index);
pn->pn_dflags |= PND_BOUND;
return JS_TRUE;
}
if (localKind == JSLOCAL_ARG) {
/* We checked errors and strict warnings earlier -- see above. */
JS_ASSERT(ale && ALE_DEFN(ale)->kind() == JSDefinition::ARG);
} else {
/* Not an argument, must be a redeclared local var. */
JS_ASSERT(localKind == JSLOCAL_VAR || localKind == JSLOCAL_CONST);
}
pn->pn_op = JSOP_NAME;
return JS_TRUE;
}
static JSBool
MakeSetCall(JSContext *cx, JSParseNode *pn, JSTreeContext *tc, uintN msg)
{
JSParseNode *pn2;
JS_ASSERT(pn->pn_arity == PN_LIST);
JS_ASSERT(pn->pn_op == JSOP_CALL || pn->pn_op == JSOP_EVAL || pn->pn_op == JSOP_APPLY);
pn2 = pn->pn_head;
if (pn2->pn_type == TOK_FUNCTION && (pn2->pn_funbox->tcflags & TCF_GENEXP_LAMBDA)) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn, JSREPORT_ERROR, msg);
return JS_FALSE;
}
pn->pn_op = JSOP_SETCALL;
return JS_TRUE;
}
static void
NoteLValue(JSContext *cx, JSParseNode *pn, JSTreeContext *tc, uintN dflag = PND_ASSIGNED)
{
if (pn->pn_used) {
JSDefinition *dn = pn->pn_lexdef;
/*
* Save the win of PND_INITIALIZED if we can prove 'var x;' and 'x = y'
* occur as direct kids of the same block with no forward refs to x.
*/
if (!(dn->pn_dflags & (PND_INITIALIZED | PND_CONST | PND_PLACEHOLDER)) &&
dn->isBlockChild() &&
pn->isBlockChild() &&
dn->pn_blockid == pn->pn_blockid &&
dn->pn_pos.end <= pn->pn_pos.begin &&
dn->dn_uses == pn) {
dflag = PND_INITIALIZED;
}
dn->pn_dflags |= dflag;
if (dn->frameLevel() != tc->staticLevel) {
/*
* The above condition takes advantage of the all-ones nature of
* FREE_UPVAR_COOKIE, and the reserved level FREE_STATIC_LEVEL.
* We make a stronger assertion by excluding FREE_UPVAR_COOKIE.
*/
JS_ASSERT_IF(dn->pn_cookie != FREE_UPVAR_COOKIE,
dn->frameLevel() < tc->staticLevel);
tc->flags |= TCF_FUN_SETS_OUTER_NAME;
}
}
pn->pn_dflags |= dflag;
if (pn->pn_atom == cx->runtime->atomState.argumentsAtom)
tc->flags |= TCF_FUN_HEAVYWEIGHT;
}
#if JS_HAS_DESTRUCTURING
static JSBool
BindDestructuringVar(JSContext *cx, BindData *data, JSParseNode *pn,
JSTreeContext *tc)
{
JSAtom *atom;
/*
* Destructuring is a form of assignment, so just as for an initialized
* simple variable, we must check for assignment to 'arguments' and flag
* the enclosing function (if any) as heavyweight.
*/
JS_ASSERT(pn->pn_type == TOK_NAME);
atom = pn->pn_atom;
if (atom == cx->runtime->atomState.argumentsAtom)
tc->flags |= TCF_FUN_HEAVYWEIGHT;
data->pn = pn;
if (!data->binder(cx, data, atom, tc))
return JS_FALSE;
/*
* Select the appropriate name-setting opcode, respecting eager selection
* done by the data->binder function.
*/
if (pn->pn_dflags & PND_BOUND) {
pn->pn_op = (pn->pn_op == JSOP_ARGUMENTS)
? JSOP_SETNAME
: (pn->pn_dflags & PND_GVAR)
? JSOP_SETGVAR
: JSOP_SETLOCAL;
} else {
pn->pn_op = (data->op == JSOP_DEFCONST)
? JSOP_SETCONST
: JSOP_SETNAME;
}
if (data->op == JSOP_DEFCONST)
pn->pn_dflags |= PND_CONST;
NoteLValue(cx, pn, tc, PND_INITIALIZED);
return JS_TRUE;
}
/*
* Here, we are destructuring {... P: Q, ...} = R, where P is any id, Q is any
* LHS expression except a destructuring initialiser, and R is on the stack.
* Because R is already evaluated, the usual LHS-specialized bytecodes won't
* work. After pushing R[P] we need to evaluate Q's "reference base" QB and
* then push its property name QN. At this point the stack looks like
*
* [... R, R[P], QB, QN]
*
* We need to set QB[QN] = R[P]. This is a job for JSOP_ENUMELEM, which takes
* its operands with left-hand side above right-hand side:
*
* [rval, lval, xval]
*
* and pops all three values, setting lval[xval] = rval. But we cannot select
* JSOP_ENUMELEM yet, because the LHS may turn out to be an arg or local var,
* which can be optimized further. So we select JSOP_SETNAME.
*/
static JSBool
BindDestructuringLHS(JSContext *cx, JSParseNode *pn, JSTreeContext *tc)
{
switch (pn->pn_type) {
case TOK_NAME:
NoteLValue(cx, pn, tc);
/* FALL THROUGH */
case TOK_DOT:
case TOK_LB:
pn->pn_op = JSOP_SETNAME;
break;
case TOK_LP:
if (!MakeSetCall(cx, pn, tc, JSMSG_BAD_LEFTSIDE_OF_ASS))
return JS_FALSE;
break;
#if JS_HAS_XML_SUPPORT
case TOK_UNARYOP:
if (pn->pn_op == JSOP_XMLNAME) {
pn->pn_op = JSOP_BINDXMLNAME;
break;
}
/* FALL THROUGH */
#endif
default:
js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn,
JSREPORT_ERROR, JSMSG_BAD_LEFTSIDE_OF_ASS);
return JS_FALSE;
}
return JS_TRUE;
}
typedef struct FindPropValData {
uint32 numvars; /* # of destructuring vars in left side */
uint32 maxstep; /* max # of steps searching right side */
JSDHashTable table; /* hash table for O(1) right side search */
} FindPropValData;
typedef struct FindPropValEntry {
JSDHashEntryHdr hdr;
JSParseNode *pnkey;
JSParseNode *pnval;
} FindPropValEntry;
#define ASSERT_VALID_PROPERTY_KEY(pnkey) \
JS_ASSERT(((pnkey)->pn_arity == PN_NULLARY && \
((pnkey)->pn_type == TOK_NUMBER || \
(pnkey)->pn_type == TOK_STRING || \
(pnkey)->pn_type == TOK_NAME)) || \
((pnkey)->pn_arity == PN_NAME && (pnkey)->pn_type == TOK_NAME))
static JSDHashNumber
HashFindPropValKey(JSDHashTable *table, const void *key)
{
const JSParseNode *pnkey = (const JSParseNode *)key;
ASSERT_VALID_PROPERTY_KEY(pnkey);
return (pnkey->pn_type == TOK_NUMBER)
? (JSDHashNumber) JS_HASH_DOUBLE(pnkey->pn_dval)
: ATOM_HASH(pnkey->pn_atom);
}
static JSBool
MatchFindPropValEntry(JSDHashTable *table,
const JSDHashEntryHdr *entry,
const void *key)
{
const FindPropValEntry *fpve = (const FindPropValEntry *)entry;
const JSParseNode *pnkey = (const JSParseNode *)key;
ASSERT_VALID_PROPERTY_KEY(pnkey);
return pnkey->pn_type == fpve->pnkey->pn_type &&
((pnkey->pn_type == TOK_NUMBER)
? pnkey->pn_dval == fpve->pnkey->pn_dval
: pnkey->pn_atom == fpve->pnkey->pn_atom);
}
static const JSDHashTableOps FindPropValOps = {
JS_DHashAllocTable,
JS_DHashFreeTable,
HashFindPropValKey,
MatchFindPropValEntry,
JS_DHashMoveEntryStub,
JS_DHashClearEntryStub,
JS_DHashFinalizeStub,
NULL
};
#define STEP_HASH_THRESHOLD 10
#define BIG_DESTRUCTURING 5
#define BIG_OBJECT_INIT 20
static JSParseNode *
FindPropertyValue(JSParseNode *pn, JSParseNode *pnid, FindPropValData *data)
{
FindPropValEntry *entry;
JSParseNode *pnhit, *pnhead, *pnprop, *pnkey;
uint32 step;
/* If we have a hash table, use it as the sole source of truth. */
if (data->table.ops) {
entry = (FindPropValEntry *)
JS_DHashTableOperate(&data->table, pnid, JS_DHASH_LOOKUP);
return JS_DHASH_ENTRY_IS_BUSY(&entry->hdr) ? entry->pnval : NULL;
}
/* If pn is not an object initialiser node, we can't do anything here. */
if (pn->pn_type != TOK_RC)
return NULL;
/*
* We must search all the way through pn's list, to handle the case of an
* id duplicated for two or more property initialisers.
*/
pnhit = NULL;
step = 0;
ASSERT_VALID_PROPERTY_KEY(pnid);
pnhead = pn->pn_head;
if (pnid->pn_type == TOK_NUMBER) {
for (pnprop = pnhead; pnprop; pnprop = pnprop->pn_next) {
JS_ASSERT(pnprop->pn_type == TOK_COLON);
if (pnprop->pn_op == JSOP_NOP) {
pnkey = pnprop->pn_left;
ASSERT_VALID_PROPERTY_KEY(pnkey);
if (pnkey->pn_type == TOK_NUMBER &&
pnkey->pn_dval == pnid->pn_dval) {
pnhit = pnprop;
}
++step;
}
}
} else {
for (pnprop = pnhead; pnprop; pnprop = pnprop->pn_next) {
JS_ASSERT(pnprop->pn_type == TOK_COLON);
if (pnprop->pn_op == JSOP_NOP) {
pnkey = pnprop->pn_left;
ASSERT_VALID_PROPERTY_KEY(pnkey);
if (pnkey->pn_type == pnid->pn_type &&
pnkey->pn_atom == pnid->pn_atom) {
pnhit = pnprop;
}
++step;
}
}
}
if (!pnhit)
return NULL;
/* Hit via full search -- see whether it's time to create the hash table. */
JS_ASSERT(!data->table.ops);
if (step > data->maxstep) {
data->maxstep = step;
if (step >= STEP_HASH_THRESHOLD &&
data->numvars >= BIG_DESTRUCTURING &&
pn->pn_count >= BIG_OBJECT_INIT &&
JS_DHashTableInit(&data->table, &FindPropValOps, pn,
sizeof(FindPropValEntry),
JS_DHASH_DEFAULT_CAPACITY(pn->pn_count)))
{
for (pn = pnhead; pn; pn = pn->pn_next) {
JS_ASSERT(pnprop->pn_type == TOK_COLON);
ASSERT_VALID_PROPERTY_KEY(pn->pn_left);
entry = (FindPropValEntry *)
JS_DHashTableOperate(&data->table, pn->pn_left,
JS_DHASH_ADD);
entry->pnval = pn->pn_right;
}
}
}
return pnhit->pn_right;
}
/*
* If data is null, the caller is AssignExpr and instead of binding variables,
* we specialize lvalues in the propery value positions of the left-hand side.
* If right is null, just check for well-formed lvalues.
*
* See also UndominateInitializers, immediately below. If you change either of
* these functions, you might have to change the other to match.
*/
static JSBool
CheckDestructuring(JSContext *cx, BindData *data,
JSParseNode *left, JSParseNode *right,
JSTreeContext *tc)
{
JSBool ok;
FindPropValData fpvd;
JSParseNode *lhs, *rhs, *pn, *pn2;
if (left->pn_type == TOK_ARRAYCOMP) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), left,
JSREPORT_ERROR, JSMSG_ARRAY_COMP_LEFTSIDE);
return JS_FALSE;
}
#if JS_HAS_DESTRUCTURING_SHORTHAND
if (right && right->pn_arity == PN_LIST && (right->pn_xflags & PNX_DESTRUCT)) {
js_ReportCompileErrorNumber(cx, TS(tc->compiler), right,
JSREPORT_ERROR, JSMSG_BAD_OBJECT_INIT);
return JS_FALSE;
}
#endif
fpvd.table.ops = NULL;
lhs = left->pn_head;
if (left->pn_type == TOK_RB) {
rhs = (right && right->pn_type == left->pn_type)
? right->pn_head
: NULL;
while (lhs) {
pn = lhs, pn2 = rhs;
/* Nullary comma is an elision; binary comma is an expression.*/
if (pn->pn_type != TOK_COMMA || pn->pn_arity != PN_NULLARY) {
if (pn->pn_type == TOK_RB || pn->pn_type == TOK_RC) {
ok = CheckDestructuring(cx, data, pn, pn2, tc);
} else {
if (data) {
if (pn->pn_type != TOK_NAME)
goto no_var_name;
ok = BindDestructuringVar(cx, data, pn, tc);
} else {
ok = BindDestructuringLHS(cx, pn, tc);
}
}
if (!ok)
goto out;
}
lhs = lhs->pn_next;
if (rhs)
rhs = rhs->pn_next;
}
} else {
JS_ASSERT(left->pn_type == TOK_RC);
fpvd.numvars = left->pn_count;
fpvd.maxstep = 0;
rhs = NULL;
while (lhs) {
JS_ASSERT(lhs->pn_type == TOK_COLON);
pn = lhs->pn_right;
if (pn->pn_type == TOK_RB || pn->pn_type == TOK_RC) {
if (right)
rhs = FindPropertyValue(right, lhs->pn_left, &fpvd);
ok = CheckDestructuring(cx, data, pn, rhs, tc);
} else if (data) {
if (pn->pn_type != TOK_NAME)
goto no_var_name;
ok = BindDestructuringVar(cx, data, pn, tc);
} else {
ok = BindDestructuringLHS(cx, pn, tc);
}
if (!ok)
goto out;
lhs = lhs->pn_next;
}
}
/*
* The catch/finally handler implementation in the interpreter assumes
* that any operation that introduces a new scope (like a "let" or "with"
* block) increases the stack depth. This way, it is possible to restore
* the scope chain based on stack depth of the handler alone. "let" with
* an empty destructuring pattern like in
*
* let [] = 1;
*
* would violate this assumption as the there would be no let locals to
* store on the stack. To satisfy it we add an empty property to such
* blocks so that OBJ_BLOCK_COUNT(cx, blockObj), which gives the number of
* slots, would be always positive.
*
* Note that we add such a property even if the block has locals due to
* later let declarations in it. We optimize for code simplicity here,
* not the fastest runtime performance with empty [] or {}.
*/
if (data &&
data->binder == BindLet &&
OBJ_BLOCK_COUNT(cx, tc->blockChain) == 0) {
ok = !!js_DefineNativeProperty(cx, tc->blockChain,
ATOM_TO_JSID(cx->runtime->
atomState.emptyAtom),
JSVAL_VOID, NULL, NULL,
JSPROP_ENUMERATE |
JSPROP_PERMANENT |
JSPROP_SHARED,
SPROP_HAS_SHORTID, 0, NULL);
if (!ok)
goto out;
}
ok = JS_TRUE;
out:
if (fpvd.table.ops)
JS_DHashTableFinish(&fpvd.table);
return ok;
no_var_name:
js_ReportCompileErrorNumber(cx, TS(tc->compiler), pn, JSREPORT_ERROR,
JSMSG_NO_VARIABLE_NAME);
ok = JS_FALSE;
goto out;
}
/*
* This is a greatly pared down version of CheckDestructuring that extends the
* pn_pos.end source coordinate of each name in a destructuring binding such as
*
* var [x, y] = [function () y, 42];
*
* to cover its corresponding initializer, so that the initialized binding does
* not appear to dominate any closures in its initializer. See bug 496134.
*
* The quick-and-dirty dominance computation in JSCompiler::setFunctionKinds is
* not very precise. With one-pass SSA construction from structured source code
* (see "Single-Pass Generation of Static Single Assignment Form for Structured
* Languages", Brandis and Mössenböck), we could do much better.
*
* See CheckDestructuring, immediately above. If you change either of these
* functions, you might have to change the other to match.
*/
static JSBool
UndominateInitializers(JSParseNode *left, JSParseNode *right, JSTreeContext *tc)
{
FindPropValData fpvd;
JSParseNode *lhs, *rhs;
JS_ASSERT(left->pn_type != TOK_ARRAYCOMP);
JS_ASSERT(right);
#if JS_HAS_DESTRUCTURING_SHORTHAND
if (right->pn_arity == PN_LIST && (right->pn_xflags & PNX_DESTRUCT)) {
js_ReportCompileErrorNumber(tc->compiler->context, TS(tc->compiler), right,
JSREPORT_ERROR, JSMSG_BAD_OBJECT_INIT);
return JS_FALSE;
}
#endif
if (right->pn_type != left->pn_type)
return JS_TRUE;
fpvd.table.ops = NULL;
lhs = left->pn_head;
if (left->pn_type == TOK_RB) {
rhs = right->pn_head;
while (lhs && rhs) {
/* Nullary comma is an elision; binary comma is an expression.*/
if (lhs->pn_type != TOK_COMMA || lhs->pn_arity != PN_NULLARY) {
if (lhs->pn_type == TOK_RB || lhs->pn_type == TOK_RC) {
if (!UndominateInitializers(lhs, rhs, tc))
return JS_FALSE;
} else {
lhs->pn_pos.end = rhs->pn_pos.end;
}
}
lhs = lhs->pn_next;
rhs = rhs->pn_next;
}
} else {
JS_ASSERT(left->pn_type == TOK_RC);
fpvd.numvars = left->pn_count;
fpvd.maxstep = 0;
while (lhs) {
JS_ASSERT(lhs->pn_type == TOK_COLON);
JSParseNode *pn = lhs->pn_right;
rhs = FindPropertyValue(right, lhs->pn_left, &fpvd);
if (pn->pn_type == TOK_RB || pn->pn_type == TOK_RC) {
if (rhs && !UndominateInitializers(pn, rhs, tc))
return JS_FALSE;
} else {
if (rhs)
pn->pn_pos.end = rhs->pn_pos.end;
}
lhs = lhs->pn_next;
}
}
return JS_TRUE;
}
static JSParseNode *
DestructuringExpr(JSContext *cx, BindData *data, JSTreeContext *tc,
JSTokenType tt)
{
JSTokenStream *ts;
JSParseNode *pn;
ts = TS(tc->compiler);
ts->flags |= TSF_DESTRUCTURING;
pn = PrimaryExpr(cx, ts, tc, tt, JS_FALSE);
ts->flags &= ~TSF_DESTRUCTURING;
if (!pn)
return NULL;
if (!CheckDestructuring(cx, data, pn, NULL, tc))
return NULL;
return pn;
}
/*
* Currently used only #if JS_HAS_DESTRUCTURING, in Statement's TOK_FOR case.
* This function assumes the cloned tree is for use in the same statement and
* binding context as the original tree.
*/
static JSParseNode *
CloneParseTree(JSParseNode *opn, JSTreeContext *tc)
{
JSParseNode *pn, *pn2, *opn2;
pn = NewOrRecycledNode(tc);
if (!pn)
return NULL;
pn->pn_type = opn->pn_type;
pn->pn_pos = opn->pn_pos;
pn->pn_op = opn->pn_op;
pn->pn_used = opn->pn_used;
pn->pn_defn = opn->pn_defn;
pn->pn_arity = opn->pn_arity;
pn->pn_parens = opn->pn_parens;
switch (pn->pn_arity) {
#define NULLCHECK(e) JS_BEGIN_MACRO if (!(e)) return NULL; JS_END_MACRO
case PN_FUNC:
NULLCHECK(pn->pn_funbox =
tc->compiler->newFunctionBox(opn->pn_funbox->object, pn, tc));
NULLCHECK(pn->pn_body = CloneParseTree(opn->pn_body, tc));
pn->pn_cookie = opn->pn_cookie;
pn->pn_dflags = opn->pn_dflags;
pn->pn_blockid = opn->pn_blockid;
break;
case PN_LIST:
pn->makeEmpty();
for (opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) {
NULLCHECK(pn2 = CloneParseTree(opn2, tc));
pn->append(pn2);
}
pn->pn_xflags = opn->pn_xflags;
break;
case PN_TERNARY:
NULLCHECK(pn->pn_kid1 = CloneParseTree(opn->pn_kid1, tc));
NULLCHECK(pn->pn_kid2 = CloneParseTree(opn->pn_kid2, tc));
NULLCHECK(pn->pn_kid3 = CloneParseTree(opn->pn_kid3, tc));
break;
case PN_BINARY:
NULLCHECK(pn->pn_left = CloneParseTree(opn->pn_left, tc));
if (opn->pn_right != opn->pn_left)
NULLCHECK(pn->pn_right = CloneParseTree(opn->pn_right, tc));
else
pn->pn_right = pn->pn_left;
pn->pn_val = opn->pn_val;
pn->pn_iflags = opn->pn_iflags;
break;
case PN_UNARY:
NULLCHECK(pn->pn_kid = CloneParseTree(opn->pn_kid, tc));
pn->pn_num = opn->pn_num;
pn->pn_hidden = opn->pn_hidden;
break;
case PN_NAME:
// PN_NAME could mean several arms in pn_u, so copy the whole thing.
pn->pn_u = opn->pn_u;
if (opn->pn_used) {
/*
* The old name is a use of its pn_lexdef. Make the clone also be a
* use of that definition.
*/
JSDefinition *dn = pn->pn_lexdef;
pn->pn_link = dn->dn_uses;
dn->dn_uses = pn;
} else if (opn->pn_expr) {
NULLCHECK(pn->pn_expr = CloneParseTree(opn->pn_expr, tc));
/*
* If the old name is a definition, the new one has pn_defn set.
* Make the old name a use of the new node.
