gecko/intl/icu/source/common/ucnv_u8.c
Norbert Lindenberg 7e1aaac8a7 Bug 724531 - Import ICU library into the mozilla tree. r=dmandelin for importing the ICU sources
--HG--
extra : rebase_source : 2561787b6f9ae3dc626cb6bf76e6f78f6cd15664
2013-03-01 20:58:49 -08:00

1087 lines
36 KiB
C

/*
**********************************************************************
* Copyright (C) 2002-2012, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnv_u8.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002jul01
* created by: Markus W. Scherer
*
* UTF-8 converter implementation. Used to be in ucnv_utf.c.
*
* Also, CESU-8 implementation, see UTR 26.
* The CESU-8 converter uses all the same functions as the
* UTF-8 converter, with a branch for converting supplementary code points.
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION
#include "unicode/ucnv.h"
#include "unicode/utf.h"
#include "unicode/utf8.h"
#include "unicode/utf16.h"
#include "ucnv_bld.h"
#include "ucnv_cnv.h"
#include "cmemory.h"
/* Prototypes --------------------------------------------------------------- */
/* Keep these here to make finicky compilers happy */
U_CFUNC void ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs *args,
UErrorCode *err);
U_CFUNC void ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs *args,
UErrorCode *err);
/* UTF-8 -------------------------------------------------------------------- */
/* UTF-8 Conversion DATA
* for more information see Unicode Standard 2.0, Transformation Formats Appendix A-9
*/
/*static const uint32_t REPLACEMENT_CHARACTER = 0x0000FFFD;*/
#define MAXIMUM_UCS2 0x0000FFFF
#define MAXIMUM_UTF 0x0010FFFF
#define MAXIMUM_UCS4 0x7FFFFFFF
#define HALF_SHIFT 10
#define HALF_BASE 0x0010000
#define HALF_MASK 0x3FF
#define SURROGATE_HIGH_START 0xD800
#define SURROGATE_HIGH_END 0xDBFF
#define SURROGATE_LOW_START 0xDC00
#define SURROGATE_LOW_END 0xDFFF
/* -SURROGATE_LOW_START + HALF_BASE */
#define SURROGATE_LOW_BASE 9216
static const uint32_t offsetsFromUTF8[7] = {0,
(uint32_t) 0x00000000, (uint32_t) 0x00003080, (uint32_t) 0x000E2080,
(uint32_t) 0x03C82080, (uint32_t) 0xFA082080, (uint32_t) 0x82082080
};
/* END OF UTF-8 Conversion DATA */
static const int8_t bytesFromUTF8[256] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0
};
/*
* Starting with Unicode 3.0.1:
* UTF-8 byte sequences of length N _must_ encode code points of or above utf8_minChar32[N];
* byte sequences with more than 4 bytes are illegal in UTF-8,
* which is tested with impossible values for them
*/
static const uint32_t
utf8_minChar32[7]={ 0, 0, 0x80, 0x800, 0x10000, 0xffffffff, 0xffffffff };
static void ucnv_toUnicode_UTF8 (UConverterToUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const unsigned char *mySource = (unsigned char *) args->source;
UChar *myTarget = args->target;
const unsigned char *sourceLimit = (unsigned char *) args->sourceLimit;
const UChar *targetLimit = args->targetLimit;
unsigned char *toUBytes = cnv->toUBytes;
UBool isCESU8 = (UBool)(cnv->sharedData == &_CESU8Data);
uint32_t ch, ch2 = 0;
int32_t i, inBytes;
/* Restore size of current sequence */
if (cnv->toUnicodeStatus && myTarget < targetLimit)
{
inBytes = cnv->mode; /* restore # of bytes to consume */
i = cnv->toULength; /* restore # of bytes consumed */
cnv->toULength = 0;
ch = cnv->toUnicodeStatus;/*Stores the previously calculated ch from a previous call*/
cnv->toUnicodeStatus = 0;
goto morebytes;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Simple case */
{
*(myTarget++) = (UChar) ch;
}
else
{
/* store the first char */
toUBytes[0] = (char)ch;
inBytes = bytesFromUTF8[ch]; /* lookup current sequence length */
i = 1;
morebytes:
while (i < inBytes)
{
if (mySource < sourceLimit)
{
toUBytes[i] = (char) (ch2 = *mySource);
if (!U8_IS_TRAIL(ch2))
{
break; /* i < inBytes */
}
ch = (ch << 6) + ch2;
++mySource;
i++;
}
else
{
/* stores a partially calculated target*/
cnv->toUnicodeStatus = ch;
cnv->mode = inBytes;
cnv->toULength = (int8_t) i;
goto donefornow;
}
}
/* Remove the accumulated high bits */
ch -= offsetsFromUTF8[inBytes];
/*
* Legal UTF-8 byte sequences in Unicode 3.0.1 and up:
* - use only trail bytes after a lead byte (checked above)
* - use the right number of trail bytes for a given lead byte
* - encode a code point <= U+10ffff
* - use the fewest possible number of bytes for their code points
* - use at most 4 bytes (for i>=5 it is 0x10ffff<utf8_minChar32[])
*
* Starting with Unicode 3.2, surrogate code points must not be encoded in UTF-8.