*/
if (opn->pn_defn) {
opn->pn_defn = false;
LinkUseToDef(opn, (JSDefinition *) pn, tc);
}
}
break;
case PN_NAMESET:
pn->pn_names = opn->pn_names;
NULLCHECK(pn->pn_tree = CloneParseTree(opn->pn_tree, tc));
break;
case PN_NULLARY:
// Even PN_NULLARY may have data (apair for E4X -- what a botch).
pn->pn_u = opn->pn_u;
break;
#undef NULLCHECK
}
return pn;
}
#endif /* JS_HAS_DESTRUCTURING */
extern const char js_with_statement_str[];
static JSParseNode *
ContainsStmt(JSParseNode *pn, JSTokenType tt)
{
JSParseNode *pn2, *pnt;
if (!pn)
return NULL;
if (PN_TYPE(pn) == tt)
return pn;
switch (pn->pn_arity) {
case PN_LIST:
for (pn2 = pn->pn_head; pn2; pn2 = pn2->pn_next) {
pnt = ContainsStmt(pn2, tt);
if (pnt)
return pnt;
}
break;
case PN_TERNARY:
pnt = ContainsStmt(pn->pn_kid1, tt);
if (pnt)
return pnt;
pnt = ContainsStmt(pn->pn_kid2, tt);
if (pnt)
return pnt;
return ContainsStmt(pn->pn_kid3, tt);
case PN_BINARY:
/*
* Limit recursion if pn is a binary expression, which can't contain a
* var statement.
*/
if (pn->pn_op != JSOP_NOP)
return NULL;
pnt = ContainsStmt(pn->pn_left, tt);
if (pnt)
return pnt;
return ContainsStmt(pn->pn_right, tt);
case PN_UNARY:
if (pn->pn_op != JSOP_NOP)
return NULL;
return ContainsStmt(pn->pn_kid, tt);
case PN_NAME:
return ContainsStmt(pn->maybeExpr(), tt);
case PN_NAMESET:
return ContainsStmt(pn->pn_tree, tt);
default:;
}
return NULL;
}
static JSParseNode *
ReturnOrYield(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSParser operandParser)
{
JSTokenType tt, tt2;
JSParseNode *pn, *pn2;
tt = CURRENT_TOKEN(ts).type;
if (tt == TOK_RETURN && !(tc->flags & TCF_IN_FUNCTION)) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_RETURN_OR_YIELD, js_return_str);
return NULL;
}
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
#if JS_HAS_GENERATORS
if (tt == TOK_YIELD)
tc->flags |= TCF_FUN_IS_GENERATOR;
#endif
/* This is ugly, but we don't want to require a semicolon. */
ts->flags |= TSF_OPERAND;
tt2 = js_PeekTokenSameLine(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt2 == TOK_ERROR)
return NULL;
if (tt2 != TOK_EOF && tt2 != TOK_EOL && tt2 != TOK_SEMI && tt2 != TOK_RC
#if JS_HAS_GENERATORS
&& (tt != TOK_YIELD ||
(tt2 != tt && tt2 != TOK_RB && tt2 != TOK_RP &&
tt2 != TOK_COLON && tt2 != TOK_COMMA))
#endif
) {
pn2 = operandParser(cx, ts, tc);
if (!pn2)
return NULL;
#if JS_HAS_GENERATORS
if (tt == TOK_RETURN)
#endif
tc->flags |= TCF_RETURN_EXPR;
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_kid = pn2;
} else {
#if JS_HAS_GENERATORS
if (tt == TOK_RETURN)
#endif
tc->flags |= TCF_RETURN_VOID;
}
if ((~tc->flags & (TCF_RETURN_EXPR | TCF_FUN_IS_GENERATOR)) == 0) {
/* As in Python (see PEP-255), disallow return v; in generators. */
ReportBadReturn(cx, tc, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_RETURN,
JSMSG_BAD_ANON_GENERATOR_RETURN);
return NULL;
}
if (JS_HAS_STRICT_OPTION(cx) &&
(~tc->flags & (TCF_RETURN_EXPR | TCF_RETURN_VOID)) == 0 &&
!ReportBadReturn(cx, tc, JSREPORT_WARNING | JSREPORT_STRICT,
JSMSG_NO_RETURN_VALUE,
JSMSG_ANON_NO_RETURN_VALUE)) {
return NULL;
}
return pn;
}
static JSParseNode *
PushLexicalScope(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSStmtInfo *stmt)
{
JSParseNode *pn;
JSObject *obj;
JSObjectBox *blockbox;
pn = NewParseNode(PN_NAME, tc);
if (!pn)
return NULL;
obj = js_NewBlockObject(cx);
if (!obj)
return NULL;
blockbox = tc->compiler->newObjectBox(obj);
if (!blockbox)
return NULL;
js_PushBlockScope(tc, stmt, obj, -1);
pn->pn_type = TOK_LEXICALSCOPE;
pn->pn_op = JSOP_LEAVEBLOCK;
pn->pn_objbox = blockbox;
pn->pn_cookie = FREE_UPVAR_COOKIE;
pn->pn_dflags = 0;
if (!GenerateBlockId(tc, stmt->blockid))
return NULL;
pn->pn_blockid = stmt->blockid;
return pn;
}
#if JS_HAS_BLOCK_SCOPE
static JSParseNode *
LetBlock(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc, JSBool statement)
{
JSParseNode *pn, *pnblock, *pnlet;
JSStmtInfo stmtInfo;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_LET);
/* Create the let binary node. */
pnlet = NewParseNode(PN_BINARY, tc);
if (!pnlet)
return NULL;
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_BEFORE_LET);
/* This is a let block or expression of the form: let (a, b, c) .... */
pnblock = PushLexicalScope(cx, ts, tc, &stmtInfo);
if (!pnblock)
return NULL;
pn = pnblock;
pn->pn_expr = pnlet;
pnlet->pn_left = Variables(cx, ts, tc, true);
if (!pnlet->pn_left)
return NULL;
pnlet->pn_left->pn_xflags = PNX_POPVAR;
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_LET);
ts->flags |= TSF_OPERAND;
if (statement && !js_MatchToken(cx, ts, TOK_LC)) {
/*
* If this is really an expression in let statement guise, then we
* need to wrap the TOK_LET node in a TOK_SEMI node so that we pop
* the return value of the expression.
*/
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_SEMI;
pn->pn_num = -1;
pn->pn_kid = pnblock;
statement = JS_FALSE;
}
ts->flags &= ~TSF_OPERAND;
if (statement) {
pnlet->pn_right = Statements(cx, ts, tc);
if (!pnlet->pn_right)
return NULL;
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_AFTER_LET);
} else {
/*
* Change pnblock's opcode to the variant that propagates the last
* result down after popping the block, and clear statement.
*/
pnblock->pn_op = JSOP_LEAVEBLOCKEXPR;
pnlet->pn_right = AssignExpr(cx, ts, tc);
if (!pnlet->pn_right)
return NULL;
}
PopStatement(tc);
return pn;
}
#endif /* JS_HAS_BLOCK_SCOPE */
static bool
PushBlocklikeStatement(JSStmtInfo *stmt, JSStmtType type, JSTreeContext *tc)
{
js_PushStatement(tc, stmt, type, -1);
return GenerateBlockId(tc, stmt->blockid);
}
static JSParseNode *
NewBindingNode(JSTokenStream *ts, JSAtom *atom, JSTreeContext *tc, bool let = false)
{
JSParseNode *pn = NULL;
JSAtomListElement *ale = tc->decls.lookup(atom);
if (ale) {
pn = ALE_DEFN(ale);
JS_ASSERT(!pn->isPlaceholder());
} else {
ale = tc->lexdeps.lookup(atom);
if (ale) {
pn = ALE_DEFN(ale);
JS_ASSERT(pn->isPlaceholder());
}
}
if (pn) {
JS_ASSERT(pn->pn_defn);
/*
* A let binding at top level becomes a var before we get here, so if
* pn and tc have the same blockid then that id must not be the bodyid.
* If pn is a forward placeholder definition from the same or a higher
* block then we claim it.
*/
JS_ASSERT_IF(let && pn->pn_blockid == tc->blockid(),
pn->pn_blockid != tc->bodyid);
if (pn->isPlaceholder() && pn->pn_blockid >= (let ? tc->blockid() : tc->bodyid)) {
if (let)
pn->pn_blockid = tc->blockid();
tc->lexdeps.remove(tc->compiler, atom);
return pn;
}
}
/* Make a new node for this declarator name (or destructuring pattern). */
pn = NewNameNode(tc->compiler->context, ts, atom, tc);
if (!pn)
return NULL;
return pn;
}
#if JS_HAS_BLOCK_SCOPE
static bool
RebindLets(JSParseNode *pn, JSTreeContext *tc)
{
if (!pn)
return true;
switch (pn->pn_arity) {
case PN_LIST:
for (JSParseNode *pn2 = pn->pn_head; pn2; pn2 = pn2->pn_next)
RebindLets(pn2, tc);
break;
case PN_TERNARY:
RebindLets(pn->pn_kid1, tc);
RebindLets(pn->pn_kid2, tc);
RebindLets(pn->pn_kid3, tc);
break;
case PN_BINARY:
RebindLets(pn->pn_left, tc);
RebindLets(pn->pn_right, tc);
break;
case PN_UNARY:
RebindLets(pn->pn_kid, tc);
break;
case PN_FUNC:
RebindLets(pn->pn_body, tc);
break;
case PN_NAME:
RebindLets(pn->maybeExpr(), tc);
if (pn->pn_defn) {
JS_ASSERT(pn->pn_blockid > tc->topStmt->blockid);
} else if (pn->pn_used) {
if (pn->pn_lexdef->pn_blockid == tc->topStmt->blockid) {
ForgetUse(pn);
JSAtomListElement *ale = tc->decls.lookup(pn->pn_atom);
if (ale) {
while ((ale = ALE_NEXT(ale)) != NULL) {
if (ALE_ATOM(ale) == pn->pn_atom) {
LinkUseToDef(pn, ALE_DEFN(ale), tc);
return true;
}
}
}
ale = tc->lexdeps.lookup(pn->pn_atom);
if (!ale) {
ale = MakePlaceholder(pn, tc);
if (!ale)
return NULL;
JSDefinition *dn = ALE_DEFN(ale);
dn->pn_type = TOK_NAME;
dn->pn_op = JSOP_NOP;
dn->pn_dflags |= pn->pn_dflags & PND_USE2DEF_FLAGS;
}
LinkUseToDef(pn, ALE_DEFN(ale), tc);
}
}
break;
case PN_NAMESET:
RebindLets(pn->pn_tree, tc);
break;
}
return true;
}
#endif /* JS_HAS_BLOCK_SCOPE */
static JSParseNode *
Statement(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSTokenType tt;
JSParseNode *pn, *pn1, *pn2, *pn3, *pn4;
JSStmtInfo stmtInfo, *stmt, *stmt2;
JSAtom *label;
JS_CHECK_RECURSION(cx, return NULL);
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
#if JS_HAS_GETTER_SETTER
if (tt == TOK_NAME) {
tt = CheckGetterOrSetter(cx, ts, TOK_FUNCTION);
if (tt == TOK_ERROR)
return NULL;
}
#endif
switch (tt) {
case TOK_FUNCTION:
#if JS_HAS_XML_SUPPORT
ts->flags |= TSF_KEYWORD_IS_NAME;
tt = js_PeekToken(cx, ts);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
if (tt == TOK_DBLCOLON)
goto expression;
#endif
return FunctionStmt(cx, ts, tc);
case TOK_IF:
/* An IF node has three kids: condition, then, and optional else. */
pn = NewParseNode(PN_TERNARY, tc);
if (!pn)
return NULL;
pn1 = Condition(cx, ts, tc);
if (!pn1)
return NULL;
js_PushStatement(tc, &stmtInfo, STMT_IF, -1);
pn2 = Statement(cx, ts, tc);
if (!pn2)
return NULL;
ts->flags |= TSF_OPERAND;
if (js_MatchToken(cx, ts, TOK_ELSE)) {
ts->flags &= ~TSF_OPERAND;
stmtInfo.type = STMT_ELSE;
pn3 = Statement(cx, ts, tc);
if (!pn3)
return NULL;
pn->pn_pos.end = pn3->pn_pos.end;
} else {
ts->flags &= ~TSF_OPERAND;
pn3 = NULL;
pn->pn_pos.end = pn2->pn_pos.end;
}
PopStatement(tc);
pn->pn_kid1 = pn1;
pn->pn_kid2 = pn2;
pn->pn_kid3 = pn3;
return pn;
case TOK_SWITCH:
{
JSParseNode *pn5, *saveBlock;
JSBool seenDefault = JS_FALSE;
pn = NewParseNode(PN_BINARY, tc);
if (!pn)
return NULL;
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_BEFORE_SWITCH);
/* pn1 points to the switch's discriminant. */
pn1 = ParenExpr(cx, ts, tc, NULL, NULL);
if (!pn1)
return NULL;
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_SWITCH);
MUST_MATCH_TOKEN(TOK_LC, JSMSG_CURLY_BEFORE_SWITCH);
/*
* NB: we must push stmtInfo before calling GenerateBlockIdForStmtNode
* because that function states tc->topStmt->blockid.
*/
js_PushStatement(tc, &stmtInfo, STMT_SWITCH, -1);
/* pn2 is a list of case nodes. The default case has pn_left == NULL */
pn2 = NewParseNode(PN_LIST, tc);
if (!pn2)
return NULL;
pn2->makeEmpty();
if (!GenerateBlockIdForStmtNode(pn2, tc))
return NULL;
saveBlock = tc->blockNode;
tc->blockNode = pn2;
while ((tt = js_GetToken(cx, ts)) != TOK_RC) {
switch (tt) {
case TOK_DEFAULT:
if (seenDefault) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_TOO_MANY_DEFAULTS);
return NULL;
}
seenDefault = JS_TRUE;
/* FALL THROUGH */
case TOK_CASE:
pn3 = NewParseNode(PN_BINARY, tc);
if (!pn3)
return NULL;
if (tt == TOK_CASE) {
pn3->pn_left = Expr(cx, ts, tc);
if (!pn3->pn_left)
return NULL;
}
pn2->append(pn3);
if (pn2->pn_count == JS_BIT(16)) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_TOO_MANY_CASES);
return NULL;
}
break;
case TOK_ERROR:
return NULL;
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_SWITCH);
return NULL;
}
MUST_MATCH_TOKEN(TOK_COLON, JSMSG_COLON_AFTER_CASE);
pn4 = NewParseNode(PN_LIST, tc);
if (!pn4)
return NULL;
pn4->pn_type = TOK_LC;
pn4->makeEmpty();
ts->flags |= TSF_OPERAND;
while ((tt = js_PeekToken(cx, ts)) != TOK_RC &&
tt != TOK_CASE && tt != TOK_DEFAULT) {
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_ERROR)
return NULL;
pn5 = Statement(cx, ts, tc);
if (!pn5)
return NULL;
pn4->pn_pos.end = pn5->pn_pos.end;
pn4->append(pn5);
ts->flags |= TSF_OPERAND;
}
ts->flags &= ~TSF_OPERAND;
/* Fix the PN_LIST so it doesn't begin at the TOK_COLON. */
if (pn4->pn_head)
pn4->pn_pos.begin = pn4->pn_head->pn_pos.begin;
pn3->pn_pos.end = pn4->pn_pos.end;
pn3->pn_right = pn4;
}
/*
* Handle the case where there was a let declaration in any case in
* the switch body, but not within an inner block. If it replaced
* tc->blockNode with a new block node then we must refresh pn2 and
* then restore tc->blockNode.
*/
if (tc->blockNode != pn2)
pn2 = tc->blockNode;
tc->blockNode = saveBlock;
PopStatement(tc);
pn->pn_pos.end = pn2->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
pn->pn_left = pn1;
pn->pn_right = pn2;
return pn;
}
case TOK_WHILE:
pn = NewParseNode(PN_BINARY, tc);
if (!pn)
return NULL;
js_PushStatement(tc, &stmtInfo, STMT_WHILE_LOOP, -1);
pn2 = Condition(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_left = pn2;
pn2 = Statement(cx, ts, tc);
if (!pn2)
return NULL;
PopStatement(tc);
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_right = pn2;
return pn;
case TOK_DO:
pn = NewParseNode(PN_BINARY, tc);
if (!pn)
return NULL;
js_PushStatement(tc, &stmtInfo, STMT_DO_LOOP, -1);
pn2 = Statement(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_left = pn2;
MUST_MATCH_TOKEN(TOK_WHILE, JSMSG_WHILE_AFTER_DO);
pn2 = Condition(cx, ts, tc);
if (!pn2)
return NULL;
PopStatement(tc);
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_right = pn2;
if (JSVERSION_NUMBER(cx) != JSVERSION_ECMA_3) {
/*
* All legacy and extended versions must do automatic semicolon
* insertion after do-while. See the testcase and discussion in
* http://bugzilla.mozilla.org/show_bug.cgi?id=238945.
*/
(void) js_MatchToken(cx, ts, TOK_SEMI);
return pn;
}
break;
case TOK_FOR:
{
JSParseNode *pnseq = NULL;
#if JS_HAS_BLOCK_SCOPE
JSParseNode *pnlet = NULL;
JSStmtInfo blockInfo;
#endif
/* A FOR node is binary, left is loop control and right is the body. */
pn = NewParseNode(PN_BINARY, tc);
if (!pn)
return NULL;
js_PushStatement(tc, &stmtInfo, STMT_FOR_LOOP, -1);
pn->pn_op = JSOP_ITER;
pn->pn_iflags = 0;
if (js_MatchToken(cx, ts, TOK_NAME)) {
if (CURRENT_TOKEN(ts).t_atom == cx->runtime->atomState.eachAtom)
pn->pn_iflags = JSITER_FOREACH;
else
js_UngetToken(ts);
}
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_AFTER_FOR);
ts->flags |= TSF_OPERAND;
tt = js_PeekToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
#if JS_HAS_BLOCK_SCOPE
bool let = false;
#endif
if (tt == TOK_SEMI) {
if (pn->pn_iflags & JSITER_FOREACH)
goto bad_for_each;
/* No initializer -- set first kid of left sub-node to null. */
pn1 = NULL;
} else {
/*
* Set pn1 to a var list or an initializing expression.
*
* Set the TCF_IN_FOR_INIT flag during parsing of the first clause
* of the for statement. This flag will be used by the RelExpr
* production; if it is set, then the 'in' keyword will not be
* recognized as an operator, leaving it available to be parsed as
* part of a for/in loop.
*
* A side effect of this restriction is that (unparenthesized)
* expressions involving an 'in' operator are illegal in the init
* clause of an ordinary for loop.
*/
tc->flags |= TCF_IN_FOR_INIT;
if (tt == TOK_VAR) {
(void) js_GetToken(cx, ts);
pn1 = Variables(cx, ts, tc, false);
#if JS_HAS_BLOCK_SCOPE
} else if (tt == TOK_LET) {
let = true;
(void) js_GetToken(cx, ts);
if (js_PeekToken(cx, ts) == TOK_LP) {
pn1 = LetBlock(cx, ts, tc, JS_FALSE);
tt = TOK_LEXICALSCOPE;
} else {
pnlet = PushLexicalScope(cx, ts, tc, &blockInfo);
if (!pnlet)
return NULL;
blockInfo.flags |= SIF_FOR_BLOCK;
pn1 = Variables(cx, ts, tc, false);
}
#endif
} else {
pn1 = Expr(cx, ts, tc);
}
tc->flags &= ~TCF_IN_FOR_INIT;
if (!pn1)
return NULL;
}
/*
* We can be sure that it's a for/in loop if there's still an 'in'
* keyword here, even if JavaScript recognizes 'in' as an operator,
* as we've excluded 'in' from being parsed in RelExpr by setting
* the TCF_IN_FOR_INIT flag in our JSTreeContext.
*/
if (pn1 && js_MatchToken(cx, ts, TOK_IN)) {
pn->pn_iflags |= JSITER_ENUMERATE;
stmtInfo.type = STMT_FOR_IN_LOOP;
/* Check that the left side of the 'in' is valid. */
JS_ASSERT(!TOKEN_TYPE_IS_DECL(tt) || PN_TYPE(pn1) == tt);
if (TOKEN_TYPE_IS_DECL(tt)
? (pn1->pn_count > 1 || pn1->pn_op == JSOP_DEFCONST
#if JS_HAS_DESTRUCTURING
|| (JSVERSION_NUMBER(cx) == JSVERSION_1_7 &&
pn->pn_op == JSOP_ITER &&
!(pn->pn_iflags & JSITER_FOREACH) &&
(pn1->pn_head->pn_type == TOK_RC ||
(pn1->pn_head->pn_type == TOK_RB &&
pn1->pn_head->pn_count != 2) ||
(pn1->pn_head->pn_type == TOK_ASSIGN &&
(pn1->pn_head->pn_left->pn_type != TOK_RB ||
pn1->pn_head->pn_left->pn_count != 2))))
#endif
)
: (pn1->pn_type != TOK_NAME &&
pn1->pn_type != TOK_DOT &&
#if JS_HAS_DESTRUCTURING
((JSVERSION_NUMBER(cx) == JSVERSION_1_7 &&
pn->pn_op == JSOP_ITER &&
!(pn->pn_iflags & JSITER_FOREACH))
? (pn1->pn_type != TOK_RB || pn1->pn_count != 2)
: (pn1->pn_type != TOK_RB && pn1->pn_type != TOK_RC)) &&
#endif
pn1->pn_type != TOK_LP &&
#if JS_HAS_XML_SUPPORT
(pn1->pn_type != TOK_UNARYOP ||
pn1->pn_op != JSOP_XMLNAME) &&
#endif
pn1->pn_type != TOK_LB)) {
js_ReportCompileErrorNumber(cx, ts, pn1, JSREPORT_ERROR,
JSMSG_BAD_FOR_LEFTSIDE);
return NULL;
}
/* pn2 points to the name or destructuring pattern on in's left. */
pn2 = NULL;
uintN dflag = PND_ASSIGNED;
if (TOKEN_TYPE_IS_DECL(tt)) {
/* Tell js_EmitTree(TOK_VAR) that pn1 is part of a for/in. */
pn1->pn_xflags |= PNX_FORINVAR;
/*
* Rewrite 'for (<decl> x = i in o)' where <decl> is 'let',
* 'var', or 'const' to hoist the initializer or the entire
* decl out of the loop head. TOK_VAR is the type for both
* 'var' and 'const'.
*/
pn2 = pn1->pn_head;
if ((pn2->pn_type == TOK_NAME && pn2->maybeExpr())
#if JS_HAS_DESTRUCTURING
|| pn2->pn_type == TOK_ASSIGN
#endif
) {
pnseq = NewParseNode(PN_LIST, tc);
if (!pnseq)
return NULL;
pnseq->pn_type = TOK_SEQ;
pnseq->pn_pos.begin = pn->pn_pos.begin;
#if JS_HAS_BLOCK_SCOPE
if (tt == TOK_LET) {
/*
* Hoist just the 'i' from 'for (let x = i in o)' to
* before the loop, glued together via pnseq.
*/
pn3 = NewParseNode(PN_UNARY, tc);
if (!pn3)
return NULL;
pn3->pn_type = TOK_SEMI;
pn3->pn_op = JSOP_NOP;
#if JS_HAS_DESTRUCTURING
if (pn2->pn_type == TOK_ASSIGN) {
pn4 = pn2->pn_right;
pn2 = pn1->pn_head = pn2->pn_left;
} else
#endif
{
pn4 = pn2->pn_expr;
pn2->pn_expr = NULL;
}
if (!RebindLets(pn4, tc))
return NULL;
pn3->pn_pos = pn4->pn_pos;
pn3->pn_kid = pn4;
pnseq->initList(pn3);
} else
#endif /* JS_HAS_BLOCK_SCOPE */
{
dflag = PND_INITIALIZED;
/*
* All of 'var x = i' is hoisted above 'for (x in o)',
* so clear PNX_FORINVAR.
*
* Request JSOP_POP here since the var is for a simple
* name (it is not a destructuring binding's left-hand
* side) and it has an initializer.
*/
pn1->pn_xflags &= ~PNX_FORINVAR;
pn1->pn_xflags |= PNX_POPVAR;
pnseq->initList(pn1);
#if JS_HAS_DESTRUCTURING
if (pn2->pn_type == TOK_ASSIGN) {
pn1 = CloneParseTree(pn2->pn_left, tc);
if (!pn1)
return NULL;
} else
#endif
{
JS_ASSERT(pn2->pn_type == TOK_NAME);
pn1 = NewNameNode(cx, ts, pn2->pn_atom, tc);
if (!pn1)
return NULL;
pn1->pn_type = TOK_NAME;
pn1->pn_op = JSOP_NAME;
pn1->pn_pos = pn2->pn_pos;
if (pn2->pn_defn)
LinkUseToDef(pn1, (JSDefinition *) pn2, tc);
}
pn2 = pn1;
}
}
}
if (!pn2) {
pn2 = pn1;
if (pn2->pn_type == TOK_LP &&
!MakeSetCall(cx, pn2, tc, JSMSG_BAD_LEFTSIDE_OF_ASS)) {
return NULL;
}
#if JS_HAS_XML_SUPPORT
if (pn2->pn_type == TOK_UNARYOP)
pn2->pn_op = JSOP_BINDXMLNAME;
#endif
}
switch (pn2->pn_type) {
case TOK_NAME:
/* Beware 'for (arguments in ...)' with or without a 'var'. */
NoteLValue(cx, pn2, tc, dflag);
break;
#if JS_HAS_DESTRUCTURING
case TOK_ASSIGN:
pn2 = pn2->pn_left;
JS_ASSERT(pn2->pn_type == TOK_RB || pn2->pn_type == TOK_RC);
/* FALL THROUGH */
case TOK_RB:
case TOK_RC:
/* Check for valid lvalues in var-less destructuring for-in. */
if (pn1 == pn2 && !CheckDestructuring(cx, NULL, pn2, NULL, tc))
return NULL;
if (JSVERSION_NUMBER(cx) == JSVERSION_1_7) {
/*
* Destructuring for-in requires [key, value] enumeration
* in JS1.7.
*/
JS_ASSERT(pn->pn_op == JSOP_ITER);
if (!(pn->pn_iflags & JSITER_FOREACH))
pn->pn_iflags |= JSITER_FOREACH | JSITER_KEYVALUE;
}
break;
#endif
default:;
}
/*
* Parse the object expression as the right operand of 'in', first
* removing the top statement from the statement-stack if this is a
* 'for (let x in y)' loop.
*/
#if JS_HAS_BLOCK_SCOPE
JSStmtInfo *save = tc->topStmt;
if (let)
tc->topStmt = save->down;
#endif
pn2 = Expr(cx, ts, tc);
#if JS_HAS_BLOCK_SCOPE
if (let)
tc->topStmt = save;
#endif
pn2 = NewBinary(TOK_IN, JSOP_NOP, pn1, pn2, tc);
if (!pn2)
return NULL;
pn->pn_left = pn2;
} else {
if (pn->pn_iflags & JSITER_FOREACH)
goto bad_for_each;
pn->pn_op = JSOP_NOP;
/* Parse the loop condition or null into pn2. */
MUST_MATCH_TOKEN(TOK_SEMI, JSMSG_SEMI_AFTER_FOR_INIT);
ts->flags |= TSF_OPERAND;
tt = js_PeekToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_SEMI) {
pn2 = NULL;
} else {
pn2 = Expr(cx, ts, tc);
if (!pn2)
return NULL;
}
/* Parse the update expression or null into pn3. */
MUST_MATCH_TOKEN(TOK_SEMI, JSMSG_SEMI_AFTER_FOR_COND);
ts->flags |= TSF_OPERAND;
tt = js_PeekToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_RP) {
pn3 = NULL;
} else {
pn3 = Expr(cx, ts, tc);
if (!pn3)
return NULL;
}
/* Build the FORHEAD node to use as the left kid of pn. */
pn4 = NewParseNode(PN_TERNARY, tc);
if (!pn4)
return NULL;
pn4->pn_type = TOK_FORHEAD;
pn4->pn_op = JSOP_NOP;
pn4->pn_kid1 = pn1;
pn4->pn_kid2 = pn2;
pn4->pn_kid3 = pn3;
pn->pn_left = pn4;
}
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_FOR_CTRL);
/* Parse the loop body into pn->pn_right. */
pn2 = Statement(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_right = pn2;
/* Record the absolute line number for source note emission. */
pn->pn_pos.end = pn2->pn_pos.end;
#if JS_HAS_BLOCK_SCOPE
if (pnlet) {
PopStatement(tc);
pnlet->pn_expr = pn;
pn = pnlet;
}
#endif
if (pnseq) {
pnseq->pn_pos.end = pn->pn_pos.end;
pnseq->append(pn);
pn = pnseq;
}
PopStatement(tc);
return pn;
bad_for_each:
js_ReportCompileErrorNumber(cx, ts, pn, JSREPORT_ERROR,
JSMSG_BAD_FOR_EACH_LOOP);
return NULL;
}
case TOK_TRY: {
JSParseNode *catchList, *lastCatch;
/*
* try nodes are ternary.
* kid1 is the try Statement
* kid2 is the catch node list or null
* kid3 is the finally Statement
*
* catch nodes are ternary.
* kid1 is the lvalue (TOK_NAME, TOK_LB, or TOK_LC)
* kid2 is the catch guard or null if no guard
* kid3 is the catch block
*
* catch lvalue nodes are either:
* TOK_NAME for a single identifier
* TOK_RB or TOK_RC for a destructuring left-hand side
*
* finally nodes are TOK_LC Statement lists.
*/
pn = NewParseNode(PN_TERNARY, tc);
if (!pn)
return NULL;
pn->pn_op = JSOP_NOP;
MUST_MATCH_TOKEN(TOK_LC, JSMSG_CURLY_BEFORE_TRY);
if (!PushBlocklikeStatement(&stmtInfo, STMT_TRY, tc))
return NULL;
pn->pn_kid1 = Statements(cx, ts, tc);
if (!pn->pn_kid1)
return NULL;
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_AFTER_TRY);
PopStatement(tc);
catchList = NULL;
tt = js_GetToken(cx, ts);
if (tt == TOK_CATCH) {
catchList = NewParseNode(PN_LIST, tc);
if (!catchList)
return NULL;
catchList->pn_type = TOK_RESERVED;
catchList->makeEmpty();
lastCatch = NULL;
do {
JSParseNode *pnblock;
BindData data;
/* Check for another catch after unconditional catch. */
if (lastCatch && !lastCatch->pn_kid2) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_CATCH_AFTER_GENERAL);
return NULL;
}
/*
* Create a lexical scope node around the whole catch clause,
* including the head.
*/
pnblock = PushLexicalScope(cx, ts, tc, &stmtInfo);
if (!pnblock)
return NULL;
stmtInfo.type = STMT_CATCH;
/*
* Legal catch forms are:
* catch (lhs)
* catch (lhs if <boolean_expression>)
* where lhs is a name or a destructuring left-hand side.
* (the latter is legal only #ifdef JS_HAS_CATCH_GUARD)
*/
pn2 = NewParseNode(PN_TERNARY, tc);
if (!pn2)
return NULL;
pnblock->pn_expr = pn2;
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_BEFORE_CATCH);
/*
* Contrary to ECMA Ed. 3, the catch variable is lexically
* scoped, not a property of a new Object instance. This is
* an intentional change that anticipates ECMA Ed. 4.
*/
data.pn = NULL;
data.op = JSOP_NOP;
data.binder = BindLet;
data.let.overflow = JSMSG_TOO_MANY_CATCH_VARS;
tt = js_GetToken(cx, ts);
switch (tt) {
#if JS_HAS_DESTRUCTURING
case TOK_LB:
case TOK_LC:
pn3 = DestructuringExpr(cx, &data, tc, tt);
if (!pn3)
return NULL;
break;
#endif
case TOK_NAME:
label = CURRENT_TOKEN(ts).t_atom;
pn3 = NewBindingNode(ts, label, tc, true);
if (!pn3)
return NULL;
data.pn = pn3;
if (!data.binder(cx, &data, label, tc))
return NULL;
break;
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_CATCH_IDENTIFIER);
return NULL;
}
pn2->pn_kid1 = pn3;
#if JS_HAS_CATCH_GUARD
/*
* We use 'catch (x if x === 5)' (not 'catch (x : x === 5)')
* to avoid conflicting with the JS2/ECMAv4 type annotation
* catchguard syntax.
*/
if (js_MatchToken(cx, ts, TOK_IF)) {
pn2->pn_kid2 = Expr(cx, ts, tc);
if (!pn2->pn_kid2)
return NULL;
}
#endif
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_CATCH);
MUST_MATCH_TOKEN(TOK_LC, JSMSG_CURLY_BEFORE_CATCH);
pn2->pn_kid3 = Statements(cx, ts, tc);
if (!pn2->pn_kid3)
return NULL;
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_AFTER_CATCH);
PopStatement(tc);
catchList->append(pnblock);
lastCatch = pn2;
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
} while (tt == TOK_CATCH);
}
pn->pn_kid2 = catchList;
if (tt == TOK_FINALLY) {
MUST_MATCH_TOKEN(TOK_LC, JSMSG_CURLY_BEFORE_FINALLY);
if (!PushBlocklikeStatement(&stmtInfo, STMT_FINALLY, tc))
return NULL;
pn->pn_kid3 = Statements(cx, ts, tc);
if (!pn->pn_kid3)
return NULL;
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_AFTER_FINALLY);
PopStatement(tc);
} else {
js_UngetToken(ts);
}
if (!catchList && !pn->pn_kid3) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_CATCH_OR_FINALLY);
return NULL;
}
return pn;
}
case TOK_THROW:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
/* ECMA-262 Edition 3 says 'throw [no LineTerminator here] Expr'. */
ts->flags |= TSF_OPERAND;
tt = js_PeekTokenSameLine(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_ERROR)
return NULL;
if (tt == TOK_EOF || tt == TOK_EOL || tt == TOK_SEMI || tt == TOK_RC) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_SYNTAX_ERROR);
return NULL;
}
pn2 = Expr(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_op = JSOP_THROW;
pn->pn_kid = pn2;
break;
/* TOK_CATCH and TOK_FINALLY are both handled in the TOK_TRY case */
case TOK_CATCH:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_CATCH_WITHOUT_TRY);
return NULL;
case TOK_FINALLY:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_FINALLY_WITHOUT_TRY);
return NULL;
case TOK_BREAK:
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
if (!MatchLabel(cx, ts, pn))
return NULL;
stmt = tc->topStmt;
label = pn->pn_atom;
if (label) {
for (; ; stmt = stmt->down) {
if (!stmt) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_LABEL_NOT_FOUND);
return NULL;
}
if (stmt->type == STMT_LABEL && stmt->label == label)
break;
}
} else {
for (; ; stmt = stmt->down) {
if (!stmt) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_TOUGH_BREAK);
return NULL;
}
if (STMT_IS_LOOP(stmt) || stmt->type == STMT_SWITCH)
break;
}
}
if (label)
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
break;
case TOK_CONTINUE:
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
if (!MatchLabel(cx, ts, pn))
return NULL;
stmt = tc->topStmt;
label = pn->pn_atom;
if (label) {
for (stmt2 = NULL; ; stmt = stmt->down) {
if (!stmt) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_LABEL_NOT_FOUND);
return NULL;
}
if (stmt->type == STMT_LABEL) {
if (stmt->label == label) {
if (!stmt2 || !STMT_IS_LOOP(stmt2)) {
js_ReportCompileErrorNumber(cx, ts, NULL,
JSREPORT_ERROR,
JSMSG_BAD_CONTINUE);
return NULL;
}
break;
}
} else {
stmt2 = stmt;
}
}
} else {
for (; ; stmt = stmt->down) {
if (!stmt) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_CONTINUE);
return NULL;
}
if (STMT_IS_LOOP(stmt))
break;
}
}
if (label)
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
break;
case TOK_WITH:
pn = NewParseNode(PN_BINARY, tc);
if (!pn)
return NULL;
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_BEFORE_WITH);
pn2 = ParenExpr(cx, ts, tc, NULL, NULL);
if (!pn2)
return NULL;
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_WITH);
pn->pn_left = pn2;
js_PushStatement(tc, &stmtInfo, STMT_WITH, -1);
pn2 = Statement(cx, ts, tc);
if (!pn2)
return NULL;
PopStatement(tc);
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_right = pn2;
tc->flags |= TCF_FUN_HEAVYWEIGHT;
return pn;
case TOK_VAR:
pn = Variables(cx, ts, tc, false);
if (!pn)
return NULL;
/* Tell js_EmitTree to generate a final POP. */
pn->pn_xflags |= PNX_POPVAR;
break;
#if JS_HAS_BLOCK_SCOPE
case TOK_LET:
{
JSObject *obj;
JSObjectBox *blockbox;
/* Check for a let statement or let expression. */
if (js_PeekToken(cx, ts) == TOK_LP) {
pn = LetBlock(cx, ts, tc, JS_TRUE);
if (!pn || pn->pn_op == JSOP_LEAVEBLOCK)
return pn;
/* Let expressions require automatic semicolon insertion. */
JS_ASSERT(pn->pn_type == TOK_SEMI ||
pn->pn_op == JSOP_LEAVEBLOCKEXPR);
break;
}
/*
* This is a let declaration. We must be directly under a block per
* the proposed ES4 specs, but not an implicit block created due to
* 'for (let ...)'. If we pass this error test, make the enclosing
* JSStmtInfo be our scope. Further let declarations in this block
* will find this scope statement and use the same block object.
*
* If we are the first let declaration in this block (i.e., when the
* enclosing maybe-scope JSStmtInfo isn't yet a scope statement) then
* we also need to set tc->blockNode to be our TOK_LEXICALSCOPE.
*/
stmt = tc->topStmt;
if (stmt &&
(!STMT_MAYBE_SCOPE(stmt) || (stmt->flags & SIF_FOR_BLOCK))) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_LET_DECL_NOT_IN_BLOCK);
return NULL;
}
if (stmt && (stmt->flags & SIF_SCOPE)) {
JS_ASSERT(tc->blockChain == stmt->blockObj);
obj = tc->blockChain;
} else {
if (!stmt || (stmt->flags & SIF_BODY_BLOCK)) {
/*
* ES4 specifies that let at top level and at body-block scope
* does not shadow var, so convert back to var.
*/
CURRENT_TOKEN(ts).type = TOK_VAR;
CURRENT_TOKEN(ts).t_op = JSOP_DEFVAR;
pn = Variables(cx, ts, tc, false);
if (!pn)
return NULL;
pn->pn_xflags |= PNX_POPVAR;
break;
}
/*
* Some obvious assertions here, but they may help clarify the
* situation. This stmt is not yet a scope, so it must not be a
* catch block (catch is a lexical scope by definition).
*/
JS_ASSERT(!(stmt->flags & SIF_SCOPE));
JS_ASSERT(stmt != tc->topScopeStmt);
JS_ASSERT(stmt->type == STMT_BLOCK ||
stmt->type == STMT_SWITCH ||
stmt->type == STMT_TRY ||
stmt->type == STMT_FINALLY);
JS_ASSERT(!stmt->downScope);
/* Convert the block statement into a scope statement. */
JSObject *obj = js_NewBlockObject(tc->compiler->context);
if (!obj)
return NULL;
blockbox = tc->compiler->newObjectBox(obj);
if (!blockbox)
return NULL;
/*
* Insert stmt on the tc->topScopeStmt/stmtInfo.downScope linked
* list stack, if it isn't already there. If it is there, but it
* lacks the SIF_SCOPE flag, it must be a try, catch, or finally
* block.
*/
stmt->flags |= SIF_SCOPE;
stmt->downScope = tc->topScopeStmt;
tc->topScopeStmt = stmt;
JS_SCOPE_DEPTH_METERING(++tc->scopeDepth > tc->maxScopeDepth &&
(tc->maxScopeDepth = tc->scopeDepth));
STOBJ_SET_PARENT(obj, tc->blockChain);
tc->blockChain = obj;
stmt->blockObj = obj;
#ifdef DEBUG
pn1 = tc->blockNode;
JS_ASSERT(!pn1 || pn1->pn_type != TOK_LEXICALSCOPE);
#endif
/* Create a new lexical scope node for these statements. */
pn1 = NewParseNode(PN_NAME, tc);
if (!pn1)
return NULL;
pn1->pn_type = TOK_LEXICALSCOPE;
pn1->pn_op = JSOP_LEAVEBLOCK;
pn1->pn_pos = tc->blockNode->pn_pos;
pn1->pn_objbox = blockbox;
pn1->pn_expr = tc->blockNode;
pn1->pn_blockid = tc->blockNode->pn_blockid;
tc->blockNode = pn1;
}
pn = Variables(cx, ts, tc, false);
if (!pn)
return NULL;
pn->pn_xflags = PNX_POPVAR;
break;
}
#endif /* JS_HAS_BLOCK_SCOPE */
case TOK_RETURN:
pn = ReturnOrYield(cx, ts, tc, Expr);
if (!pn)
return NULL;
break;
case TOK_LC:
{
uintN oldflags;
oldflags = tc->flags;
tc->flags = oldflags & ~TCF_HAS_FUNCTION_STMT;
if (!PushBlocklikeStatement(&stmtInfo, STMT_BLOCK, tc))
return NULL;
pn = Statements(cx, ts, tc);
if (!pn)
return NULL;
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_IN_COMPOUND);
PopStatement(tc);
/*
* If we contain a function statement and our container is top-level
* or another block, flag pn to preserve braces when decompiling.
*/
if ((tc->flags & TCF_HAS_FUNCTION_STMT) &&
(!tc->topStmt || tc->topStmt->type == STMT_BLOCK)) {
pn->pn_xflags |= PNX_NEEDBRACES;
}
tc->flags = oldflags | (tc->flags & (TCF_FUN_FLAGS | TCF_RETURN_FLAGS));
return pn;
}
case TOK_EOL:
case TOK_SEMI:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_SEMI;
return pn;
#if JS_HAS_DEBUGGER_KEYWORD
case TOK_DEBUGGER:
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_DEBUGGER;
tc->flags |= TCF_FUN_HEAVYWEIGHT;
break;
#endif /* JS_HAS_DEBUGGER_KEYWORD */
#if JS_HAS_XML_SUPPORT
case TOK_DEFAULT:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
if (!js_MatchToken(cx, ts, TOK_NAME) ||
CURRENT_TOKEN(ts).t_atom != cx->runtime->atomState.xmlAtom ||
!js_MatchToken(cx, ts, TOK_NAME) ||
CURRENT_TOKEN(ts).t_atom != cx->runtime->atomState.namespaceAtom ||
!js_MatchToken(cx, ts, TOK_ASSIGN) ||
CURRENT_TOKEN(ts).t_op != JSOP_NOP) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_DEFAULT_XML_NAMESPACE);
return NULL;
}
/* Is this an E4X dagger I see before me? */
tc->flags |= TCF_FUN_HEAVYWEIGHT;
pn2 = Expr(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_op = JSOP_DEFXMLNS;
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_kid = pn2;
break;
#endif
case TOK_ERROR:
return NULL;
default:
#if JS_HAS_XML_SUPPORT
expression:
#endif
js_UngetToken(ts);
pn2 = Expr(cx, ts, tc);
if (!pn2)
return NULL;
if (js_PeekToken(cx, ts) == TOK_COLON) {
if (pn2->pn_type != TOK_NAME) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_LABEL);
return NULL;
}
label = pn2->pn_atom;
for (stmt = tc->topStmt; stmt; stmt = stmt->down) {
if (stmt->type == STMT_LABEL && stmt->label == label) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_DUPLICATE_LABEL);
return NULL;
}
}
ForgetUse(pn2);
(void) js_GetToken(cx, ts);
/* Push a label struct and parse the statement. */
js_PushStatement(tc, &stmtInfo, STMT_LABEL, -1);
stmtInfo.label = label;
pn = Statement(cx, ts, tc);
if (!pn)
return NULL;
/* Normalize empty statement to empty block for the decompiler. */
if (pn->pn_type == TOK_SEMI && !pn->pn_kid) {
pn->pn_type = TOK_LC;
pn->pn_arity = PN_LIST;
pn->makeEmpty();
}
/* Pop the label, set pn_expr, and return early. */
PopStatement(tc);
pn2->pn_type = TOK_COLON;
pn2->pn_pos.end = pn->pn_pos.end;
pn2->pn_expr = pn;
return pn2;
}
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_SEMI;
pn->pn_pos = pn2->pn_pos;
pn->pn_kid = pn2;
break;
}
/* Check termination of this primitive statement. */
return MatchOrInsertSemicolon(cx, ts) ? pn : NULL;
}
static void
NoteArgumentsUse(JSTreeContext *tc)
{
JS_ASSERT(tc->flags & TCF_IN_FUNCTION);
tc->flags |= TCF_FUN_USES_ARGUMENTS;
if (tc->funbox)
tc->funbox->node->pn_dflags |= PND_FUNARG;
}
static JSParseNode *
Variables(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc, bool inLetHead)
{
JSTokenType tt;
bool let;
JSStmtInfo *scopeStmt;
BindData data;
JSParseNode *pn, *pn2;
JSAtom *atom;
/*
* The three options here are:
* - TOK_LET: We are parsing a let declaration.