* There are no irregular sequences any more.
* In CESU-8, only surrogates, not supplementary code points, are encoded directly.
*/
if (i == inBytes && ch <= MAXIMUM_UTF && ch >= utf8_minChar32[i] &&
(isCESU8 ? i <= 3 : !U_IS_SURROGATE(ch)))
{
/* Normal valid byte when the loop has not prematurely terminated (i < inBytes) */
if (ch <= MAXIMUM_UCS2)
{
/* fits in 16 bits */
*(myTarget++) = (UChar) ch;
}
else
{
/* write out the surrogates */
ch -= HALF_BASE;
*(myTarget++) = (UChar) ((ch >> HALF_SHIFT) + SURROGATE_HIGH_START);
ch = (ch & HALF_MASK) + SURROGATE_LOW_START;
if (myTarget < targetLimit)
{
*(myTarget++) = (UChar)ch;
}
else
{
/* Put in overflow buffer (not handled here) */
cnv->UCharErrorBuffer[0] = (UChar) ch;
cnv->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
else
{
cnv->toULength = (int8_t)i;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
}
donefornow:
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
/* End of target buffer */
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = myTarget;
args->source = (const char *) mySource;
}
static void ucnv_toUnicode_UTF8_OFFSETS_LOGIC (UConverterToUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const unsigned char *mySource = (unsigned char *) args->source;
UChar *myTarget = args->target;
int32_t *myOffsets = args->offsets;
int32_t offsetNum = 0;
const unsigned char *sourceLimit = (unsigned char *) args->sourceLimit;
const UChar *targetLimit = args->targetLimit;
unsigned char *toUBytes = cnv->toUBytes;
UBool isCESU8 = (UBool)(cnv->sharedData == &_CESU8Data);
uint32_t ch, ch2 = 0;
int32_t i, inBytes;
/* Restore size of current sequence */
if (cnv->toUnicodeStatus && myTarget < targetLimit)
{
inBytes = cnv->mode; /* restore # of bytes to consume */
i = cnv->toULength; /* restore # of bytes consumed */
cnv->toULength = 0;
ch = cnv->toUnicodeStatus;/*Stores the previously calculated ch from a previous call*/
cnv->toUnicodeStatus = 0;
goto morebytes;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Simple case */
{
*(myTarget++) = (UChar) ch;
*(myOffsets++) = offsetNum++;
}
else
{
toUBytes[0] = (char)ch;
inBytes = bytesFromUTF8[ch];
i = 1;
morebytes:
while (i < inBytes)
{
if (mySource < sourceLimit)
{
toUBytes[i] = (char) (ch2 = *mySource);
if (!U8_IS_TRAIL(ch2))
{
break; /* i < inBytes */
}
ch = (ch << 6) + ch2;
++mySource;
i++;
}
else
{
cnv->toUnicodeStatus = ch;
cnv->mode = inBytes;
cnv->toULength = (int8_t)i;
goto donefornow;
}
}
/* Remove the accumulated high bits */
ch -= offsetsFromUTF8[inBytes];
/*
* Legal UTF-8 byte sequences in Unicode 3.0.1 and up:
* - use only trail bytes after a lead byte (checked above)
* - use the right number of trail bytes for a given lead byte
* - encode a code point <= U+10ffff
* - use the fewest possible number of bytes for their code points
* - use at most 4 bytes (for i>=5 it is 0x10ffff<utf8_minChar32[])
*
* Starting with Unicode 3.2, surrogate code points must not be encoded in UTF-8.