* - TOK_LP: We are parsing the head of a let block.
* - Otherwise, we're parsing var declarations.
*/
tt = CURRENT_TOKEN(ts).type;
let = (tt == TOK_LET || tt == TOK_LP);
JS_ASSERT(let || tt == TOK_VAR);
#if JS_HAS_BLOCK_SCOPE
bool popScope = (inLetHead || (let && (tc->flags & TCF_IN_FOR_INIT)));
JSStmtInfo *save = tc->topStmt, *saveScope = tc->topScopeStmt;
#endif
/* Make sure that Statement set up the tree context correctly. */
scopeStmt = tc->topScopeStmt;
if (let) {
while (scopeStmt && !(scopeStmt->flags & SIF_SCOPE)) {
JS_ASSERT(!STMT_MAYBE_SCOPE(scopeStmt));
scopeStmt = scopeStmt->downScope;
}
JS_ASSERT(scopeStmt);
}
data.op = let ? JSOP_NOP : CURRENT_TOKEN(ts).t_op;
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
pn->pn_op = data.op;
pn->makeEmpty();
/*
* SpiderMonkey const is really "write once per initialization evaluation"
* var, whereas let is block scoped. ES-Harmony wants block-scoped const so
* this code will change soon.
*/
if (let) {
JS_ASSERT(tc->blockChain == scopeStmt->blockObj);
data.binder = BindLet;
data.let.overflow = JSMSG_TOO_MANY_LOCALS;
} else {
data.binder = BindVarOrConst;
}
do {
tt = js_GetToken(cx, ts);
#if JS_HAS_DESTRUCTURING
if (tt == TOK_LB || tt == TOK_LC) {
ts->flags |= TSF_DESTRUCTURING;
pn2 = PrimaryExpr(cx, ts, tc, tt, JS_FALSE);
ts->flags &= ~TSF_DESTRUCTURING;
if (!pn2)
return NULL;
if (!CheckDestructuring(cx, &data, pn2, NULL, tc))
return NULL;
if ((tc->flags & TCF_IN_FOR_INIT) &&
js_PeekToken(cx, ts) == TOK_IN) {
pn->append(pn2);
continue;
}
MUST_MATCH_TOKEN(TOK_ASSIGN, JSMSG_BAD_DESTRUCT_DECL);
if (CURRENT_TOKEN(ts).t_op != JSOP_NOP)
goto bad_var_init;
#if JS_HAS_BLOCK_SCOPE
if (popScope) {
tc->topStmt = save->down;
tc->topScopeStmt = saveScope->downScope;
}
#endif
JSParseNode *init = AssignExpr(cx, ts, tc);
#if JS_HAS_BLOCK_SCOPE
if (popScope) {
tc->topStmt = save;
tc->topScopeStmt = saveScope;
}
#endif
if (!init || !UndominateInitializers(pn2, init, tc))
return NULL;
pn2 = NewBinary(TOK_ASSIGN, JSOP_NOP, pn2, init, tc);
if (!pn2)
return NULL;
pn->append(pn2);
continue;
}
#endif /* JS_HAS_DESTRUCTURING */
if (tt != TOK_NAME) {
if (tt != TOK_ERROR) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_NO_VARIABLE_NAME);
}
return NULL;
}
atom = CURRENT_TOKEN(ts).t_atom;
pn2 = NewBindingNode(ts, atom, tc, let);
if (!pn2)
return NULL;
if (data.op == JSOP_DEFCONST)
pn2->pn_dflags |= PND_CONST;
data.pn = pn2;
if (!data.binder(cx, &data, atom, tc))
return NULL;
pn->append(pn2);
if (js_MatchToken(cx, ts, TOK_ASSIGN)) {
if (CURRENT_TOKEN(ts).t_op != JSOP_NOP)
goto bad_var_init;
#if JS_HAS_BLOCK_SCOPE
if (popScope) {
tc->topStmt = save->down;
tc->topScopeStmt = saveScope->downScope;
}
#endif
JSParseNode *init = AssignExpr(cx, ts, tc);
#if JS_HAS_BLOCK_SCOPE
if (popScope) {
tc->topStmt = save;
tc->topScopeStmt = saveScope;
}
#endif
if (!init)
return NULL;
if (pn2->pn_used) {
pn2 = MakeAssignment(pn2, init, tc);
if (!pn2)
return NULL;
} else {
pn2->pn_expr = init;
}
pn2->pn_op = (PN_OP(pn2) == JSOP_ARGUMENTS)
? JSOP_SETNAME
: (pn2->pn_dflags & PND_GVAR)
? JSOP_SETGVAR
: (pn2->pn_dflags & PND_BOUND)
? JSOP_SETLOCAL
: (data.op == JSOP_DEFCONST)
? JSOP_SETCONST
: JSOP_SETNAME;
NoteLValue(cx, pn2, tc, data.fresh ? PND_INITIALIZED : PND_ASSIGNED);
/* The declarator's position must include the initializer. */
pn2->pn_pos.end = init->pn_pos.end;
if ((tc->flags & TCF_IN_FUNCTION) &&
atom == cx->runtime->atomState.argumentsAtom) {
NoteArgumentsUse(tc);
if (!let)
tc->flags |= TCF_FUN_HEAVYWEIGHT;
}
}
} while (js_MatchToken(cx, ts, TOK_COMMA));
pn->pn_pos.end = pn->last()->pn_pos.end;
return pn;
bad_var_init:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_VAR_INIT);
return NULL;
}
static JSParseNode *
Expr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn, *pn2;
pn = AssignExpr(cx, ts, tc);
if (pn && js_MatchToken(cx, ts, TOK_COMMA)) {
pn2 = NewParseNode(PN_LIST, tc);
if (!pn2)
return NULL;
pn2->pn_pos.begin = pn->pn_pos.begin;
pn2->initList(pn);
pn = pn2;
do {
#if JS_HAS_GENERATORS
pn2 = pn->last();
if (pn2->pn_type == TOK_YIELD && !pn2->pn_parens) {
js_ReportCompileErrorNumber(cx, ts, pn2, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_SYNTAX,
js_yield_str);
return NULL;
}
#endif
pn2 = AssignExpr(cx, ts, tc);
if (!pn2)
return NULL;
pn->append(pn2);
} while (js_MatchToken(cx, ts, TOK_COMMA));
pn->pn_pos.end = pn->last()->pn_pos.end;
}
return pn;
}
static JSParseNode *
AssignExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn, *rhs;
JSTokenType tt;
JSOp op;
JS_CHECK_RECURSION(cx, return NULL);
#if JS_HAS_GENERATORS
ts->flags |= TSF_OPERAND;
if (js_MatchToken(cx, ts, TOK_YIELD)) {
ts->flags &= ~TSF_OPERAND;
return ReturnOrYield(cx, ts, tc, AssignExpr);
}
ts->flags &= ~TSF_OPERAND;
#endif
pn = CondExpr(cx, ts, tc);
if (!pn)
return NULL;
tt = js_GetToken(cx, ts);
#if JS_HAS_GETTER_SETTER
if (tt == TOK_NAME) {
tt = CheckGetterOrSetter(cx, ts, TOK_ASSIGN);
if (tt == TOK_ERROR)
return NULL;
}
#endif
if (tt != TOK_ASSIGN) {
js_UngetToken(ts);
return pn;
}
op = CURRENT_TOKEN(ts).t_op;
switch (pn->pn_type) {
case TOK_NAME:
pn->pn_op = JSOP_SETNAME;
NoteLValue(cx, pn, tc);
break;
case TOK_DOT:
pn->pn_op = JSOP_SETPROP;
break;
case TOK_LB:
pn->pn_op = JSOP_SETELEM;
break;
#if JS_HAS_DESTRUCTURING
case TOK_RB:
case TOK_RC:
if (op != JSOP_NOP) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_DESTRUCT_ASS);
return NULL;
}
rhs = AssignExpr(cx, ts, tc);
if (!rhs || !CheckDestructuring(cx, NULL, pn, rhs, tc))
return NULL;
return NewBinary(TOK_ASSIGN, op, pn, rhs, tc);
#endif
case TOK_LP:
if (!MakeSetCall(cx, pn, tc, JSMSG_BAD_LEFTSIDE_OF_ASS))
return NULL;
break;
#if JS_HAS_XML_SUPPORT
case TOK_UNARYOP:
if (pn->pn_op == JSOP_XMLNAME) {
pn->pn_op = JSOP_SETXMLNAME;
break;
}
/* FALL THROUGH */
#endif
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_LEFTSIDE_OF_ASS);
return NULL;
}
rhs = AssignExpr(cx, ts, tc);
if (rhs && PN_TYPE(pn) == TOK_NAME && pn->pn_used) {
JSDefinition *dn = pn->pn_lexdef;
/*
* If the definition is not flagged as assigned, we must have imputed
* the initialized flag to it, to optimize for flat closures. But that
* optimization uses source coordinates to check dominance relations,
* so we must extend the end of the definition to cover the right-hand
* side of this assignment, i.e., the initializer.
*/
if (!dn->isAssigned()) {
JS_ASSERT(dn->isInitialized());
dn->pn_pos.end = rhs->pn_pos.end;
}
}
return NewBinary(TOK_ASSIGN, op, pn, rhs, tc);
}
static JSParseNode *
CondExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn, *pn1, *pn2, *pn3;
uintN oldflags;
pn = OrExpr(cx, ts, tc);
if (pn && js_MatchToken(cx, ts, TOK_HOOK)) {
pn1 = pn;
pn = NewParseNode(PN_TERNARY, tc);
if (!pn)
return NULL;
/*
* Always accept the 'in' operator in the middle clause of a ternary,
* where it's unambiguous, even if we might be parsing the init of a
* for statement.
*/
oldflags = tc->flags;
tc->flags &= ~TCF_IN_FOR_INIT;
pn2 = AssignExpr(cx, ts, tc);
tc->flags = oldflags | (tc->flags & TCF_FUN_FLAGS);
if (!pn2)
return NULL;
MUST_MATCH_TOKEN(TOK_COLON, JSMSG_COLON_IN_COND);
pn3 = AssignExpr(cx, ts, tc);
if (!pn3)
return NULL;
pn->pn_pos.begin = pn1->pn_pos.begin;
pn->pn_pos.end = pn3->pn_pos.end;
pn->pn_kid1 = pn1;
pn->pn_kid2 = pn2;
pn->pn_kid3 = pn3;
}
return pn;
}
static JSParseNode *
OrExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = AndExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_OR))
pn = NewBinary(TOK_OR, JSOP_OR, pn, AndExpr(cx, ts, tc), tc);
return pn;
}
static JSParseNode *
AndExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = BitOrExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_AND))
pn = NewBinary(TOK_AND, JSOP_AND, pn, BitOrExpr(cx, ts, tc), tc);
return pn;
}
static JSParseNode *
BitOrExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = BitXorExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_BITOR)) {
pn = NewBinary(TOK_BITOR, JSOP_BITOR, pn, BitXorExpr(cx, ts, tc),
tc);
}
return pn;
}
static JSParseNode *
BitXorExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = BitAndExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_BITXOR)) {
pn = NewBinary(TOK_BITXOR, JSOP_BITXOR, pn, BitAndExpr(cx, ts, tc),
tc);
}
return pn;
}
static JSParseNode *
BitAndExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = EqExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_BITAND))
pn = NewBinary(TOK_BITAND, JSOP_BITAND, pn, EqExpr(cx, ts, tc), tc);
return pn;
}
static JSParseNode *
EqExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
JSOp op;
pn = RelExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_EQOP)) {
op = CURRENT_TOKEN(ts).t_op;
pn = NewBinary(TOK_EQOP, op, pn, RelExpr(cx, ts, tc), tc);
}
return pn;
}
static JSParseNode *
RelExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
JSTokenType tt;
JSOp op;
uintN inForInitFlag = tc->flags & TCF_IN_FOR_INIT;
/*
* Uses of the in operator in ShiftExprs are always unambiguous,
* so unset the flag that prohibits recognizing it.
*/
tc->flags &= ~TCF_IN_FOR_INIT;
pn = ShiftExpr(cx, ts, tc);
while (pn &&
(js_MatchToken(cx, ts, TOK_RELOP) ||
/*
* Recognize the 'in' token as an operator only if we're not
* currently in the init expr of a for loop.
*/
(inForInitFlag == 0 && js_MatchToken(cx, ts, TOK_IN)) ||
js_MatchToken(cx, ts, TOK_INSTANCEOF))) {
tt = CURRENT_TOKEN(ts).type;
op = CURRENT_TOKEN(ts).t_op;
pn = NewBinary(tt, op, pn, ShiftExpr(cx, ts, tc), tc);
}
/* Restore previous state of inForInit flag. */
tc->flags |= inForInitFlag;
return pn;
}
static JSParseNode *
ShiftExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
JSOp op;
pn = AddExpr(cx, ts, tc);
while (pn && js_MatchToken(cx, ts, TOK_SHOP)) {
op = CURRENT_TOKEN(ts).t_op;
pn = NewBinary(TOK_SHOP, op, pn, AddExpr(cx, ts, tc), tc);
}
return pn;
}
static JSParseNode *
AddExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
JSTokenType tt;
JSOp op;
pn = MulExpr(cx, ts, tc);
while (pn &&
(js_MatchToken(cx, ts, TOK_PLUS) ||
js_MatchToken(cx, ts, TOK_MINUS))) {
tt = CURRENT_TOKEN(ts).type;
op = (tt == TOK_PLUS) ? JSOP_ADD : JSOP_SUB;
pn = NewBinary(tt, op, pn, MulExpr(cx, ts, tc), tc);
}
return pn;
}
static JSParseNode *
MulExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
JSTokenType tt;
JSOp op;
pn = UnaryExpr(cx, ts, tc);
while (pn &&
(js_MatchToken(cx, ts, TOK_STAR) ||
js_MatchToken(cx, ts, TOK_DIVOP))) {
tt = CURRENT_TOKEN(ts).type;
op = CURRENT_TOKEN(ts).t_op;
pn = NewBinary(tt, op, pn, UnaryExpr(cx, ts, tc), tc);
}
return pn;
}
static JSParseNode *
SetLvalKid(JSContext *cx, JSTokenStream *ts, JSParseNode *pn, JSParseNode *kid,
const char *name)
{
if (kid->pn_type != TOK_NAME &&
kid->pn_type != TOK_DOT &&
(kid->pn_type != TOK_LP ||
(kid->pn_op != JSOP_CALL && kid->pn_op != JSOP_EVAL && kid->pn_op != JSOP_APPLY)) &&
#if JS_HAS_XML_SUPPORT
(kid->pn_type != TOK_UNARYOP || kid->pn_op != JSOP_XMLNAME) &&
#endif
kid->pn_type != TOK_LB) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_OPERAND, name);
return NULL;
}
pn->pn_kid = kid;
return kid;
}
static const char incop_name_str[][10] = {"increment", "decrement"};
static JSBool
SetIncOpKid(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSParseNode *pn, JSParseNode *kid,
JSTokenType tt, JSBool preorder)
{
JSOp op;
kid = SetLvalKid(cx, ts, pn, kid, incop_name_str[tt == TOK_DEC]);
if (!kid)
return JS_FALSE;
switch (kid->pn_type) {
case TOK_NAME:
op = (tt == TOK_INC)
? (preorder ? JSOP_INCNAME : JSOP_NAMEINC)
: (preorder ? JSOP_DECNAME : JSOP_NAMEDEC);
NoteLValue(cx, kid, tc);
break;
case TOK_DOT:
op = (tt == TOK_INC)
? (preorder ? JSOP_INCPROP : JSOP_PROPINC)
: (preorder ? JSOP_DECPROP : JSOP_PROPDEC);
break;
case TOK_LP:
if (!MakeSetCall(cx, kid, tc, JSMSG_BAD_INCOP_OPERAND))
return JS_FALSE;
/* FALL THROUGH */
#if JS_HAS_XML_SUPPORT
case TOK_UNARYOP:
if (kid->pn_op == JSOP_XMLNAME)
kid->pn_op = JSOP_SETXMLNAME;
/* FALL THROUGH */
#endif
case TOK_LB:
op = (tt == TOK_INC)
? (preorder ? JSOP_INCELEM : JSOP_ELEMINC)
: (preorder ? JSOP_DECELEM : JSOP_ELEMDEC);
break;
default:
JS_ASSERT(0);
op = JSOP_NOP;
}
pn->pn_op = op;
return JS_TRUE;
}
static JSParseNode *
UnaryExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSTokenType tt;
JSParseNode *pn, *pn2;
JS_CHECK_RECURSION(cx, return NULL);
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
switch (tt) {
case TOK_UNARYOP:
case TOK_PLUS:
case TOK_MINUS:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_UNARYOP; /* PLUS and MINUS are binary */
pn->pn_op = CURRENT_TOKEN(ts).t_op;
pn2 = UnaryExpr(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_pos.end = pn2->pn_pos.end;
pn->pn_kid = pn2;
break;
case TOK_INC:
case TOK_DEC:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn2 = MemberExpr(cx, ts, tc, JS_TRUE);
if (!pn2)
return NULL;
if (!SetIncOpKid(cx, ts, tc, pn, pn2, tt, JS_TRUE))
return NULL;
pn->pn_pos.end = pn2->pn_pos.end;
break;
case TOK_DELETE:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn2 = UnaryExpr(cx, ts, tc);
if (!pn2)
return NULL;
pn->pn_pos.end = pn2->pn_pos.end;
/*
* Under ECMA3, deleting any unary expression is valid -- it simply
* returns true. Here we fold constants before checking for a call
* expression, in order to rule out delete of a generator expression.
*/
if (!js_FoldConstants(cx, pn2, tc))
return NULL;
switch (pn2->pn_type) {
case TOK_LP:
if (pn2->pn_op != JSOP_SETCALL &&
!MakeSetCall(cx, pn2, tc, JSMSG_BAD_DELETE_OPERAND)) {
return NULL;
}
break;
case TOK_NAME:
pn2->pn_op = JSOP_DELNAME;
break;
default:;
}
pn->pn_kid = pn2;
break;
case TOK_ERROR:
return NULL;
default:
js_UngetToken(ts);
pn = MemberExpr(cx, ts, tc, JS_TRUE);
if (!pn)
return NULL;
/* Don't look across a newline boundary for a postfix incop. */
if (ON_CURRENT_LINE(ts, pn->pn_pos)) {
ts->flags |= TSF_OPERAND;
tt = js_PeekTokenSameLine(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_INC || tt == TOK_DEC) {
(void) js_GetToken(cx, ts);
pn2 = NewParseNode(PN_UNARY, tc);
if (!pn2)
return NULL;
if (!SetIncOpKid(cx, ts, tc, pn2, pn, tt, JS_FALSE))
return NULL;
pn2->pn_pos.begin = pn->pn_pos.begin;
pn = pn2;
}
}
break;
}
return pn;
}
#if JS_HAS_GENERATORS
/*
* A dedicated helper for transplanting the comprehension expression E in
*
* [E for (V in I)] // array comprehension
* (E for (V in I)) // generator expression
*
* from its initial location in the AST, on the left of the 'for', to its final
* position on the right. To avoid a separate pass we do this by adjusting the
* blockids and name binding links that were established when E was parsed.
*
* A generator expression desugars like so:
*
* (E for (V in I)) => (function () { for (var V in I) yield E; })()
*
* so the transplanter must adjust static level as well as blockid. E's source
* coordinates in root->pn_pos are critical to deciding which binding links to
* preserve and which to cut.
*
* NB: This is not a general tree transplanter -- it knows in particular that
* the one or more bindings induced by V have not yet been created.
*/
class CompExprTransplanter {
JSParseNode *root;
JSTreeContext *tc;
bool genexp;
uintN adjust;
uintN funcLevel;
public:
CompExprTransplanter(JSParseNode *pn, JSTreeContext *tc, bool ge, uintN adj)
: root(pn), tc(tc), genexp(ge), adjust(adj), funcLevel(0)
{
}
bool transplant(JSParseNode *pn);
};
/*
* Any definitions nested within the comprehension expression of a generator
* expression must move "down" one static level, which of course increases the
* upvar-frame-skip count.
*/
static bool
BumpStaticLevel(JSParseNode *pn, JSTreeContext *tc)
{
if (pn->pn_cookie != FREE_UPVAR_COOKIE) {
uintN level = UPVAR_FRAME_SKIP(pn->pn_cookie) + 1;
JS_ASSERT(level >= tc->staticLevel);
if (level >= FREE_STATIC_LEVEL) {
JS_ReportErrorNumber(tc->compiler->context, js_GetErrorMessage, NULL,
JSMSG_TOO_DEEP, js_function_str);
return false;
}
pn->pn_cookie = MAKE_UPVAR_COOKIE(level, UPVAR_FRAME_SLOT(pn->pn_cookie));
}
return true;
}
static void
AdjustBlockId(JSParseNode *pn, uintN adjust, JSTreeContext *tc)
{
JS_ASSERT(pn->pn_arity == PN_LIST || pn->pn_arity == PN_FUNC || pn->pn_arity == PN_NAME);
pn->pn_blockid += adjust;
if (pn->pn_blockid >= tc->blockidGen)
tc->blockidGen = pn->pn_blockid + 1;
}
bool
CompExprTransplanter::transplant(JSParseNode *pn)
{
if (!pn)
return true;
switch (pn->pn_arity) {
case PN_LIST:
for (JSParseNode *pn2 = pn->pn_head; pn2; pn2 = pn2->pn_next)
transplant(pn2);
if (pn->pn_pos >= root->pn_pos)
AdjustBlockId(pn, adjust, tc);
break;
case PN_TERNARY:
transplant(pn->pn_kid1);
transplant(pn->pn_kid2);
transplant(pn->pn_kid3);
break;
case PN_BINARY:
transplant(pn->pn_left);
/* Binary TOK_COLON nodes can have left == right. See bug 492714. */
if (pn->pn_right != pn->pn_left)
transplant(pn->pn_right);
break;
case PN_UNARY:
transplant(pn->pn_kid);
break;
case PN_FUNC:
{
/*
* Only the first level of transplant recursion through functions needs
* to reparent the funbox, since all descendant functions are correctly
* linked under the top-most funbox. But every visit to this case needs
* to update funbox->level.