* There are no irregular sequences any more.
* In CESU-8, only surrogates, not supplementary code points, are encoded directly.
*/
if (i == inBytes && ch <= MAXIMUM_UTF && ch >= utf8_minChar32[i] &&
(isCESU8 ? i <= 3 : !U_IS_SURROGATE(ch)))
{
/* Normal valid byte when the loop has not prematurely terminated (i < inBytes) */
if (ch <= MAXIMUM_UCS2)
{
/* fits in 16 bits */
*(myTarget++) = (UChar) ch;
*(myOffsets++) = offsetNum;
}
else
{
/* write out the surrogates */
ch -= HALF_BASE;
*(myTarget++) = (UChar) ((ch >> HALF_SHIFT) + SURROGATE_HIGH_START);
*(myOffsets++) = offsetNum;
ch = (ch & HALF_MASK) + SURROGATE_LOW_START;
if (myTarget < targetLimit)
{
*(myTarget++) = (UChar)ch;
*(myOffsets++) = offsetNum;
}
else
{
cnv->UCharErrorBuffer[0] = (UChar) ch;
cnv->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
offsetNum += i;
}
else
{
cnv->toULength = (int8_t)i;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
}
donefornow:
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{ /* End of target buffer */
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = myTarget;
args->source = (const char *) mySource;
args->offsets = myOffsets;
}
U_CFUNC void ucnv_fromUnicode_UTF8 (UConverterFromUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const UChar *mySource = args->source;
const UChar *sourceLimit = args->sourceLimit;
uint8_t *myTarget = (uint8_t *) args->target;
const uint8_t *targetLimit = (uint8_t *) args->targetLimit;
uint8_t *tempPtr;
UChar32 ch;
uint8_t tempBuf[4];
int32_t indexToWrite;
UBool isNotCESU8 = (UBool)(cnv->sharedData != &_CESU8Data);
if (cnv->fromUChar32 && myTarget < targetLimit)
{
ch = cnv->fromUChar32;
cnv->fromUChar32 = 0;
goto lowsurrogate;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Single byte */
{
*(myTarget++) = (uint8_t) ch;
}
else if (ch < 0x800) /* Double byte */
{
*(myTarget++) = (uint8_t) ((ch >> 6) | 0xc0);
if (myTarget < targetLimit)
{
*(myTarget++) = (uint8_t) ((ch & 0x3f) | 0x80);
}
else
{
cnv->charErrorBuffer[0] = (uint8_t) ((ch & 0x3f) | 0x80);
cnv->charErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
else {
/* Check for surrogates */
if(U16_IS_SURROGATE(ch) && isNotCESU8) {
lowsurrogate:
if (mySource < sourceLimit) {
/* test both code units */
if(U16_IS_SURROGATE_LEAD(ch) && U16_IS_TRAIL(*mySource)) {
/* convert and consume this supplementary code point */
ch=U16_GET_SUPPLEMENTARY(ch, *mySource);
++mySource;
/* exit this condition tree */
}
else {
/* this is an unpaired trail or lead code unit */
/* callback(illegal) */
cnv->fromUChar32 = ch;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
else {
/* no more input */
cnv->fromUChar32 = ch;
break;
}
}
/* Do we write the buffer directly for speed,
or do we have to be careful about target buffer space? */
tempPtr = (((targetLimit - myTarget) >= 4) ? myTarget : tempBuf);
if (ch <= MAXIMUM_UCS2) {
indexToWrite = 2;
tempPtr[0] = (uint8_t) ((ch >> 12) | 0xe0);
}
else {
indexToWrite = 3;
tempPtr[0] = (uint8_t) ((ch >> 18) | 0xf0);
tempPtr[1] = (uint8_t) (((ch >> 12) & 0x3f) | 0x80);
}
tempPtr[indexToWrite-1] = (uint8_t) (((ch >> 6) & 0x3f) | 0x80);
tempPtr[indexToWrite] = (uint8_t) ((ch & 0x3f) | 0x80);
if (tempPtr == myTarget) {
/* There was enough space to write the codepoint directly. */
myTarget += (indexToWrite + 1);
}
else {
/* We might run out of room soon. Write it slowly. */
for (; tempPtr <= (tempBuf + indexToWrite); tempPtr++) {
if (myTarget < targetLimit) {
*(myTarget++) = *tempPtr;
}
else {
cnv->charErrorBuffer[cnv->charErrorBufferLength++] = *tempPtr;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
}
}
}
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = (char *) myTarget;
args->source = mySource;
}
U_CFUNC void ucnv_fromUnicode_UTF8_OFFSETS_LOGIC (UConverterFromUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const UChar *mySource = args->source;
int32_t *myOffsets = args->offsets;
const UChar *sourceLimit = args->sourceLimit;
uint8_t *myTarget = (uint8_t *) args->target;
const uint8_t *targetLimit = (uint8_t *) args->targetLimit;
uint8_t *tempPtr;
UChar32 ch;
int32_t offsetNum, nextSourceIndex;
int32_t indexToWrite;
uint8_t tempBuf[4];
UBool isNotCESU8 = (UBool)(cnv->sharedData != &_CESU8Data);
if (cnv->fromUChar32 && myTarget < targetLimit)
{
ch = cnv->fromUChar32;
cnv->fromUChar32 = 0;
offsetNum = -1;
nextSourceIndex = 0;
goto lowsurrogate;
} else {
offsetNum = 0;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Single byte */
{
*(myOffsets++) = offsetNum++;
*(myTarget++) = (char) ch;
}
else if (ch < 0x800) /* Double byte */
{
*(myOffsets++) = offsetNum;
*(myTarget++) = (uint8_t) ((ch >> 6) | 0xc0);
if (myTarget < targetLimit)
{
*(myOffsets++) = offsetNum++;
*(myTarget++) = (uint8_t) ((ch & 0x3f) | 0x80);
}
else
{
cnv->charErrorBuffer[0] = (uint8_t) ((ch & 0x3f) | 0x80);
cnv->charErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
else
/* Check for surrogates */
{
nextSourceIndex = offsetNum + 1;
if(U16_IS_SURROGATE(ch) && isNotCESU8) {
lowsurrogate:
if (mySource < sourceLimit) {
/* test both code units */
if(U16_IS_SURROGATE_LEAD(ch) && U16_IS_TRAIL(*mySource)) {
/* convert and consume this supplementary code point */
ch=U16_GET_SUPPLEMENTARY(ch, *mySource);
++mySource;
++nextSourceIndex;
/* exit this condition tree */
}
else {
/* this is an unpaired trail or lead code unit */
/* callback(illegal) */
cnv->fromUChar32 = ch;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
else {
/* no more input */
cnv->fromUChar32 = ch;
break;
}
}
/* Do we write the buffer directly for speed,
or do we have to be careful about target buffer space? */
tempPtr = (((targetLimit - myTarget) >= 4) ? myTarget : tempBuf);
if (ch <= MAXIMUM_UCS2) {
indexToWrite = 2;
tempPtr[0] = (uint8_t) ((ch >> 12) | 0xe0);
}
else {
indexToWrite = 3;
tempPtr[0] = (uint8_t) ((ch >> 18) | 0xf0);
tempPtr[1] = (uint8_t) (((ch >> 12) & 0x3f) | 0x80);
}
tempPtr[indexToWrite-1] = (uint8_t) (((ch >> 6) & 0x3f) | 0x80);
tempPtr[indexToWrite] = (uint8_t) ((ch & 0x3f) | 0x80);
if (tempPtr == myTarget) {
/* There was enough space to write the codepoint directly. */
myTarget += (indexToWrite + 1);
myOffsets[0] = offsetNum;
myOffsets[1] = offsetNum;
myOffsets[2] = offsetNum;
if (indexToWrite >= 3) {
myOffsets[3] = offsetNum;
}
myOffsets += (indexToWrite + 1);
}
else {
/* We might run out of room soon. Write it slowly. */