*
* Recall that funbox->level is the static level of the code containing
* the definition or expression of the function and not the static level
* of the function's body.
*/
JSFunctionBox *funbox = pn->pn_funbox;
funbox->level = tc->staticLevel + funcLevel;
if (++funcLevel == 1 && genexp) {
JSFunctionBox *parent = tc->funbox;
JSFunctionBox **funboxp = &tc->parent->functionList;
while (*funboxp != funbox)
funboxp = &(*funboxp)->siblings;
*funboxp = funbox->siblings;
funbox->parent = parent;
funbox->siblings = parent->kids;
parent->kids = funbox;
funbox->level = tc->staticLevel;
}
/* FALL THROUGH */
}
case PN_NAME:
transplant(pn->maybeExpr());
if (pn->pn_arity == PN_FUNC)
--funcLevel;
if (pn->pn_defn) {
if (genexp && !BumpStaticLevel(pn, tc))
return false;
} else if (pn->pn_used) {
JS_ASSERT(pn->pn_op != JSOP_NOP);
JS_ASSERT(pn->pn_cookie == FREE_UPVAR_COOKIE);
JSDefinition *dn = pn->pn_lexdef;
JS_ASSERT(dn->pn_defn);
/*
* Adjust the definition's block id only if it is a placeholder not
* to the left of the root node, and if pn is the last use visited
* in the comprehension expression (to avoid adjusting the blockid
* multiple times).
*
* Non-placeholder definitions within the comprehension expression
* will be visited further below.
*/
if (dn->isPlaceholder() && dn->pn_pos >= root->pn_pos && dn->dn_uses == pn) {
if (genexp && !BumpStaticLevel(dn, tc))
return false;
AdjustBlockId(dn, adjust, tc);
}
JSAtom *atom = pn->pn_atom;
#ifdef DEBUG
JSStmtInfo *stmt = js_LexicalLookup(tc, atom, NULL);
JS_ASSERT(!stmt || stmt != tc->topStmt);
#endif
if (genexp && PN_OP(dn) != JSOP_CALLEE) {
JS_ASSERT(!tc->decls.lookup(atom));
if (dn->pn_pos < root->pn_pos || dn->isPlaceholder()) {
JSAtomListElement *ale = tc->lexdeps.add(tc->compiler, dn->pn_atom);
if (!ale)
return false;
if (dn->pn_pos >= root->pn_pos) {
tc->parent->lexdeps.remove(tc->compiler, atom);
} else {
JSDefinition *dn2 = (JSDefinition *)
NewNameNode(tc->compiler->context, TS(tc->compiler), dn->pn_atom, tc);
if (!dn2)
return false;
dn2->pn_type = dn->pn_type;
dn2->pn_pos = root->pn_pos;
dn2->pn_defn = true;
dn2->pn_dflags |= PND_PLACEHOLDER;
JSParseNode **pnup = &dn->dn_uses;
JSParseNode *pnu;
while ((pnu = *pnup) != NULL && pnu->pn_pos >= root->pn_pos) {
pnu->pn_lexdef = dn2;
dn2->pn_dflags |= pnu->pn_dflags & PND_USE2DEF_FLAGS;
pnup = &pnu->pn_link;
}
dn2->dn_uses = dn->dn_uses;
dn->dn_uses = *pnup;
*pnup = NULL;
dn = dn2;
}
ALE_SET_DEFN(ale, dn);
}
}
}
if (pn->pn_pos >= root->pn_pos)
AdjustBlockId(pn, adjust, tc);
break;
case PN_NAMESET:
transplant(pn->pn_tree);
break;
}
return true;
}
/*
* Starting from a |for| keyword after the first array initialiser element or
* an expression in an open parenthesis, parse the tail of the comprehension
* or generator expression signified by this |for| keyword in context.
*
* Return null on failure, else return the top-most parse node for the array
* comprehension or generator expression, with a unary node as the body of the
* (possibly nested) for-loop, initialized by |type, op, kid|.
*/
static JSParseNode *
ComprehensionTail(JSParseNode *kid, uintN blockid, JSTreeContext *tc,
JSTokenType type = TOK_SEMI, JSOp op = JSOP_NOP)
{
JSContext *cx = tc->compiler->context;
JSTokenStream *ts = TS(tc->compiler);
uintN adjust;
JSParseNode *pn, *pn2, *pn3, **pnp;
JSStmtInfo stmtInfo;
BindData data;
JSTokenType tt;
JSAtom *atom;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_FOR);
if (type == TOK_SEMI) {
/*
* Generator expression desugars to an immediately applied lambda that
* yields the next value from a for-in loop (possibly nested, and with
* optional if guard). Make pn be the TOK_LC body node.
*/
pn = PushLexicalScope(cx, ts, tc, &stmtInfo);
if (!pn)
return NULL;
adjust = pn->pn_blockid - blockid;
} else {
JS_ASSERT(type == TOK_ARRAYPUSH);
/*
* Make a parse-node and literal object representing the block scope of
* this array comprehension. Our caller in PrimaryExpr, the TOK_LB case
* aka the array initialiser case, has passed the blockid to claim for
* the comprehension's block scope. We allocate that id or one above it
* here, by calling js_PushLexicalScope.
*
* In the case of a comprehension expression that has nested blocks
* (e.g., let expressions), we will allocate a higher blockid but then
* slide all blocks "to the right" to make room for the comprehension's
* block scope.
*/
adjust = tc->blockid();
pn = PushLexicalScope(cx, ts, tc, &stmtInfo);
if (!pn)
return NULL;
JS_ASSERT(blockid <= pn->pn_blockid);
JS_ASSERT(blockid < tc->blockidGen);
JS_ASSERT(tc->bodyid < blockid);
pn->pn_blockid = stmtInfo.blockid = blockid;
JS_ASSERT(adjust < blockid);
adjust = blockid - adjust;
}
pnp = &pn->pn_expr;
CompExprTransplanter transplanter(kid, tc, type == TOK_SEMI, adjust);
transplanter.transplant(kid);
data.pn = NULL;
data.op = JSOP_NOP;
data.binder = BindLet;
data.let.overflow = JSMSG_ARRAY_INIT_TOO_BIG;
do {
/*
* FOR node is binary, left is loop control and right is body. Use
* index to count each block-local let-variable on the left-hand side
* of the IN.
*/
pn2 = NewParseNode(PN_BINARY, tc);
if (!pn2)
return NULL;
pn2->pn_op = JSOP_ITER;
pn2->pn_iflags = JSITER_ENUMERATE;
if (js_MatchToken(cx, ts, TOK_NAME)) {
if (CURRENT_TOKEN(ts).t_atom == cx->runtime->atomState.eachAtom)
pn2->pn_iflags |= JSITER_FOREACH;
else
js_UngetToken(ts);
}
MUST_MATCH_TOKEN(TOK_LP, JSMSG_PAREN_AFTER_FOR);
atom = NULL;
tt = js_GetToken(cx, ts);
switch (tt) {
#if JS_HAS_DESTRUCTURING
case TOK_LB:
case TOK_LC:
ts->flags |= TSF_DESTRUCTURING;
pn3 = PrimaryExpr(cx, ts, tc, tt, JS_FALSE);
ts->flags &= ~TSF_DESTRUCTURING;
if (!pn3)
return NULL;
break;
#endif
case TOK_NAME:
atom = CURRENT_TOKEN(ts).t_atom;
/*
* Create a name node with pn_op JSOP_NAME. We can't set pn_op to
* JSOP_GETLOCAL here, because we don't yet know the block's depth
* in the operand stack frame. The code generator computes that,
* and it tries to bind all names to slots, so we must let it do
* the deed.
*/
pn3 = NewBindingNode(ts, atom, tc, true);
if (!pn3)
return NULL;
break;
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_NO_VARIABLE_NAME);
case TOK_ERROR:
return NULL;
}
MUST_MATCH_TOKEN(TOK_IN, JSMSG_IN_AFTER_FOR_NAME);
JSParseNode *pn4 = Expr(cx, ts, tc);
if (!pn4)
return NULL;
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_AFTER_FOR_CTRL);
switch (tt) {
#if JS_HAS_DESTRUCTURING
case TOK_LB:
case TOK_LC:
if (!CheckDestructuring(cx, &data, pn3, NULL, tc))
return NULL;
if (JSVERSION_NUMBER(cx) == JSVERSION_1_7) {
/* Destructuring requires [key, value] enumeration in JS1.7. */
if (pn3->pn_type != TOK_RB || pn3->pn_count != 2) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_FOR_LEFTSIDE);
return NULL;
}
JS_ASSERT(pn2->pn_op == JSOP_ITER);
JS_ASSERT(pn2->pn_iflags & JSITER_ENUMERATE);
if (!(pn2->pn_iflags & JSITER_FOREACH))
pn2->pn_iflags |= JSITER_FOREACH | JSITER_KEYVALUE;
}
break;
#endif
case TOK_NAME:
data.pn = pn3;
if (!data.binder(cx, &data, atom, tc))
return NULL;
break;
default:;
}
pn2->pn_left = NewBinary(TOK_IN, JSOP_NOP, pn3, pn4, tc);
if (!pn2->pn_left)
return NULL;
*pnp = pn2;
pnp = &pn2->pn_right;
} while (js_MatchToken(cx, ts, TOK_FOR));
if (js_MatchToken(cx, ts, TOK_IF)) {
pn2 = NewParseNode(PN_TERNARY, tc);
if (!pn2)
return NULL;
pn2->pn_kid1 = Condition(cx, ts, tc);
if (!pn2->pn_kid1)
return NULL;
*pnp = pn2;
pnp = &pn2->pn_kid2;
}
pn2 = NewParseNode(PN_UNARY, tc);
if (!pn2)
return NULL;
pn2->pn_type = type;
pn2->pn_op = op;
pn2->pn_kid = kid;
*pnp = pn2;
if (type == TOK_ARRAYPUSH)
PopStatement(tc);
return pn;
}
#if JS_HAS_GENERATOR_EXPRS
/*
* Starting from a |for| keyword after an expression, parse the comprehension
* tail completing this generator expression. Wrap the expression at kid in a
* generator function that is immediately called to evaluate to the generator
* iterator that is the value of this generator expression.
*
* Callers pass a blank unary node via pn, which GeneratorExpr fills in as the
* yield expression, which ComprehensionTail in turn wraps in a TOK_SEMI-type
* expression-statement node that constitutes the body of the |for| loop(s) in
* the generator function.
*
* Note how unlike Python, we do not evaluate the expression to the right of
* the first |in| in the chain of |for| heads. Instead, a generator expression
* is merely sugar for a generator function expression and its application.
*/
static JSParseNode *
GeneratorExpr(JSParseNode *pn, JSParseNode *kid, JSTreeContext *tc)
{
/* Initialize pn, connecting it to kid. */
JS_ASSERT(pn->pn_arity == PN_UNARY);
pn->pn_type = TOK_YIELD;
pn->pn_op = JSOP_YIELD;
pn->pn_parens = true;
pn->pn_pos = kid->pn_pos;
pn->pn_kid = kid;
pn->pn_hidden = true;
/* Make a new node for the desugared generator function. */
JSParseNode *genfn = NewParseNode(PN_FUNC, tc);
if (!genfn)
return NULL;
genfn->pn_type = TOK_FUNCTION;
genfn->pn_op = JSOP_LAMBDA;
JS_ASSERT(!genfn->pn_body);
genfn->pn_dflags = PND_FUNARG;
{
JSTreeContext gentc(tc->compiler);
JSFunctionBox *funbox = EnterFunction(genfn, tc, &gentc);
if (!funbox)
return NULL;
/*
* We assume conservatively that any deoptimization flag in tc->flags
* besides TCF_FUN_PARAM_ARGUMENTS can come from the kid. So we
* propagate these flags into genfn. For code simplicity we also do
* not detect if the flags were only set in the kid and could be
* removed from tc->flags.
*/
gentc.flags |= TCF_FUN_IS_GENERATOR | TCF_GENEXP_LAMBDA |
(tc->flags & (TCF_FUN_FLAGS & ~TCF_FUN_PARAM_ARGUMENTS));
funbox->tcflags |= gentc.flags;
genfn->pn_funbox = funbox;
genfn->pn_blockid = gentc.bodyid;
JSParseNode *body = ComprehensionTail(pn, tc->blockid(), &gentc);
if (!body)
return NULL;
JS_ASSERT(!genfn->pn_body);
genfn->pn_body = body;
genfn->pn_pos.begin = body->pn_pos.begin = kid->pn_pos.begin;
genfn->pn_pos.end = body->pn_pos.end = CURRENT_TOKEN(TS(tc->compiler)).pos.end;
if (!LeaveFunction(genfn, &gentc, tc))
return NULL;
}
/*
* Our result is a call expression that invokes the anonymous generator
* function object.
*/
JSParseNode *result = NewParseNode(PN_LIST, tc);
if (!result)
return NULL;
result->pn_type = TOK_LP;
result->pn_op = JSOP_CALL;
result->pn_pos.begin = genfn->pn_pos.begin;
result->initList(genfn);
return result;
}
static const char js_generator_str[] = "generator";
#endif /* JS_HAS_GENERATOR_EXPRS */
#endif /* JS_HAS_GENERATORS */
static JSBool
ArgumentList(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSParseNode *listNode)
{
JSBool matched;
ts->flags |= TSF_OPERAND;
matched = js_MatchToken(cx, ts, TOK_RP);
ts->flags &= ~TSF_OPERAND;
if (!matched) {
do {
JSParseNode *argNode = AssignExpr(cx, ts, tc);
if (!argNode)
return JS_FALSE;
#if JS_HAS_GENERATORS
if (argNode->pn_type == TOK_YIELD &&
!argNode->pn_parens &&
js_PeekToken(cx, ts) == TOK_COMMA) {
js_ReportCompileErrorNumber(cx, ts, argNode, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_SYNTAX,
js_yield_str);
return JS_FALSE;
}
#endif
#if JS_HAS_GENERATOR_EXPRS
if (js_MatchToken(cx, ts, TOK_FOR)) {
JSParseNode *pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return JS_FALSE;
argNode = GeneratorExpr(pn, argNode, tc);
if (!argNode)
return JS_FALSE;
if (listNode->pn_count > 1 ||
js_PeekToken(cx, ts) == TOK_COMMA) {
js_ReportCompileErrorNumber(cx, ts, argNode, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_SYNTAX,
js_generator_str);
return JS_FALSE;
}
}
#endif
listNode->append(argNode);
} while (js_MatchToken(cx, ts, TOK_COMMA));
if (js_GetToken(cx, ts) != TOK_RP) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_PAREN_AFTER_ARGS);
return JS_FALSE;
}
}
return JS_TRUE;
}
/* Check for an immediately-applied (new'ed) lambda and clear PND_FUNARG. */
static JSParseNode *
CheckForImmediatelyAppliedLambda(JSParseNode *pn)
{
while (pn->pn_type == TOK_RP)
pn = pn->pn_kid;
if (pn->pn_type == TOK_FUNCTION) {
JS_ASSERT(pn->pn_arity == PN_FUNC);
JSFunctionBox *funbox = pn->pn_funbox;
JS_ASSERT(((JSFunction *) funbox->object)->flags & JSFUN_LAMBDA);
if (!(funbox->tcflags & TCF_FUN_USES_ARGUMENTS))
pn->pn_dflags &= ~PND_FUNARG;
}
return pn;
}
static JSParseNode *
MemberExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSBool allowCallSyntax)
{
JSParseNode *pn, *pn2, *pn3;
JSTokenType tt;
JS_CHECK_RECURSION(cx, return NULL);
/* Check for new expression first. */
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_NEW) {
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
pn2 = MemberExpr(cx, ts, tc, JS_FALSE);
if (!pn2)
return NULL;
pn2 = CheckForImmediatelyAppliedLambda(pn2);
pn->pn_op = JSOP_NEW;
pn->initList(pn2);
pn->pn_pos.begin = pn2->pn_pos.begin;
if (js_MatchToken(cx, ts, TOK_LP) && !ArgumentList(cx, ts, tc, pn))
return NULL;
if (pn->pn_count > ARGC_LIMIT) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL,
JSMSG_TOO_MANY_CON_ARGS);
return NULL;
}
pn->pn_pos.end = pn->last()->pn_pos.end;
} else {
pn = PrimaryExpr(cx, ts, tc, tt, JS_FALSE);
if (!pn)
return NULL;
if (pn->pn_type == TOK_ANYNAME ||
pn->pn_type == TOK_AT ||
pn->pn_type == TOK_DBLCOLON) {
pn2 = NewOrRecycledNode(tc);
if (!pn2)
return NULL;
pn2->pn_type = TOK_UNARYOP;
pn2->pn_pos = pn->pn_pos;
pn2->pn_op = JSOP_XMLNAME;
pn2->pn_arity = PN_UNARY;
pn2->pn_parens = false;
pn2->pn_kid = pn;
pn = pn2;
}
}
while ((tt = js_GetToken(cx, ts)) > TOK_EOF) {
if (tt == TOK_DOT) {
pn2 = NewNameNode(cx, ts, NULL, tc);
if (!pn2)
return NULL;
#if JS_HAS_XML_SUPPORT
ts->flags |= TSF_OPERAND | TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~(TSF_OPERAND | TSF_KEYWORD_IS_NAME);
pn3 = PrimaryExpr(cx, ts, tc, tt, JS_TRUE);
if (!pn3)
return NULL;
/* Check both tt and pn_type, to distinguish |x.(y)| and |x.y::z| from |x.y|. */
if (tt == TOK_NAME && pn3->pn_type == TOK_NAME) {
pn2->pn_op = JSOP_GETPROP;
pn2->pn_expr = pn;
pn2->pn_atom = pn3->pn_atom;
RecycleTree(pn3, tc);
} else {
if (tt == TOK_LP) {
pn2->pn_type = TOK_FILTER;
pn2->pn_op = JSOP_FILTER;
/* A filtering predicate is like a with statement. */
tc->flags |= TCF_FUN_HEAVYWEIGHT;
} else if (TOKEN_TYPE_IS_XML(PN_TYPE(pn3))) {
pn2->pn_type = TOK_LB;
pn2->pn_op = JSOP_GETELEM;
} else {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_NAME_AFTER_DOT);
return NULL;
}
pn2->pn_arity = PN_BINARY;
pn2->pn_left = pn;
pn2->pn_right = pn3;
}
#else
ts->flags |= TSF_KEYWORD_IS_NAME;
MUST_MATCH_TOKEN(TOK_NAME, JSMSG_NAME_AFTER_DOT);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
pn2->pn_op = JSOP_GETPROP;
pn2->pn_expr = pn;
pn2->pn_atom = CURRENT_TOKEN(ts).t_atom;
#endif
pn2->pn_pos.begin = pn->pn_pos.begin;
pn2->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
#if JS_HAS_XML_SUPPORT
} else if (tt == TOK_DBLDOT) {
pn2 = NewParseNode(PN_BINARY, tc);
if (!pn2)
return NULL;
ts->flags |= TSF_OPERAND | TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~(TSF_OPERAND | TSF_KEYWORD_IS_NAME);
pn3 = PrimaryExpr(cx, ts, tc, tt, JS_TRUE);
if (!pn3)
return NULL;
tt = PN_TYPE(pn3);
if (tt == TOK_NAME && !pn3->pn_parens) {
pn3->pn_type = TOK_STRING;
pn3->pn_arity = PN_NULLARY;
pn3->pn_op = JSOP_QNAMEPART;
} else if (!TOKEN_TYPE_IS_XML(tt)) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_NAME_AFTER_DOT);
return NULL;
}
pn2->pn_op = JSOP_DESCENDANTS;
pn2->pn_left = pn;
pn2->pn_right = pn3;
pn2->pn_pos.begin = pn->pn_pos.begin;
pn2->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
#endif
} else if (tt == TOK_LB) {
pn2 = NewParseNode(PN_BINARY, tc);
if (!pn2)
return NULL;
pn3 = Expr(cx, ts, tc);
if (!pn3)
return NULL;
MUST_MATCH_TOKEN(TOK_RB, JSMSG_BRACKET_IN_INDEX);
pn2->pn_pos.begin = pn->pn_pos.begin;
pn2->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
/*
* Optimize o['p'] to o.p by rewriting pn2, but avoid rewriting
* o['0'] to use JSOP_GETPROP, to keep fast indexing disjoint in
* the interpreter from fast property access. However, if the
* bracketed string is a uint32, we rewrite pn3 to be a number
* instead of a string.
*/
do {
if (pn3->pn_type == TOK_STRING) {
jsuint index;
if (!js_IdIsIndex(ATOM_TO_JSID(pn3->pn_atom), &index)) {
pn2->pn_type = TOK_DOT;
pn2->pn_op = JSOP_GETPROP;
pn2->pn_arity = PN_NAME;
pn2->pn_expr = pn;
pn2->pn_atom = pn3->pn_atom;
break;
}
pn3->pn_type = TOK_NUMBER;
pn3->pn_op = JSOP_DOUBLE;
pn3->pn_dval = index;
}
pn2->pn_op = JSOP_GETELEM;
pn2->pn_left = pn;
pn2->pn_right = pn3;
} while (0);
} else if (allowCallSyntax && tt == TOK_LP) {
pn2 = NewParseNode(PN_LIST, tc);
if (!pn2)
return NULL;
pn2->pn_op = JSOP_CALL;
/* CheckForImmediatelyAppliedLambda skips useless TOK_RP nodes. */
pn = CheckForImmediatelyAppliedLambda(pn);
if (pn->pn_op == JSOP_NAME) {
if (pn->pn_atom == cx->runtime->atomState.evalAtom) {
/* Select JSOP_EVAL and flag tc as heavyweight. */
pn2->pn_op = JSOP_EVAL;
tc->flags |= TCF_FUN_HEAVYWEIGHT;
}
} else if (pn->pn_op == JSOP_GETPROP) {
if (pn->pn_atom == cx->runtime->atomState.applyAtom ||
pn->pn_atom == cx->runtime->atomState.callAtom) {
/* Select JSOP_APPLY given foo.apply(...). */
pn2->pn_op = JSOP_APPLY;
}
}
pn2->initList(pn);
pn2->pn_pos.begin = pn->pn_pos.begin;
if (!ArgumentList(cx, ts, tc, pn2))
return NULL;
if (pn2->pn_count > ARGC_LIMIT) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL,
JSMSG_TOO_MANY_FUN_ARGS);
return NULL;
}
pn2->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
} else {
js_UngetToken(ts);
return pn;
}
pn = pn2;
}
if (tt == TOK_ERROR)
return NULL;
return pn;
}
static JSParseNode *
BracketedExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
uintN oldflags;
JSParseNode *pn;
/*
* Always accept the 'in' operator in a parenthesized expression,
* where it's unambiguous, even if we might be parsing the init of a
* for statement.