for (; tempPtr <= (tempBuf + indexToWrite); tempPtr++) {
if (myTarget < targetLimit)
{
*(myOffsets++) = offsetNum;
*(myTarget++) = *tempPtr;
}
else
{
cnv->charErrorBuffer[cnv->charErrorBufferLength++] = *tempPtr;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
}
offsetNum = nextSourceIndex;
}
}
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = (char *) myTarget;
args->source = mySource;
args->offsets = myOffsets;
}
static UChar32 ucnv_getNextUChar_UTF8(UConverterToUnicodeArgs *args,
UErrorCode *err) {
UConverter *cnv;
const uint8_t *sourceInitial;
const uint8_t *source;
uint16_t extraBytesToWrite;
uint8_t myByte;
UChar32 ch;
int8_t i, isLegalSequence;
/* UTF-8 only here, the framework handles CESU-8 to combine surrogate pairs */
cnv = args->converter;
sourceInitial = source = (const uint8_t *)args->source;
if (source >= (const uint8_t *)args->sourceLimit)
{
/* no input */
*err = U_INDEX_OUTOFBOUNDS_ERROR;
return 0xffff;
}
myByte = (uint8_t)*(source++);
if (myByte < 0x80)
{
args->source = (const char *)source;
return (UChar32)myByte;
}
extraBytesToWrite = (uint16_t)bytesFromUTF8[myByte];
if (extraBytesToWrite == 0) {
cnv->toUBytes[0] = myByte;
cnv->toULength = 1;
*err = U_ILLEGAL_CHAR_FOUND;
args->source = (const char *)source;
return 0xffff;
}
/*The byte sequence is longer than the buffer area passed*/
if (((const char *)source + extraBytesToWrite - 1) > args->sourceLimit)
{
/* check if all of the remaining bytes are trail bytes */
cnv->toUBytes[0] = myByte;
i = 1;
*err = U_TRUNCATED_CHAR_FOUND;
while(source < (const uint8_t *)args->sourceLimit) {
if(U8_IS_TRAIL(myByte = *source)) {
cnv->toUBytes[i++] = myByte;
++source;
} else {
/* error even before we run out of input */
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
cnv->toULength = i;
args->source = (const char *)source;
return 0xffff;
}
isLegalSequence = 1;
ch = myByte << 6;
switch(extraBytesToWrite)
{
/* note: code falls through cases! (sic)*/
case 6:
ch += (myByte = *source);
ch <<= 6;
if (!U8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
++source;
case 5: /*fall through*/
ch += (myByte = *source);
ch <<= 6;
if (!U8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
++source;
case 4: /*fall through*/
ch += (myByte = *source);
ch <<= 6;
if (!U8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
++source;
case 3: /*fall through*/
ch += (myByte = *source);
ch <<= 6;
if (!U8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
++source;
case 2: /*fall through*/
ch += (myByte = *source);
if (!U8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
++source;
};
ch -= offsetsFromUTF8[extraBytesToWrite];
args->source = (const char *)source;
/*
* Legal UTF-8 byte sequences in Unicode 3.0.1 and up:
* - use only trail bytes after a lead byte (checked above)
* - use the right number of trail bytes for a given lead byte
* - encode a code point <= U+10ffff
* - use the fewest possible number of bytes for their code points
* - use at most 4 bytes (for i>=5 it is 0x10ffff<utf8_minChar32[])
*
* Starting with Unicode 3.2, surrogate code points must not be encoded in UTF-8.
* There are no irregular sequences any more.