*/
oldflags = tc->flags;
tc->flags &= ~TCF_IN_FOR_INIT;
pn = Expr(cx, ts, tc);
tc->flags = oldflags | (tc->flags & TCF_FUN_FLAGS);
return pn;
}
#if JS_HAS_XML_SUPPORT
static JSParseNode *
EndBracketedExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = BracketedExpr(cx, ts, tc);
if (!pn)
return NULL;
MUST_MATCH_TOKEN(TOK_RB, JSMSG_BRACKET_AFTER_ATTR_EXPR);
return pn;
}
/*
* From the ECMA-357 grammar in 11.1.1 and 11.1.2:
*
* AttributeIdentifier:
* @ PropertySelector
* @ QualifiedIdentifier
* @ [ Expression ]
*
* PropertySelector:
* Identifier
* *
*
* QualifiedIdentifier:
* PropertySelector :: PropertySelector
* PropertySelector :: [ Expression ]
*
* We adapt AttributeIdentifier and QualifiedIdentier to be LL(1), like so:
*
* AttributeIdentifier:
* @ QualifiedIdentifier
* @ [ Expression ]
*
* PropertySelector:
* Identifier
* *
*
* QualifiedIdentifier:
* PropertySelector :: PropertySelector
* PropertySelector :: [ Expression ]
* PropertySelector
*
* As PrimaryExpression: Identifier is in ECMA-262 and we want the semantics
* for that rule to result in a name node, but ECMA-357 extends the grammar
* to include PrimaryExpression: QualifiedIdentifier, we must factor further:
*
* QualifiedIdentifier:
* PropertySelector QualifiedSuffix
*
* QualifiedSuffix:
* :: PropertySelector
* :: [ Expression ]
* /nothing/
*
* And use this production instead of PrimaryExpression: QualifiedIdentifier:
*
* PrimaryExpression:
* Identifier QualifiedSuffix
*
* We hoist the :: match into callers of QualifiedSuffix, in order to tweak
* PropertySelector vs. Identifier pn_arity, pn_op, and other members.
*/
static JSParseNode *
PropertySelector(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
if (pn->pn_type == TOK_STAR) {
pn->pn_type = TOK_ANYNAME;
pn->pn_op = JSOP_ANYNAME;
pn->pn_atom = cx->runtime->atomState.starAtom;
} else {
JS_ASSERT(pn->pn_type == TOK_NAME);
pn->pn_op = JSOP_QNAMEPART;
pn->pn_arity = PN_NAME;
pn->pn_atom = CURRENT_TOKEN(ts).t_atom;
pn->pn_cookie = FREE_UPVAR_COOKIE;
}
return pn;
}
static JSParseNode *
QualifiedSuffix(JSContext *cx, JSTokenStream *ts, JSParseNode *pn,
JSTreeContext *tc)
{
JSParseNode *pn2, *pn3;
JSTokenType tt;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_DBLCOLON);
pn2 = NewNameNode(cx, ts, NULL, tc);
if (!pn2)
return NULL;
/* Left operand of :: must be evaluated if it is an identifier. */
if (pn->pn_op == JSOP_QNAMEPART)
pn->pn_op = JSOP_NAME;
ts->flags |= TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
if (tt == TOK_STAR || tt == TOK_NAME) {
/* Inline and specialize PropertySelector for JSOP_QNAMECONST. */
pn2->pn_op = JSOP_QNAMECONST;
pn2->pn_pos.begin = pn->pn_pos.begin;
pn2->pn_atom = (tt == TOK_STAR)
? cx->runtime->atomState.starAtom
: CURRENT_TOKEN(ts).t_atom;
pn2->pn_expr = pn;
pn2->pn_cookie = FREE_UPVAR_COOKIE;
return pn2;
}
if (tt != TOK_LB) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_SYNTAX_ERROR);
return NULL;
}
pn3 = EndBracketedExpr(cx, ts, tc);
if (!pn3)
return NULL;
pn2->pn_op = JSOP_QNAME;
pn2->pn_arity = PN_BINARY;
pn2->pn_pos.begin = pn->pn_pos.begin;
pn2->pn_pos.end = pn3->pn_pos.end;
pn2->pn_left = pn;
pn2->pn_right = pn3;
return pn2;
}
static JSParseNode *
QualifiedIdentifier(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
pn = PropertySelector(cx, ts, tc);
if (!pn)
return NULL;
if (js_MatchToken(cx, ts, TOK_DBLCOLON)) {
/* Hack for bug 496316. Slowing down E4X won't make it go away, alas. */
tc->flags |= TCF_FUN_HEAVYWEIGHT;
pn = QualifiedSuffix(cx, ts, pn, tc);
}
return pn;
}
static JSParseNode *
AttributeIdentifier(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn, *pn2;
JSTokenType tt;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_AT);
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn->pn_op = JSOP_TOATTRNAME;
ts->flags |= TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
if (tt == TOK_STAR || tt == TOK_NAME) {
pn2 = QualifiedIdentifier(cx, ts, tc);
} else if (tt == TOK_LB) {
pn2 = EndBracketedExpr(cx, ts, tc);
} else {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_SYNTAX_ERROR);
return NULL;
}
if (!pn2)
return NULL;
pn->pn_kid = pn2;
return pn;
}
/*
* Make a TOK_LC unary node whose pn_kid is an expression.
*/
static JSParseNode *
XMLExpr(JSContext *cx, JSTokenStream *ts, JSBool inTag, JSTreeContext *tc)
{
JSParseNode *pn, *pn2;
uintN oldflags;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_LC);
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
/*
* Turn off XML tag mode, but don't restore it after parsing this braced
* expression. Instead, simply restore ts's old flags. This is required
* because XMLExpr is called both from within a tag, and from within text
* contained in an element, but outside of any start, end, or point tag.
*/
oldflags = ts->flags;
ts->flags = oldflags & ~TSF_XMLTAGMODE;
pn2 = Expr(cx, ts, tc);
if (!pn2)
return NULL;
MUST_MATCH_TOKEN(TOK_RC, JSMSG_CURLY_IN_XML_EXPR);
ts->flags = oldflags;
pn->pn_kid = pn2;
pn->pn_op = inTag ? JSOP_XMLTAGEXPR : JSOP_XMLELTEXPR;
return pn;
}
/*
* Make a terminal node for one of TOK_XMLNAME, TOK_XMLATTR, TOK_XMLSPACE,
* TOK_XMLTEXT, TOK_XMLCDATA, TOK_XMLCOMMENT, or TOK_XMLPI. When converting
* parse tree to XML, we preserve a TOK_XMLSPACE node only if it's the sole
* child of a container tag.
*/
static JSParseNode *
XMLAtomNode(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn;
JSToken *tp;
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
tp = &CURRENT_TOKEN(ts);
pn->pn_op = tp->t_op;
pn->pn_atom = tp->t_atom;
if (tp->type == TOK_XMLPI)
pn->pn_atom2 = tp->t_atom2;
return pn;
}
/*
* Parse the productions:
*
* XMLNameExpr:
* XMLName XMLNameExpr?
* { Expr } XMLNameExpr?
*
* Return a PN_LIST, PN_UNARY, or PN_NULLARY according as XMLNameExpr produces
* a list of names and/or expressions, a single expression, or a single name.
* If PN_LIST or PN_NULLARY, pn_type will be TOK_XMLNAME; if PN_UNARY, pn_type
* will be TOK_LC.
*/
static JSParseNode *
XMLNameExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc)
{
JSParseNode *pn, *pn2, *list;
JSTokenType tt;
pn = list = NULL;
do {
tt = CURRENT_TOKEN(ts).type;
if (tt == TOK_LC) {
pn2 = XMLExpr(cx, ts, JS_TRUE, tc);
if (!pn2)
return NULL;
} else {
JS_ASSERT(tt == TOK_XMLNAME);
pn2 = XMLAtomNode(cx, ts, tc);
if (!pn2)
return NULL;
}
if (!pn) {
pn = pn2;
} else {
if (!list) {
list = NewParseNode(PN_LIST, tc);
if (!list)
return NULL;
list->pn_type = TOK_XMLNAME;
list->pn_pos.begin = pn->pn_pos.begin;
list->initList(pn);
list->pn_xflags = PNX_CANTFOLD;
pn = list;
}
pn->pn_pos.end = pn2->pn_pos.end;
pn->append(pn2);
}
} while ((tt = js_GetToken(cx, ts)) == TOK_XMLNAME || tt == TOK_LC);
js_UngetToken(ts);
return pn;
}
/*
* Macro to test whether an XMLNameExpr or XMLTagContent node can be folded
* at compile time into a JSXML tree.
*/
#define XML_FOLDABLE(pn) ((pn)->pn_arity == PN_LIST \
? ((pn)->pn_xflags & PNX_CANTFOLD) == 0 \
: (pn)->pn_type != TOK_LC)
/*
* Parse the productions:
*
* XMLTagContent:
* XMLNameExpr
* XMLTagContent S XMLNameExpr S? = S? XMLAttr
* XMLTagContent S XMLNameExpr S? = S? { Expr }
*
* Return a PN_LIST, PN_UNARY, or PN_NULLARY according to how XMLTagContent
* produces a list of name and attribute values and/or braced expressions, a
* single expression, or a single name.
*
* If PN_LIST or PN_NULLARY, pn_type will be TOK_XMLNAME for the case where
* XMLTagContent: XMLNameExpr. If pn_type is not TOK_XMLNAME but pn_arity is
* PN_LIST, pn_type will be tagtype. If PN_UNARY, pn_type will be TOK_LC and
* we parsed exactly one expression.
*/
static JSParseNode *
XMLTagContent(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSTokenType tagtype, JSAtom **namep)
{
JSParseNode *pn, *pn2, *list;
JSTokenType tt;
pn = XMLNameExpr(cx, ts, tc);
if (!pn)
return NULL;
*namep = (pn->pn_arity == PN_NULLARY) ? pn->pn_atom : NULL;
list = NULL;
while (js_MatchToken(cx, ts, TOK_XMLSPACE)) {
tt = js_GetToken(cx, ts);
if (tt != TOK_XMLNAME && tt != TOK_LC) {
js_UngetToken(ts);
break;
}
pn2 = XMLNameExpr(cx, ts, tc);
if (!pn2)
return NULL;
if (!list) {
list = NewParseNode(PN_LIST, tc);
if (!list)
return NULL;
list->pn_type = tagtype;
list->pn_pos.begin = pn->pn_pos.begin;
list->initList(pn);
pn = list;
}
pn->append(pn2);
if (!XML_FOLDABLE(pn2))
pn->pn_xflags |= PNX_CANTFOLD;
js_MatchToken(cx, ts, TOK_XMLSPACE);
MUST_MATCH_TOKEN(TOK_ASSIGN, JSMSG_NO_ASSIGN_IN_XML_ATTR);
js_MatchToken(cx, ts, TOK_XMLSPACE);
tt = js_GetToken(cx, ts);
if (tt == TOK_XMLATTR) {
pn2 = XMLAtomNode(cx, ts, tc);
} else if (tt == TOK_LC) {
pn2 = XMLExpr(cx, ts, JS_TRUE, tc);
pn->pn_xflags |= PNX_CANTFOLD;
} else {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_XML_ATTR_VALUE);
return NULL;
}
if (!pn2)
return NULL;
pn->pn_pos.end = pn2->pn_pos.end;
pn->append(pn2);
}
return pn;
}
#define XML_CHECK_FOR_ERROR_AND_EOF(tt,result) \
JS_BEGIN_MACRO \
if ((tt) <= TOK_EOF) { \
if ((tt) == TOK_EOF) { \
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR, \
JSMSG_END_OF_XML_SOURCE); \
} \
return result; \
} \
JS_END_MACRO
static JSParseNode *
XMLElementOrList(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSBool allowList);
/*
* Consume XML element tag content, including the TOK_XMLETAGO (</) sequence
* that opens the end tag for the container.
*/
static JSBool
XMLElementContent(JSContext *cx, JSTokenStream *ts, JSParseNode *pn,
JSTreeContext *tc)
{
JSTokenType tt;
JSParseNode *pn2;
JSAtom *textAtom;
ts->flags &= ~TSF_XMLTAGMODE;
for (;;) {
ts->flags |= TSF_XMLTEXTMODE;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_XMLTEXTMODE;
XML_CHECK_FOR_ERROR_AND_EOF(tt, JS_FALSE);
JS_ASSERT(tt == TOK_XMLSPACE || tt == TOK_XMLTEXT);
textAtom = CURRENT_TOKEN(ts).t_atom;
if (textAtom) {
/* Non-zero-length XML text scanned. */
pn2 = XMLAtomNode(cx, ts, tc);
if (!pn2)
return JS_FALSE;
pn->pn_pos.end = pn2->pn_pos.end;
pn->append(pn2);
}
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
XML_CHECK_FOR_ERROR_AND_EOF(tt, JS_FALSE);
if (tt == TOK_XMLETAGO)
break;
if (tt == TOK_LC) {
pn2 = XMLExpr(cx, ts, JS_FALSE, tc);
pn->pn_xflags |= PNX_CANTFOLD;
} else if (tt == TOK_XMLSTAGO) {
pn2 = XMLElementOrList(cx, ts, tc, JS_FALSE);
if (pn2) {
pn2->pn_xflags &= ~PNX_XMLROOT;
pn->pn_xflags |= pn2->pn_xflags;
}
} else {
JS_ASSERT(tt == TOK_XMLCDATA || tt == TOK_XMLCOMMENT ||
tt == TOK_XMLPI);
pn2 = XMLAtomNode(cx, ts, tc);
}
if (!pn2)
return JS_FALSE;
pn->pn_pos.end = pn2->pn_pos.end;
pn->append(pn2);
}
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_XMLETAGO);
ts->flags |= TSF_XMLTAGMODE;
return JS_TRUE;
}
/*
* Return a PN_LIST node containing an XML or XMLList Initialiser.
*/
static JSParseNode *
XMLElementOrList(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSBool allowList)
{
JSParseNode *pn, *pn2, *list;
JSTokenType tt;
JSAtom *startAtom, *endAtom;
JS_CHECK_RECURSION(cx, return NULL);
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_XMLSTAGO);
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
ts->flags |= TSF_XMLTAGMODE;
tt = js_GetToken(cx, ts);
if (tt == TOK_ERROR)
return NULL;
if (tt == TOK_XMLNAME || tt == TOK_LC) {
/*
* XMLElement. Append the tag and its contents, if any, to pn.
*/
pn2 = XMLTagContent(cx, ts, tc, TOK_XMLSTAGO, &startAtom);
if (!pn2)
return NULL;
js_MatchToken(cx, ts, TOK_XMLSPACE);
tt = js_GetToken(cx, ts);
if (tt == TOK_XMLPTAGC) {
/* Point tag (/>): recycle pn if pn2 is a list of tag contents. */
if (pn2->pn_type == TOK_XMLSTAGO) {
pn->makeEmpty();
RecycleTree(pn, tc);
pn = pn2;
} else {
JS_ASSERT(pn2->pn_type == TOK_XMLNAME ||
pn2->pn_type == TOK_LC);
pn->initList(pn2);
if (!XML_FOLDABLE(pn2))
pn->pn_xflags |= PNX_CANTFOLD;
}
pn->pn_type = TOK_XMLPTAGC;
pn->pn_xflags |= PNX_XMLROOT;
} else {
/* We had better have a tag-close (>) at this point. */
if (tt != TOK_XMLTAGC) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_XML_TAG_SYNTAX);
return NULL;
}
pn2->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
/* Make sure pn2 is a TOK_XMLSTAGO list containing tag contents. */
if (pn2->pn_type != TOK_XMLSTAGO) {
pn->initList(pn2);
if (!XML_FOLDABLE(pn2))
pn->pn_xflags |= PNX_CANTFOLD;
pn2 = pn;
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
}
/* Now make pn a nominal-root TOK_XMLELEM list containing pn2. */
pn->pn_type = TOK_XMLELEM;
pn->pn_pos.begin = pn2->pn_pos.begin;
pn->initList(pn2);
if (!XML_FOLDABLE(pn2))
pn->pn_xflags |= PNX_CANTFOLD;
pn->pn_xflags |= PNX_XMLROOT;
/* Get element contents and delimiting end-tag-open sequence. */
if (!XMLElementContent(cx, ts, pn, tc))
return NULL;
tt = js_GetToken(cx, ts);
XML_CHECK_FOR_ERROR_AND_EOF(tt, NULL);
if (tt != TOK_XMLNAME && tt != TOK_LC) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_XML_TAG_SYNTAX);
return NULL;
}
/* Parse end tag; check mismatch at compile-time if we can. */
pn2 = XMLTagContent(cx, ts, tc, TOK_XMLETAGO, &endAtom);
if (!pn2)
return NULL;
if (pn2->pn_type == TOK_XMLETAGO) {
/* Oops, end tag has attributes! */
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_XML_TAG_SYNTAX);
return NULL;
}
if (endAtom && startAtom && endAtom != startAtom) {
JSString *str = ATOM_TO_STRING(startAtom);
/* End vs. start tag name mismatch: point to the tag name. */
js_ReportCompileErrorNumber(cx, ts, pn2,
JSREPORT_UC | JSREPORT_ERROR,
JSMSG_XML_TAG_NAME_MISMATCH,
str->chars());
return NULL;
}
/* Make a TOK_XMLETAGO list with pn2 as its single child. */
JS_ASSERT(pn2->pn_type == TOK_XMLNAME || pn2->pn_type == TOK_LC);
list = NewParseNode(PN_LIST, tc);
if (!list)
return NULL;
list->pn_type = TOK_XMLETAGO;
list->initList(pn2);
pn->append(list);
if (!XML_FOLDABLE(pn2)) {
list->pn_xflags |= PNX_CANTFOLD;
pn->pn_xflags |= PNX_CANTFOLD;
}
js_MatchToken(cx, ts, TOK_XMLSPACE);
MUST_MATCH_TOKEN(TOK_XMLTAGC, JSMSG_BAD_XML_TAG_SYNTAX);
}
/* Set pn_op now that pn has been updated to its final value. */
pn->pn_op = JSOP_TOXML;
} else if (allowList && tt == TOK_XMLTAGC) {
/* XMLList Initialiser. */
pn->pn_type = TOK_XMLLIST;
pn->pn_op = JSOP_TOXMLLIST;
pn->makeEmpty();
pn->pn_xflags |= PNX_XMLROOT;
if (!XMLElementContent(cx, ts, pn, tc))
return NULL;
MUST_MATCH_TOKEN(TOK_XMLTAGC, JSMSG_BAD_XML_LIST_SYNTAX);
} else {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_XML_NAME_SYNTAX);
return NULL;
}
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
ts->flags &= ~TSF_XMLTAGMODE;
return pn;
}
static JSParseNode *
XMLElementOrListRoot(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSBool allowList)
{
uint32 oldopts;
JSParseNode *pn;
/*
* Force XML support to be enabled so that comments and CDATA literals
* are recognized, instead of <! followed by -- starting an HTML comment
* to end of line (used in script tags to hide content from old browsers
* that don't recognize <script>).
*/
oldopts = JS_SetOptions(cx, cx->options | JSOPTION_XML);
pn = XMLElementOrList(cx, ts, tc, allowList);
JS_SetOptions(cx, oldopts);
return pn;
}
JSParseNode *
JSCompiler::parseXMLText(JSObject *chain, bool allowList)
{
/*
* Push a compiler frame if we have no frames, or if the top frame is a
* lightweight function activation, or if its scope chain doesn't match
* the one passed to us.
*/
JSTreeContext tc(this);
tc.scopeChain = chain;
/* Set XML-only mode to turn off special treatment of {expr} in XML. */
TS(this)->flags |= TSF_OPERAND | TSF_XMLONLYMODE;
JSTokenType tt = js_GetToken(context, TS(this));
TS(this)->flags &= ~TSF_OPERAND;
JSParseNode *pn;
if (tt != TOK_XMLSTAGO) {
js_ReportCompileErrorNumber(context, TS(this), NULL, JSREPORT_ERROR,
JSMSG_BAD_XML_MARKUP);
pn = NULL;
} else {
pn = XMLElementOrListRoot(context, TS(this), &tc, allowList);
}
TS(this)->flags &= ~TSF_XMLONLYMODE;
return pn;
}
#endif /* JS_HAS_XMLSUPPORT */
#if JS_HAS_BLOCK_SCOPE
/*
* Check whether blockid is an active scoping statement in tc. This code is
* necessary to qualify tc->decls.lookup() hits in PrimaryExpr's TOK_NAME case
* (below) where the hits come from Scheme-ish let bindings in for loop heads
* and let blocks and expressions (not let declarations).
*
* Unlike let declarations ("let as the new var"), which is a kind of letrec
* due to hoisting, let in a for loop head, let block, or let expression acts
* like Scheme's let: initializers are evaluated without the new let bindings
* being in scope.
*
* Name binding analysis is eager with fixups, rather than multi-pass, and let
* bindings push on the front of the tc->decls JSAtomList (either the singular
* list or on a hash chain -- see JSAtomList::AddHow) in order to shadow outer
* scope bindings of the same name.
*
* This simplifies binding lookup code at the price of a linear search here,
* but only if code uses let (var predominates), and even then this function's
* loop iterates more than once only in crazy cases.