*/
if (isLegalSequence &&
(uint32_t)ch <= MAXIMUM_UTF &&
(uint32_t)ch >= utf8_minChar32[extraBytesToWrite] &&
!U_IS_SURROGATE(ch)
) {
return ch; /* return the code point */
}
for(i = 0; sourceInitial < source; ++i) {
cnv->toUBytes[i] = *sourceInitial++;
}
cnv->toULength = i;
*err = U_ILLEGAL_CHAR_FOUND;
return 0xffff;
}
/* UTF-8-from-UTF-8 conversion functions ------------------------------------ */
/* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
static const UChar32
utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
/* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
static const UChar32
utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
/* "Convert" UTF-8 to UTF-8: Validate and copy. Modified from ucnv_DBCSFromUTF8(). */
static void
ucnv_UTF8FromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
UConverterToUnicodeArgs *pToUArgs,
UErrorCode *pErrorCode) {
UConverter *utf8;
const uint8_t *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
int32_t count;
int8_t oldToULength, toULength, toULimit;
UChar32 c;
uint8_t b, t1, t2;
/* set up the local pointers */
utf8=pToUArgs->converter;
source=(uint8_t *)pToUArgs->source;
sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
target=(uint8_t *)pFromUArgs->target;
targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
/* get the converter state from the UTF-8 UConverter */
c=(UChar32)utf8->toUnicodeStatus;
if(c!=0) {
toULength=oldToULength=utf8->toULength;
toULimit=(int8_t)utf8->mode;
} else {
toULength=oldToULength=toULimit=0;
}
count=(int32_t)(sourceLimit-source)+oldToULength;
if(count<toULimit) {
/*
* Not enough input to complete the partial character.
* Jump to moreBytes below - it will not output to target.
*/
} else if(targetCapacity<toULimit) {
/*
* Not enough target capacity to output the partial character.
* Let the standard converter handle this.
*/
*pErrorCode=U_USING_DEFAULT_WARNING;
return;
} else {
/*
* Use a single counter for source and target, counting the minimum of
* the source length and the target capacity.
* As a result, the source length is checked only once per multi-byte
* character instead of twice.
*
* Make sure that the last byte sequence is complete, or else
* stop just before it.
* (The longest legal byte sequence has 3 trail bytes.)
* Count oldToULength (number of source bytes from a previous buffer)
* into the source length but reduce the source index by toULimit
* while going back over trail bytes in order to not go back into
* the bytes that will be read for finishing a partial
* sequence from the previous buffer.
* Let the standard converter handle edge cases.
*/
int32_t i;
if(count>targetCapacity) {
count=targetCapacity;
}
i=0;
while(i<3 && i<(count-toULimit)) {
b=source[count-oldToULength-i-1];
if(U8_IS_TRAIL(b)) {
++i;
} else {
if(i<U8_COUNT_TRAIL_BYTES(b)) {
/* stop converting before the lead byte if there are not enough trail bytes for it */
count-=i+1;
}
break;
}
}
}
if(c!=0) {
utf8->toUnicodeStatus=0;
utf8->toULength=0;
goto moreBytes;
/* See note in ucnv_SBCSFromUTF8() about this goto. */
}
/* conversion loop */
while(count>0) {
b=*source++;
if((int8_t)b>=0) {
/* convert ASCII */
*target++=b;
--count;
continue;
} else {
if(b>0xe0) {
if( /* handle U+1000..U+D7FF inline */
(t1=source[0]) >= 0x80 && ((b<0xed && (t1 <= 0xbf)) ||
(b==0xed && (t1 <= 0x9f))) &&
(t2=source[1]) >= 0x80 && t2 <= 0xbf
) {
source+=2;
*target++=b;
*target++=t1;
*target++=t2;
count-=3;
continue;
}
} else if(b<0xe0) {
if( /* handle U+0080..U+07FF inline */
b>=0xc2 &&
(t1=*source) >= 0x80 && t1 <= 0xbf
) {
++source;
*target++=b;
*target++=t1;
count-=2;
continue;
}
} else if(b==0xe0) {
if( /* handle U+0800..U+0FFF inline */
(t1=source[0]) >= 0xa0 && t1 <= 0xbf &&
(t2=source[1]) >= 0x80 && t2 <= 0xbf
) {
source+=2;
*target++=b;
*target++=t1;