*/
static inline bool
BlockIdInScope(uintN blockid, JSTreeContext *tc)
{
if (blockid > tc->blockid())
return false;
for (JSStmtInfo *stmt = tc->topScopeStmt; stmt; stmt = stmt->downScope) {
if (stmt->blockid == blockid)
return true;
}
return false;
}
#endif
static JSParseNode *
PrimaryExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSTokenType tt, JSBool afterDot)
{
JSParseNode *pn, *pn2, *pn3;
JSOp op;
JS_CHECK_RECURSION(cx, return NULL);
#if JS_HAS_GETTER_SETTER
if (tt == TOK_NAME) {
tt = CheckGetterOrSetter(cx, ts, TOK_FUNCTION);
if (tt == TOK_ERROR)
return NULL;
}
#endif
switch (tt) {
case TOK_FUNCTION:
#if JS_HAS_XML_SUPPORT
ts->flags |= TSF_KEYWORD_IS_NAME;
if (js_MatchToken(cx, ts, TOK_DBLCOLON)) {
ts->flags &= ~TSF_KEYWORD_IS_NAME;
pn2 = NewParseNode(PN_NULLARY, tc);
if (!pn2)
return NULL;
pn2->pn_type = TOK_FUNCTION;
pn = QualifiedSuffix(cx, ts, pn2, tc);
if (!pn)
return NULL;
break;
}
ts->flags &= ~TSF_KEYWORD_IS_NAME;
#endif
pn = FunctionExpr(cx, ts, tc);
if (!pn)
return NULL;
break;
case TOK_LB:
{
JSBool matched;
jsuint index;
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_RB;
pn->pn_op = JSOP_NEWINIT;
pn->makeEmpty();
#if JS_HAS_GENERATORS
pn->pn_blockid = tc->blockidGen;
#endif
ts->flags |= TSF_OPERAND;
matched = js_MatchToken(cx, ts, TOK_RB);
ts->flags &= ~TSF_OPERAND;
if (!matched) {
for (index = 0; ; index++) {
if (index == JS_ARGS_LENGTH_MAX) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_ARRAY_INIT_TOO_BIG);
return NULL;
}
ts->flags |= TSF_OPERAND;
tt = js_PeekToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_RB) {
pn->pn_xflags |= PNX_ENDCOMMA;
break;
}
if (tt == TOK_COMMA) {
/* So CURRENT_TOKEN gets TOK_COMMA and not TOK_LB. */
js_MatchToken(cx, ts, TOK_COMMA);
pn2 = NewParseNode(PN_NULLARY, tc);
pn->pn_xflags |= PNX_HOLEY;
} else {
pn2 = AssignExpr(cx, ts, tc);
}
if (!pn2)
return NULL;
pn->append(pn2);
if (tt != TOK_COMMA) {
/* If we didn't already match TOK_COMMA in above case. */
if (!js_MatchToken(cx, ts, TOK_COMMA))
break;
}
}
#if JS_HAS_GENERATORS
/*
* At this point, (index == 0 && pn->pn_count != 0) implies one
* element initialiser was parsed.
*
* An array comprehension of the form:
*
* [i * j for (i in o) for (j in p) if (i != j)]
*
* translates to roughly the following let expression:
*
* let (array = new Array, i, j) {
* for (i in o) let {
* for (j in p)
* if (i != j)
* array.push(i * j)
* }
* array
* }
*
* where array is a nameless block-local variable. The "roughly"
* means that an implementation may optimize away the array.push.
* An array comprehension opens exactly one block scope, no matter
* how many for heads it contains.
*
* Each let () {...} or for (let ...) ... compiles to:
*
* JSOP_ENTERBLOCK <o> ... JSOP_LEAVEBLOCK <n>
*
* where <o> is a literal object representing the block scope,
* with <n> properties, naming each var declared in the block.
*
* Each var declaration in a let-block binds a name in <o> at
* compile time, and allocates a slot on the operand stack at
* runtime via JSOP_ENTERBLOCK. A block-local var is accessed
* by the JSOP_GETLOCAL and JSOP_SETLOCAL ops, and iterated with
* JSOP_FORLOCAL. These ops all have an immediate operand, the
* local slot's stack index from fp->spbase.
*
* The array comprehension iteration step, array.push(i * j) in
* the example above, is done by <i * j>; JSOP_ARRAYCOMP <array>,
* where <array> is the index of array's stack slot.
*/
if (index == 0 &&
pn->pn_count != 0 &&
js_MatchToken(cx, ts, TOK_FOR)) {
JSParseNode *pnexp, *pntop;
/* Relabel pn as an array comprehension node. */
pn->pn_type = TOK_ARRAYCOMP;
/*
* Remove the comprehension expression from pn's linked list
* and save it via pnexp. We'll re-install it underneath the
* ARRAYPUSH node after we parse the rest of the comprehension.
*/
pnexp = pn->last();
JS_ASSERT(pn->pn_count == 1 || pn->pn_count == 2);
pn->pn_tail = (--pn->pn_count == 1)
? &pn->pn_head->pn_next
: &pn->pn_head;
*pn->pn_tail = NULL;
pntop = ComprehensionTail(pnexp, pn->pn_blockid, tc,
TOK_ARRAYPUSH, JSOP_ARRAYPUSH);
if (!pntop)
return NULL;
pn->append(pntop);
}
#endif /* JS_HAS_GENERATORS */
MUST_MATCH_TOKEN(TOK_RB, JSMSG_BRACKET_AFTER_LIST);
}
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
return pn;
}
case TOK_LC:
{
JSBool afterComma;
JSParseNode *pnval;
pn = NewParseNode(PN_LIST, tc);
if (!pn)
return NULL;
pn->pn_type = TOK_RC;
pn->pn_op = JSOP_NEWINIT;
pn->makeEmpty();
afterComma = JS_FALSE;
for (;;) {
ts->flags |= TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
switch (tt) {
case TOK_NUMBER:
pn3 = NewParseNode(PN_NULLARY, tc);
if (pn3)
pn3->pn_dval = CURRENT_TOKEN(ts).t_dval;
break;
case TOK_NAME:
#if JS_HAS_GETTER_SETTER
{
JSAtom *atom;
atom = CURRENT_TOKEN(ts).t_atom;
if (atom == cx->runtime->atomState.getAtom)
op = JSOP_GETTER;
else if (atom == cx->runtime->atomState.setAtom)
op = JSOP_SETTER;
else
goto property_name;
ts->flags |= TSF_KEYWORD_IS_NAME;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_KEYWORD_IS_NAME;
if (tt != TOK_NAME) {
js_UngetToken(ts);
goto property_name;
}
pn3 = NewNameNode(cx, ts, CURRENT_TOKEN(ts).t_atom, tc);
if (!pn3)
return NULL;
/* We have to fake a 'function' token here. */
CURRENT_TOKEN(ts).t_op = JSOP_NOP;
CURRENT_TOKEN(ts).type = TOK_FUNCTION;
pn2 = FunctionExpr(cx, ts, tc);
pn2 = NewBinary(TOK_COLON, op, pn3, pn2, tc);
goto skip;
}
property_name:
#endif
case TOK_STRING:
pn3 = NewParseNode(PN_NULLARY, tc);
if (pn3)
pn3->pn_atom = CURRENT_TOKEN(ts).t_atom;
break;
case TOK_RC:
goto end_obj_init;
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_PROP_ID);
return NULL;
}
tt = js_GetToken(cx, ts);
#if JS_HAS_GETTER_SETTER
if (tt == TOK_NAME) {
tt = CheckGetterOrSetter(cx, ts, TOK_COLON);
if (tt == TOK_ERROR)
return NULL;
}
#endif
if (tt != TOK_COLON) {
#if JS_HAS_DESTRUCTURING_SHORTHAND
if (tt != TOK_COMMA && tt != TOK_RC) {
#endif
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_COLON_AFTER_ID);
return NULL;
#if JS_HAS_DESTRUCTURING_SHORTHAND
}
/*
* Support, e.g., |var {x, y} = o| as destructuring shorthand
* for |var {x: x, y: y} = o|, per proposed JS2/ES4 for JS1.8.
*/
js_UngetToken(ts);
pn->pn_xflags |= PNX_DESTRUCT;
pnval = pn3;
if (pnval->pn_type == TOK_NAME) {
pnval->pn_arity = PN_NAME;
InitNameNodeCommon(pnval, tc);
}
op = JSOP_NOP;
#endif
} else {
op = CURRENT_TOKEN(ts).t_op;
pnval = AssignExpr(cx, ts, tc);
}
pn2 = NewBinary(TOK_COLON, op, pn3, pnval, tc);
#if JS_HAS_GETTER_SETTER
skip:
#endif
if (!pn2)
return NULL;
pn->append(pn2);
tt = js_GetToken(cx, ts);
if (tt == TOK_RC)
goto end_obj_init;
if (tt != TOK_COMMA) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_CURLY_AFTER_LIST);
return NULL;
}
afterComma = JS_TRUE;
}
end_obj_init:
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
return pn;
}
#if JS_HAS_BLOCK_SCOPE
case TOK_LET:
pn = LetBlock(cx, ts, tc, JS_FALSE);
if (!pn)
return NULL;
break;
#endif
#if JS_HAS_SHARP_VARS
case TOK_DEFSHARP:
pn = NewParseNode(PN_UNARY, tc);
if (!pn)
return NULL;
pn->pn_num = (jsint) CURRENT_TOKEN(ts).t_dval;
ts->flags |= TSF_OPERAND;
tt = js_GetToken(cx, ts);
ts->flags &= ~TSF_OPERAND;
if (tt == TOK_USESHARP || tt == TOK_DEFSHARP ||
#if JS_HAS_XML_SUPPORT
tt == TOK_STAR || tt == TOK_AT ||
tt == TOK_XMLSTAGO /* XXXbe could be sharp? */ ||
#endif
tt == TOK_STRING || tt == TOK_NUMBER || tt == TOK_PRIMARY) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_SHARP_VAR_DEF);
return NULL;
}
pn->pn_kid = PrimaryExpr(cx, ts, tc, tt, JS_FALSE);
if (!pn->pn_kid)
return NULL;
tc->flags |= TCF_HAS_SHARPS;
break;
case TOK_USESHARP:
/* Check for forward/dangling references at runtime, to allow eval. */
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
pn->pn_num = (jsint) CURRENT_TOKEN(ts).t_dval;
tc->flags |= TCF_HAS_SHARPS;
break;
#endif /* JS_HAS_SHARP_VARS */
case TOK_LP:
{
JSBool genexp;
pn = ParenExpr(cx, ts, tc, NULL, &genexp);
if (!pn)
return NULL;
pn->pn_parens = true;
if (!genexp)
MUST_MATCH_TOKEN(TOK_RP, JSMSG_PAREN_IN_PAREN);
break;
}
#if JS_HAS_XML_SUPPORT
case TOK_STAR:
pn = QualifiedIdentifier(cx, ts, tc);
if (!pn)
return NULL;
break;
case TOK_AT:
pn = AttributeIdentifier(cx, ts, tc);
if (!pn)
return NULL;
break;
case TOK_XMLSTAGO:
pn = XMLElementOrListRoot(cx, ts, tc, JS_TRUE);
if (!pn)
return NULL;
break;
#endif /* JS_HAS_XML_SUPPORT */
case TOK_STRING:
#if JS_HAS_SHARP_VARS
/* FALL THROUGH */
#endif
#if JS_HAS_XML_SUPPORT
case TOK_XMLCDATA:
case TOK_XMLCOMMENT:
case TOK_XMLPI:
#endif
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
pn->pn_atom = CURRENT_TOKEN(ts).t_atom;
#if JS_HAS_XML_SUPPORT
if (tt == TOK_XMLPI)
pn->pn_atom2 = CURRENT_TOKEN(ts).t_atom2;
else
#endif
pn->pn_op = CURRENT_TOKEN(ts).t_op;
break;
case TOK_NAME:
pn = NewNameNode(cx, ts, CURRENT_TOKEN(ts).t_atom, tc);
if (!pn)
return NULL;
JS_ASSERT(CURRENT_TOKEN(ts).t_op == JSOP_NAME);
pn->pn_op = JSOP_NAME;
if ((tc->flags & (TCF_IN_FUNCTION | TCF_FUN_PARAM_ARGUMENTS)) == TCF_IN_FUNCTION &&
pn->pn_atom == cx->runtime->atomState.argumentsAtom) {
/*
* Flag arguments usage so we can avoid unsafe optimizations such
* as formal parameter assignment analysis (because of the hated
* feature whereby arguments alias formals). We do this even for
* a reference of the form foo.arguments, which ancient code may
* still use instead of arguments (more hate).
*/
NoteArgumentsUse(tc);
/*
* Bind early to JSOP_ARGUMENTS to relieve later code from having
* to do this work (new rule for the emitter to count on).
*/
if (!afterDot && !(ts->flags & TSF_DESTRUCTURING) && !tc->inStatement(STMT_WITH)) {
pn->pn_op = JSOP_ARGUMENTS;
pn->pn_dflags |= PND_BOUND;
}
} else if ((!afterDot
#if JS_HAS_XML_SUPPORT
|| js_PeekToken(cx, ts) == TOK_DBLCOLON
#endif
) && !(ts->flags & TSF_DESTRUCTURING)) {
JSStmtInfo *stmt = js_LexicalLookup(tc, pn->pn_atom, NULL);
if (!stmt || stmt->type != STMT_WITH) {
JSDefinition *dn;
JSAtomListElement *ale = tc->decls.lookup(pn->pn_atom);
if (ale) {
dn = ALE_DEFN(ale);
#if JS_HAS_BLOCK_SCOPE
/*
* Skip out-of-scope let bindings along an ALE list or hash
* chain. These can happen due to |let (x = x) x| block and
* expression bindings, where the x on the right of = comes
* from an outer scope. See bug 496532.
*/
while (dn->isLet() && !BlockIdInScope(dn->pn_blockid, tc)) {
do {
ale = ALE_NEXT(ale);
} while (ale && ALE_ATOM(ale) != pn->pn_atom);
if (!ale)
break;
dn = ALE_DEFN(ale);
}
#endif
}
if (ale) {
dn = ALE_DEFN(ale);
} else {
ale = tc->lexdeps.lookup(pn->pn_atom);
if (ale) {
dn = ALE_DEFN(ale);
} else {
/*
* No definition before this use in any lexical scope.
* Add a mapping in tc->lexdeps from pn->pn_atom to a
* new node for the forward-referenced definition. This
* placeholder definition node will be adopted when we
* parse the real defining declaration form, or left as
* a free variable definition if we never see the real
* definition.
*/
ale = MakePlaceholder(pn, tc);
if (!ale)
return NULL;
dn = ALE_DEFN(ale);
/*
* In case this is a forward reference to a function,
* we pessimistically set PND_FUNARG if the next token
* is not a left parenthesis.
*
* If the definition eventually parsed into dn is not a
* function, this flag won't hurt, and if we do parse a
* function with pn's name, then the PND_FUNARG flag is
* necessary for safe cx->display-based optimization of
* the closure's static link.
*/
JS_ASSERT(PN_TYPE(dn) == TOK_NAME);
JS_ASSERT(dn->pn_op == JSOP_NOP);
if (js_PeekToken(cx, ts) != TOK_LP)
dn->pn_dflags |= PND_FUNARG;
}
}
JS_ASSERT(dn->pn_defn);
LinkUseToDef(pn, dn, tc);
/* Here we handle the backward function reference case. */
if (js_PeekToken(cx, ts) != TOK_LP)
dn->pn_dflags |= PND_FUNARG;
pn->pn_dflags |= (dn->pn_dflags & PND_FUNARG);
}
}
#if JS_HAS_XML_SUPPORT
if (js_MatchToken(cx, ts, TOK_DBLCOLON)) {
if (afterDot) {
JSString *str;
/*
* Here PrimaryExpr is called after . or .. followed by a name
* followed by ::. This is the only case where a keyword after
* . or .. is not treated as a property name.
*/
str = ATOM_TO_STRING(pn->pn_atom);
tt = js_CheckKeyword(str->chars(), str->length());
if (tt == TOK_FUNCTION) {
pn->pn_arity = PN_NULLARY;
pn->pn_type = TOK_FUNCTION;
} else if (tt != TOK_EOF) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_KEYWORD_NOT_NS);
return NULL;
}
}
pn = QualifiedSuffix(cx, ts, pn, tc);
if (!pn)
return NULL;
}
#endif
break;
case TOK_REGEXP:
{
JSObject *obj;
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
obj = js_NewRegExpObject(cx, ts,
ts->tokenbuf.begin(),
ts->tokenbuf.length(),
CURRENT_TOKEN(ts).t_reflags);
if (!obj)
return NULL;
if (!(tc->flags & TCF_COMPILE_N_GO)) {
STOBJ_CLEAR_PARENT(obj);
STOBJ_CLEAR_PROTO(obj);
}
pn->pn_objbox = tc->compiler->newObjectBox(obj);
if (!pn->pn_objbox)
return NULL;
pn->pn_op = JSOP_REGEXP;
break;
}
case TOK_NUMBER:
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
pn->pn_op = JSOP_DOUBLE;
pn->pn_dval = CURRENT_TOKEN(ts).t_dval;
break;
case TOK_PRIMARY:
pn = NewParseNode(PN_NULLARY, tc);
if (!pn)
return NULL;
pn->pn_op = CURRENT_TOKEN(ts).t_op;
break;
case TOK_ERROR:
/* The scanner or one of its subroutines reported the error. */
return NULL;
default:
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_SYNTAX_ERROR);
return NULL;
}
return pn;
}
static JSParseNode *
ParenExpr(JSContext *cx, JSTokenStream *ts, JSTreeContext *tc,
JSParseNode *pn1, JSBool *genexp)
{
JSTokenPtr begin;
JSParseNode *pn;
JS_ASSERT(CURRENT_TOKEN(ts).type == TOK_LP);
begin = CURRENT_TOKEN(ts).pos.begin;
if (genexp)
*genexp = JS_FALSE;
pn = BracketedExpr(cx, ts, tc);
if (!pn)
return NULL;
#if JS_HAS_GENERATOR_EXPRS
if (js_MatchToken(cx, ts, TOK_FOR)) {
if (pn->pn_type == TOK_YIELD && !pn->pn_parens) {
js_ReportCompileErrorNumber(cx, ts, pn, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_SYNTAX,
js_yield_str);
return NULL;
}
if (pn->pn_type == TOK_COMMA && !pn->pn_parens) {
js_ReportCompileErrorNumber(cx, ts, pn->last(), JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_SYNTAX,
js_generator_str);
return NULL;
}
if (!pn1) {
pn1 = NewParseNode(PN_UNARY, tc);
if (!pn1)
return NULL;
}
pn = GeneratorExpr(pn1, pn, tc);
if (!pn)
return NULL;
pn->pn_pos.begin = begin;
if (genexp) {
if (js_GetToken(cx, ts) != TOK_RP) {
js_ReportCompileErrorNumber(cx, ts, NULL, JSREPORT_ERROR,
JSMSG_BAD_GENERATOR_SYNTAX,
js_generator_str);
return NULL;
}
pn->pn_pos.end = CURRENT_TOKEN(ts).pos.end;
*genexp = JS_TRUE;
}
}
#endif /* JS_HAS_GENERATOR_EXPRS */
return pn;
}
/*
* Fold from one constant type to another.
* XXX handles only strings and numbers for now
*/
static JSBool
FoldType(JSContext *cx, JSParseNode *pn, JSTokenType type)
{
if (PN_TYPE(pn) != type) {
switch (type) {
case TOK_NUMBER:
if (pn->pn_type == TOK_STRING) {
jsdouble d;
if (!JS_ValueToNumber(cx, ATOM_KEY(pn->pn_atom), &d))
return JS_FALSE;
pn->pn_dval = d;
pn->pn_type = TOK_NUMBER;
pn->pn_op = JSOP_DOUBLE;
}
break;
case TOK_STRING:
if (pn->pn_type == TOK_NUMBER) {
JSString *str = js_NumberToString(cx, pn->pn_dval);
if (!str)
return JS_FALSE;
pn->pn_atom = js_AtomizeString(cx, str, 0);
if (!pn->pn_atom)
return JS_FALSE;
pn->pn_type = TOK_STRING;
pn->pn_op = JSOP_STRING;
}
break;
default:;
}
}
return JS_TRUE;
}
/*
* Fold two numeric constants. Beware that pn1 and pn2 are recycled, unless
* one of them aliases pn, so you can't safely fetch pn2->pn_next, e.g., after
* a successful call to this function.
*/
static JSBool
FoldBinaryNumeric(JSContext *cx, JSOp op, JSParseNode *pn1, JSParseNode *pn2,
JSParseNode *pn, JSTreeContext *tc)
{
jsdouble d, d2;
int32 i, j;
JS_ASSERT(pn1->pn_type == TOK_NUMBER && pn2->pn_type == TOK_NUMBER);
d = pn1->pn_dval;
d2 = pn2->pn_dval;
switch (op) {
case JSOP_LSH:
case JSOP_RSH:
i = js_DoubleToECMAInt32(d);
j = js_DoubleToECMAInt32(d2);
j &= 31;
d = (op == JSOP_LSH) ? i << j : i >> j;
break;
case JSOP_URSH:
j = js_DoubleToECMAInt32(d2);
j &= 31;
d = js_DoubleToECMAUint32(d) >> j;
break;
case JSOP_ADD:
d += d2;
break;
case JSOP_SUB:
d -= d2;
break;
case JSOP_MUL:
d *= d2;
break;
case JSOP_DIV:
if (d2 == 0) {
#if defined(XP_WIN)
/* XXX MSVC miscompiles such that (NaN == 0) */
if (JSDOUBLE_IS_NaN(d2))
d = *cx->runtime->jsNaN;
else
#endif
if (d == 0 || JSDOUBLE_IS_NaN(d))
d = *cx->runtime->jsNaN;
else if (JSDOUBLE_IS_NEG(d) != JSDOUBLE_IS_NEG(d2))
d = *cx->runtime->jsNegativeInfinity;
else
d = *cx->runtime->jsPositiveInfinity;
} else {
d /= d2;
}
break;
case JSOP_MOD:
if (d2 == 0) {
d = *cx->runtime->jsNaN;
} else {
d = js_fmod(d, d2);
}
break;
default:;
}
/* Take care to allow pn1 or pn2 to alias pn. */
if (pn1 != pn)
RecycleTree(pn1, tc);
if (pn2 != pn)
RecycleTree(pn2, tc);
pn->pn_type = TOK_NUMBER;
pn->pn_op = JSOP_DOUBLE;
pn->pn_arity = PN_NULLARY;
pn->pn_dval = d;
return JS_TRUE;
}
#if JS_HAS_XML_SUPPORT
static JSBool
FoldXMLConstants(JSContext *cx, JSParseNode *pn, JSTreeContext *tc)
{
JSTokenType tt;
JSParseNode **pnp, *pn1, *pn2;
JSString *accum, *str;
uint32 i, j;
JSTempValueRooter tvr;
JS_ASSERT(pn->pn_arity == PN_LIST);
tt = PN_TYPE(pn);
pnp = &pn->pn_head;
pn1 = *pnp;
accum = NULL;
if ((pn->pn_xflags & PNX_CANTFOLD) == 0) {
if (tt == TOK_XMLETAGO)
accum = ATOM_TO_STRING(cx->runtime->atomState.etagoAtom);
else if (tt == TOK_XMLSTAGO || tt == TOK_XMLPTAGC)
accum = ATOM_TO_STRING(cx->runtime->atomState.stagoAtom);
}
/*
* GC Rooting here is tricky: for most of the loop, |accum| is safe via
* the newborn string root. However, when |pn2->pn_type| is TOK_XMLCDATA,
* TOK_XMLCOMMENT, or TOK_XMLPI it is knocked out of the newborn root.
* Therefore, we have to add additonal protection from GC nesting under
* js_ConcatStrings.
*/
for (pn2 = pn1, i = j = 0; pn2; pn2 = pn2->pn_next, i++) {
/* The parser already rejected end-tags with attributes. */
JS_ASSERT(tt != TOK_XMLETAGO || i == 0);
switch (pn2->pn_type) {
case TOK_XMLATTR:
if (!accum)
goto cantfold;
/* FALL THROUGH */
case TOK_XMLNAME:
case TOK_XMLSPACE:
case TOK_XMLTEXT:
case TOK_STRING:
if (pn2->pn_arity == PN_LIST)
goto cantfold;
str = ATOM_TO_STRING(pn2->pn_atom);
break;
case TOK_XMLCDATA:
str = js_MakeXMLCDATAString(cx, ATOM_TO_STRING(pn2->pn_atom));
if (!str)
return JS_FALSE;
break;
case TOK_XMLCOMMENT:
str = js_MakeXMLCommentString(cx, ATOM_TO_STRING(pn2->pn_atom));
if (!str)
return JS_FALSE;
break;
case TOK_XMLPI:
str = js_MakeXMLPIString(cx, ATOM_TO_STRING(pn2->pn_atom),
ATOM_TO_STRING(pn2->pn_atom2));
if (!str)
return JS_FALSE;
break;
cantfold:
default:
JS_ASSERT(*pnp == pn1);
if ((tt == TOK_XMLSTAGO || tt == TOK_XMLPTAGC) &&
(i & 1) ^ (j & 1)) {
#ifdef DEBUG_brendanXXX
printf("1: %d, %d => ", i, j);
if (accum)
js_FileEscapedString(stdout, accum, 0);
else
fputs("NULL", stdout);
fputc('\n', stdout);
#endif
} else if (accum && pn1 != pn2) {
while (pn1->pn_next != pn2) {
pn1 = RecycleTree(pn1, tc);
--pn->pn_count;
}
pn1->pn_type = TOK_XMLTEXT;
pn1->pn_op = JSOP_STRING;
pn1->pn_arity = PN_NULLARY;
pn1->pn_atom = js_AtomizeString(cx, accum, 0);
if (!pn1->pn_atom)
return JS_FALSE;
JS_ASSERT(pnp != &pn1->pn_next);
*pnp = pn1;
}
pnp = &pn2->pn_next;
pn1 = *pnp;
accum = NULL;
continue;
}
if (accum) {
JS_PUSH_TEMP_ROOT_STRING(cx, accum, &tvr);
str = ((tt == TOK_XMLSTAGO || tt == TOK_XMLPTAGC) && i != 0)
? js_AddAttributePart(cx, i & 1, accum, str)
: js_ConcatStrings(cx, accum, str);
JS_POP_TEMP_ROOT(cx, &tvr);
if (!str)
return JS_FALSE;
#ifdef DEBUG_brendanXXX
printf("2: %d, %d => ", i, j);
js_FileEscapedString(stdout, str, 0);
printf(" (%u)\n", str->length());
#endif
++j;
}
accum = str;
}
if (accum) {
str = NULL;
if ((pn->pn_xflags & PNX_CANTFOLD) == 0) {
if (tt == TOK_XMLPTAGC)
str = ATOM_TO_STRING(cx->runtime->atomState.ptagcAtom);
else if (tt == TOK_XMLSTAGO || tt == TOK_XMLETAGO)
str = ATOM_TO_STRING(cx->runtime->atomState.tagcAtom);
}
if (str) {
accum = js_ConcatStrings(cx, accum, str);
if (!accum)
return JS_FALSE;
}
JS_ASSERT(*pnp == pn1);
while (pn1->pn_next) {
pn1 = RecycleTree(pn1, tc);
--pn->pn_count;
}
pn1->pn_type = TOK_XMLTEXT;
pn1->pn_op = JSOP_STRING;
pn1->pn_arity = PN_NULLARY;
pn1->pn_atom = js_AtomizeString(cx, accum, 0);
if (!pn1->pn_atom)
return JS_FALSE;
JS_ASSERT(pnp != &pn1->pn_next);
*pnp = pn1;
}
if (pn1 && pn->pn_count == 1) {
/*
* Only one node under pn, and it has been folded: move pn1 onto pn
* unless pn is an XML root (in which case we need it to tell the code
* generator to emit a JSOP_TOXML or JSOP_TOXMLLIST op). If pn is an
* XML root *and* it's a point-tag, rewrite it to TOK_XMLELEM to avoid
* extra "<" and "/>" bracketing at runtime.
*/
if (!(pn->pn_xflags & PNX_XMLROOT)) {
pn->become(pn1);
} else if (tt == TOK_XMLPTAGC) {
pn->pn_type = TOK_XMLELEM;
pn->pn_op = JSOP_TOXML;
}
}
return JS_TRUE;
}
#endif /* JS_HAS_XML_SUPPORT */
static int
Boolish(JSParseNode *pn)
{
switch (pn->pn_op) {
case JSOP_DOUBLE:
return pn->pn_dval != 0 && !JSDOUBLE_IS_NaN(pn->pn_dval);
case JSOP_STRING:
return ATOM_TO_STRING(pn->pn_atom)->length() != 0;
#if JS_HAS_GENERATOR_EXPRS
case JSOP_CALL:
{
/*
* A generator expression as an if or loop condition has no effects, it
* simply results in a truthy object reference. This condition folding
* is needed for the decompiler. See bug 442342 and bug 443074.
*/
if (pn->pn_count != 1)
break;
JSParseNode *pn2 = pn->pn_head;
if (pn2->pn_type != TOK_FUNCTION)
break;
if (!(pn2->pn_funbox->tcflags & TCF_GENEXP_LAMBDA))
break;
/* FALL THROUGH */
}
#endif
case JSOP_DEFFUN:
case JSOP_LAMBDA:
case JSOP_THIS:
case JSOP_TRUE:
return 1;
case JSOP_NULL:
case JSOP_FALSE:
return 0;
default:;
}
return -1;
}
JSBool
js_FoldConstants(JSContext *cx, JSParseNode *pn, JSTreeContext *tc, bool inCond)
{
JSParseNode *pn1 = NULL, *pn2 = NULL, *pn3 = NULL;
JS_CHECK_RECURSION(cx, return JS_FALSE);
switch (pn->pn_arity) {
case PN_FUNC:
{
uint16 oldflags = tc->flags;
JSFunctionBox *oldlist = tc->functionList;
tc->flags = (uint16) pn->pn_funbox->tcflags;
tc->functionList = pn->pn_funbox->kids;
if (!js_FoldConstants(cx, pn->pn_body, tc))
return JS_FALSE;
pn->pn_funbox->kids = tc->functionList;
tc->flags = oldflags;
tc->functionList = oldlist;
break;
}
case PN_LIST:
{
/* Propagate inCond through logical connectives. */
bool cond = inCond && (pn->pn_type == TOK_OR || pn->pn_type == TOK_AND);
/* Save the list head in pn1 for later use. */
for (pn1 = pn2 = pn->pn_head; pn2; pn2 = pn2->pn_next) {
if (!js_FoldConstants(cx, pn2, tc, cond))
return JS_FALSE;
}
break;
}
case PN_TERNARY:
/* Any kid may be null (e.g. for (;;)). */
pn1 = pn->pn_kid1;
pn2 = pn->pn_kid2;
pn3 = pn->pn_kid3;
if (pn1 && !js_FoldConstants(cx, pn1, tc, pn->pn_type == TOK_IF))
return JS_FALSE;
if (pn2) {
if (!js_FoldConstants(cx, pn2, tc, pn->pn_type == TOK_FORHEAD))
return JS_FALSE;
if (pn->pn_type == TOK_FORHEAD && pn2->pn_op == JSOP_TRUE) {
RecycleTree(pn2, tc);
pn->pn_kid2 = NULL;
}
}
if (pn3 && !js_FoldConstants(cx, pn3, tc))
return JS_FALSE;
break;
case PN_BINARY:
pn1 = pn->pn_left;
pn2 = pn->pn_right;
/* Propagate inCond through logical connectives. */
if (pn->pn_type == TOK_OR || pn->pn_type == TOK_AND) {
if (!js_FoldConstants(cx, pn1, tc, inCond))
return JS_FALSE;
if (!js_FoldConstants(cx, pn2, tc, inCond))
return JS_FALSE;
break;
}
/* First kid may be null (for default case in switch). */
if (pn1 && !js_FoldConstants(cx, pn1, tc, pn->pn_type == TOK_WHILE))
return JS_FALSE;
if (!js_FoldConstants(cx, pn2, tc, pn->pn_type == TOK_DO))
return JS_FALSE;
break;
case PN_UNARY:
/* Our kid may be null (e.g. return; vs. return e;). */
pn1 = pn->pn_kid;
if (pn1 && !js_FoldConstants(cx, pn1, tc, pn->pn_op == JSOP_NOT))
return JS_FALSE;
break;
case PN_NAME:
/*
* Skip pn1 down along a chain of dotted member expressions to avoid
* excessive recursion. Our only goal here is to fold constants (if
* any) in the primary expression operand to the left of the first
* dot in the chain.
*/
if (!pn->pn_used) {
pn1 = pn->pn_expr;
while (pn1 && pn1->pn_arity == PN_NAME && !pn1->pn_used)
pn1 = pn1->pn_expr;
if (pn1 && !js_FoldConstants(cx, pn1, tc))
return JS_FALSE;
}
break;
case PN_NAMESET:
pn1 = pn->pn_tree;
if (!js_FoldConstants(cx, pn1, tc))
return JS_FALSE;
break;
case PN_NULLARY:
break;
}
switch (pn->pn_type) {
case TOK_IF:
if (ContainsStmt(pn2, TOK_VAR) || ContainsStmt(pn3, TOK_VAR))
break;
/* FALL THROUGH */
case TOK_HOOK:
/* Reduce 'if (C) T; else E' into T for true C, E for false. */
switch (pn1->pn_type) {
case TOK_NUMBER:
if (pn1->pn_dval == 0 || JSDOUBLE_IS_NaN(pn1->pn_dval))
pn2 = pn3;
break;
case TOK_STRING:
if (ATOM_TO_STRING(pn1->pn_atom)->length() == 0)
pn2 = pn3;
break;
case TOK_PRIMARY:
if (pn1->pn_op == JSOP_TRUE)
break;
if (pn1->pn_op == JSOP_FALSE || pn1->pn_op == JSOP_NULL) {
pn2 = pn3;
break;
}
/* FALL THROUGH */
default:
/* Early return to dodge common code that copies pn2 to pn. */
return JS_TRUE;
}
#if JS_HAS_GENERATOR_EXPRS
/* Don't fold a trailing |if (0)| in a generator expression. */
if (!pn2 && (tc->flags & TCF_GENEXP_LAMBDA))
break;
#endif
if (pn2 && !pn2->pn_defn)
pn->become(pn2);
if (!pn2 || (pn->pn_type == TOK_SEMI && !pn->pn_kid)) {
/*
* False condition and no else, or an empty then-statement was
* moved up over pn. Either way, make pn an empty block (not an
* empty statement, which does not decompile, even when labeled).
* NB: pn must be a TOK_IF as TOK_HOOK can never have a null kid
* or an empty statement for a child.
*/
pn->pn_type = TOK_LC;
pn->pn_arity = PN_LIST;
pn->makeEmpty();
}
RecycleTree(pn2, tc);
if (pn3 && pn3 != pn2)
RecycleTree(pn3, tc);
break;
case TOK_OR:
case TOK_AND:
if (inCond) {
if (pn->pn_arity == PN_LIST) {
JSParseNode **pnp = &pn->pn_head;
JS_ASSERT(*pnp == pn1);
do {
int cond = Boolish(pn1);
if (cond == (pn->pn_type == TOK_OR)) {
for (pn2 = pn1->pn_next; pn2; pn2 = pn3) {
pn3 = pn2->pn_next;
RecycleTree(pn2, tc);
--pn->pn_count;
}
pn1->pn_next = NULL;
break;
}
if (cond != -1) {
JS_ASSERT(cond == (pn->pn_type == TOK_AND));
if (pn->pn_count == 1)
break;
*pnp = pn1->pn_next;
RecycleTree(pn1, tc);
--pn->pn_count;
} else {
pnp = &pn1->pn_next;
}
} while ((pn1 = *pnp) != NULL);
// We may have to change arity from LIST to BINARY.
pn1 = pn->pn_head;
if (pn->pn_count == 2) {
pn2 = pn1->pn_next;
pn1->pn_next = NULL;
JS_ASSERT(!pn2->pn_next);
pn->pn_arity = PN_BINARY;
pn->pn_left = pn1;
pn->pn_right = pn2;
} else if (pn->pn_count == 1) {
pn->become(pn1);
RecycleTree(pn1, tc);
}
} else {
int cond = Boolish(pn1);
if (cond == (pn->pn_type == TOK_OR)) {
RecycleTree(pn2, tc);
pn->become(pn1);
} else if (cond != -1) {
JS_ASSERT(cond == (pn->pn_type == TOK_AND));
RecycleTree(pn1, tc);
pn->become(pn2);
}
}
}
break;
case TOK_ASSIGN:
/*
* Compound operators such as *= should be subject to folding, in case
* the left-hand side is constant, and so that the decompiler produces
* the same string that you get from decompiling a script or function
* compiled from that same string. As with +, += is special.
*/
if (pn->pn_op == JSOP_NOP)
break;
if (pn->pn_op != JSOP_ADD)
goto do_binary_op;
/* FALL THROUGH */
case TOK_PLUS:
if (pn->pn_arity == PN_LIST) {
size_t length, length2;
jschar *chars;
JSString *str, *str2;
/*
* Any string literal term with all others number or string means
* this is a concatenation. If any term is not a string or number
* literal, we can't fold.
*/
JS_ASSERT(pn->pn_count > 2);
if (pn->pn_xflags & PNX_CANTFOLD)
return JS_TRUE;
if (pn->pn_xflags != PNX_STRCAT)
goto do_binary_op;
/* Ok, we're concatenating: convert non-string constant operands. */
length = 0;
for (pn2 = pn1; pn2; pn2 = pn2->pn_next) {
if (!FoldType(cx, pn2, TOK_STRING))
return JS_FALSE;
/* XXX fold only if all operands convert to string */
if (pn2->pn_type != TOK_STRING)
return JS_TRUE;
length += ATOM_TO_STRING(pn2->pn_atom)->flatLength();
}
/* Allocate a new buffer and string descriptor for the result. */
chars = (jschar *) cx->malloc((length + 1) * sizeof(jschar));
if (!chars)
return JS_FALSE;
str = js_NewString(cx, chars, length);
if (!str) {
cx->free(chars);
return JS_FALSE;
}
/* Fill the buffer, advancing chars and recycling kids as we go. */
for (pn2 = pn1; pn2; pn2 = RecycleTree(pn2, tc)) {
str2 = ATOM_TO_STRING(pn2->pn_atom);
length2 = str2->flatLength();
js_strncpy(chars, str2->flatChars(), length2);
chars += length2;
}
*chars = 0;
/* Atomize the result string and mutate pn to refer to it. */
pn->pn_atom = js_AtomizeString(cx, str, 0);
if (!pn->pn_atom)
return JS_FALSE;
pn->pn_type = TOK_STRING;
pn->pn_op = JSOP_STRING;
pn->pn_arity = PN_NULLARY;
break;
}
/* Handle a binary string concatenation. */
JS_ASSERT(pn->pn_arity == PN_BINARY);
if (pn1->pn_type == TOK_STRING || pn2->pn_type == TOK_STRING) {
JSString *left, *right, *str;
if (!FoldType(cx, (pn1->pn_type != TOK_STRING) ? pn1 : pn2,
TOK_STRING)) {
return JS_FALSE;
}
if (pn1->pn_type != TOK_STRING || pn2->pn_type != TOK_STRING)
return JS_TRUE;
left = ATOM_TO_STRING(pn1->pn_atom);
right = ATOM_TO_STRING(pn2->pn_atom);
str = js_ConcatStrings(cx, left, right);
if (!str)
return JS_FALSE;
pn->pn_atom = js_AtomizeString(cx, str, 0);
if (!pn->pn_atom)
return JS_FALSE;
pn->pn_type = TOK_STRING;
pn->pn_op = JSOP_STRING;
pn->pn_arity = PN_NULLARY;
RecycleTree(pn1, tc);
RecycleTree(pn2, tc);
break;
}
/* Can't concatenate string literals, let's try numbers. */
goto do_binary_op;
case TOK_STAR:
case TOK_SHOP:
case TOK_MINUS:
case TOK_DIVOP:
do_binary_op:
if (pn->pn_arity == PN_LIST) {
JS_ASSERT(pn->pn_count > 2);
for (pn2 = pn1; pn2; pn2 = pn2->pn_next) {
if (!FoldType(cx, pn2, TOK_NUMBER))
return JS_FALSE;
}
for (pn2 = pn1; pn2; pn2 = pn2->pn_next) {
/* XXX fold only if all operands convert to number */
if (pn2->pn_type != TOK_NUMBER)
break;
}
if (!pn2) {
JSOp op = PN_OP(pn);
pn2 = pn1->pn_next;
pn3 = pn2->pn_next;
if (!FoldBinaryNumeric(cx, op, pn1, pn2, pn, tc))
return JS_FALSE;
while ((pn2 = pn3) != NULL) {
pn3 = pn2->pn_next;
if (!FoldBinaryNumeric(cx, op, pn, pn2, pn, tc))
return JS_FALSE;
}
}
} else {
JS_ASSERT(pn->pn_arity == PN_BINARY);
if (!FoldType(cx, pn1, TOK_NUMBER) ||
!FoldType(cx, pn2, TOK_NUMBER)) {
return JS_FALSE;
}
if (pn1->pn_type == TOK_NUMBER && pn2->pn_type == TOK_NUMBER) {
if (!FoldBinaryNumeric(cx, PN_OP(pn), pn1, pn2, pn, tc))
return JS_FALSE;
}
}
break;
case TOK_UNARYOP:
if (pn1->pn_type == TOK_NUMBER) {
jsdouble d;
/* Operate on one numeric constant. */
d = pn1->pn_dval;
switch (pn->pn_op) {
case JSOP_BITNOT:
d = ~js_DoubleToECMAInt32(d);
break;
case JSOP_NEG:
d = -d;
break;
case JSOP_POS:
break;
case JSOP_NOT:
pn->pn_type = TOK_PRIMARY;
pn->pn_op = (d == 0 || JSDOUBLE_IS_NaN(d)) ? JSOP_TRUE : JSOP_FALSE;
pn->pn_arity = PN_NULLARY;
/* FALL THROUGH */
default:
/* Return early to dodge the common TOK_NUMBER code. */
return JS_TRUE;
}
pn->pn_type = TOK_NUMBER;
pn->pn_op = JSOP_DOUBLE;
pn->pn_arity = PN_NULLARY;
pn->pn_dval = d;
RecycleTree(pn1, tc);
} else if (pn1->pn_type == TOK_PRIMARY) {
if (pn->pn_op == JSOP_NOT &&
(pn1->pn_op == JSOP_TRUE ||
pn1->pn_op == JSOP_FALSE)) {
pn->become(pn1);
pn->pn_op = (pn->pn_op == JSOP_TRUE) ? JSOP_FALSE : JSOP_TRUE;
RecycleTree(pn1, tc);
}
}
break;
#if JS_HAS_XML_SUPPORT
case TOK_XMLELEM:
case TOK_XMLLIST:
case TOK_XMLPTAGC:
case TOK_XMLSTAGO:
case TOK_XMLETAGO:
case TOK_XMLNAME:
if (pn->pn_arity == PN_LIST) {
JS_ASSERT(pn->pn_type == TOK_XMLLIST || pn->pn_count != 0);
if (!FoldXMLConstants(cx, pn, tc))
return JS_FALSE;
}
break;
case TOK_AT:
if (pn1->pn_type == TOK_XMLNAME) {
jsval v;
JSObjectBox *xmlbox;
v = ATOM_KEY(pn1->pn_atom);
if (!js_ToAttributeName(cx, &v))
return JS_FALSE;
JS_ASSERT(!JSVAL_IS_PRIMITIVE(v));
xmlbox = tc->compiler->newObjectBox(JSVAL_TO_OBJECT(v));
if (!xmlbox)
return JS_FALSE;
pn->pn_type = TOK_XMLNAME;
pn->pn_op = JSOP_OBJECT;
pn->pn_arity = PN_NULLARY;
pn->pn_objbox = xmlbox;
RecycleTree(pn1, tc);
}
break;
#endif /* JS_HAS_XML_SUPPORT */
default:;
}
if (inCond) {
int cond = Boolish(pn);
if (cond >= 0) {
switch (pn->pn_arity) {
case PN_LIST:
pn2 = pn->pn_head;
do {
pn3 = pn2->pn_next;
RecycleTree(pn2, tc);
} while ((pn2 = pn3) != NULL);
break;
case PN_FUNC:
RecycleFuncNameKids(pn, tc);
break;
case PN_NULLARY:
break;
default:
JS_NOT_REACHED("unhandled arity");
}
pn->pn_type = TOK_PRIMARY;
pn->pn_op = cond ? JSOP_TRUE : JSOP_FALSE;
pn->pn_arity = PN_NULLARY;
}
}
return JS_TRUE;
}