*target++=t2;
count-=3;
continue;
}
}
/* handle "complicated" and error cases, and continuing partial characters */
oldToULength=0;
toULength=1;
toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
c=b;
moreBytes:
while(toULength<toULimit) {
if(source<sourceLimit) {
b=*source;
if(U8_IS_TRAIL(b)) {
++source;
++toULength;
c=(c<<6)+b;
} else {
break; /* sequence too short, stop with toULength<toULimit */
}
} else {
/* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
return;
}
}
if( toULength==toULimit && /* consumed all trail bytes */
(toULength==3 || toULength==2) && /* BMP */
(c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
(c<=0xd7ff || 0xe000<=c) /* not a surrogate */
) {
/* legal byte sequence for BMP code point */
} else if(
toULength==toULimit && toULength==4 &&
(0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
) {
/* legal byte sequence for supplementary code point */
} else {
/* error handling: illegal UTF-8 byte sequence */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toULength=toULength;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
return;
}
/* copy the legal byte sequence to the target */
{
int8_t i;
for(i=0; i<oldToULength; ++i) {
*target++=utf8->toUBytes[i];
}
source-=(toULength-oldToULength);
for(; i<toULength; ++i) {
*target++=*source++;
}
count-=toULength;
}
}
}
if(U_SUCCESS(*pErrorCode) && source<sourceLimit) {
if(target==(const uint8_t *)pFromUArgs->targetLimit) {
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
} else {
b=*source;
toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
if(toULimit>(sourceLimit-source)) {
/* collect a truncated byte sequence */
toULength=0;
c=b;
for(;;) {
utf8->toUBytes[toULength++]=b;
if(++source==sourceLimit) {
/* partial byte sequence at end of source */
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
break;
} else if(!U8_IS_TRAIL(b=*source)) {
/* lead byte in trail byte position */
utf8->toULength=toULength;
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
c=(c<<6)+b;
}
} else {
/* partial-sequence target overflow: fall back to the pivoting implementation */
*pErrorCode=U_USING_DEFAULT_WARNING;
}
}
}
/* write back the updated pointers */
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
}
/* UTF-8 converter data ----------------------------------------------------- */
static const UConverterImpl _UTF8Impl={
UCNV_UTF8,
NULL,
NULL,
NULL,
NULL,
NULL,
ucnv_toUnicode_UTF8,
ucnv_toUnicode_UTF8_OFFSETS_LOGIC,
ucnv_fromUnicode_UTF8,
ucnv_fromUnicode_UTF8_OFFSETS_LOGIC,
ucnv_getNextUChar_UTF8,
NULL,
NULL,
NULL,
NULL,
ucnv_getNonSurrogateUnicodeSet,
ucnv_UTF8FromUTF8,
ucnv_UTF8FromUTF8
};
/* The 1208 CCSID refers to any version of Unicode of UTF-8 */
static const UConverterStaticData _UTF8StaticData={
sizeof(UConverterStaticData),
"UTF-8",
1208, UCNV_IBM, UCNV_UTF8,
1, 3, /* max 3 bytes per UChar from UTF-8 (4 bytes from surrogate _pair_) */
{ 0xef, 0xbf, 0xbd, 0 },3,FALSE,FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF8Data={
sizeof(UConverterSharedData), ~((uint32_t) 0),
NULL, NULL, &_UTF8StaticData, FALSE, &_UTF8Impl,
0
};
/* CESU-8 converter data ---------------------------------------------------- */
static const UConverterImpl _CESU8Impl={
UCNV_CESU8,
NULL,
NULL,
NULL,
NULL,
NULL,
ucnv_toUnicode_UTF8,
ucnv_toUnicode_UTF8_OFFSETS_LOGIC,
ucnv_fromUnicode_UTF8,
ucnv_fromUnicode_UTF8_OFFSETS_LOGIC,
NULL,
NULL,
NULL,
NULL,
NULL,
ucnv_getCompleteUnicodeSet
};
static const UConverterStaticData _CESU8StaticData={
sizeof(UConverterStaticData),
"CESU-8",
9400, /* CCSID for CESU-8 */
UCNV_UNKNOWN, UCNV_CESU8, 1, 3,
{ 0xef, 0xbf, 0xbd, 0 },3,FALSE,FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _CESU8Data={
sizeof(UConverterSharedData), ~((uint32_t) 0),
NULL, NULL, &_CESU8StaticData, FALSE, &_CESU8Impl,
0
};
#endif