gecko/gfx/thebes/gfxPattern.cpp
Robert O'Callahan 13041e1a84 Bug 772726. Part 13: Fix handling of transforms in gfxTextObjectPaint. r=eflores,jwatt
gfxTextObjectPaint::GetFillPattern/GetStrokePattern should take the destination's CTM
as a parameter in order to set up the pattern matrix correctly, since the pattern matrix
is combined with the CTM by cairo/Thebes --- but we want the pattern rendering to be
independendt of the CTM, instead depending only on the TM set up when we initialized
the gfxTextObjectPaint.
We make SVGTextObjectPaint store matrices that map device space to pattern space.
2012-09-12 17:13:12 +12:00

432 lines
12 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gfxTypes.h"
#include "gfxPattern.h"
#include "gfxASurface.h"
#include "gfxPlatform.h"
#include "cairo.h"
#include <vector>
using namespace mozilla::gfx;
gfxPattern::gfxPattern(cairo_pattern_t *aPattern)
: mGfxPattern(NULL)
{
mPattern = cairo_pattern_reference(aPattern);
}
gfxPattern::gfxPattern(const gfxRGBA& aColor)
: mGfxPattern(NULL)
{
mPattern = cairo_pattern_create_rgba(aColor.r, aColor.g, aColor.b, aColor.a);
}
// from another surface
gfxPattern::gfxPattern(gfxASurface *surface)
: mGfxPattern(NULL)
{
mPattern = cairo_pattern_create_for_surface(surface->CairoSurface());
}
// linear
gfxPattern::gfxPattern(gfxFloat x0, gfxFloat y0, gfxFloat x1, gfxFloat y1)
: mGfxPattern(NULL)
{
mPattern = cairo_pattern_create_linear(x0, y0, x1, y1);
}
// radial
gfxPattern::gfxPattern(gfxFloat cx0, gfxFloat cy0, gfxFloat radius0,
gfxFloat cx1, gfxFloat cy1, gfxFloat radius1)
: mGfxPattern(NULL)
{
mPattern = cairo_pattern_create_radial(cx0, cy0, radius0,
cx1, cy1, radius1);
}
// Azure
gfxPattern::gfxPattern(SourceSurface *aSurface, const Matrix &aTransform)
: mPattern(NULL)
, mGfxPattern(NULL)
, mSourceSurface(aSurface)
, mTransform(aTransform)
{
}
gfxPattern::~gfxPattern()
{
cairo_pattern_destroy(mPattern);
if (mGfxPattern) {
mGfxPattern->~Pattern();
}
}
cairo_pattern_t *
gfxPattern::CairoPattern()
{
return mPattern;
}
void
gfxPattern::AddColorStop(gfxFloat offset, const gfxRGBA& c)
{
if (mPattern) {
mStops = NULL;
if (gfxPlatform::GetCMSMode() == eCMSMode_All) {
gfxRGBA cms;
gfxPlatform::TransformPixel(c, cms, gfxPlatform::GetCMSRGBTransform());
// Use the original alpha to avoid unnecessary float->byte->float
// conversion errors
cairo_pattern_add_color_stop_rgba(mPattern, offset,
cms.r, cms.g, cms.b, c.a);
}
else
cairo_pattern_add_color_stop_rgba(mPattern, offset, c.r, c.g, c.b, c.a);
}
}
void
gfxPattern::SetMatrix(const gfxMatrix& matrix)
{
if (mPattern) {
cairo_matrix_t mat = *reinterpret_cast<const cairo_matrix_t*>(&matrix);
cairo_pattern_set_matrix(mPattern, &mat);
} else {
mTransform = ToMatrix(matrix);
// Cairo-pattern matrices specify the conversion from DrawTarget to pattern
// space. Azure pattern matrices specify the conversion from pattern to
// DrawTarget space.
mTransform.Invert();
}
}
gfxMatrix
gfxPattern::GetMatrix() const
{
if (mPattern) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
return gfxMatrix(*reinterpret_cast<gfxMatrix*>(&mat));
} else {
return ThebesMatrix(mTransform);
}
}
Pattern*
gfxPattern::GetPattern(DrawTarget *aTarget, Matrix *aPatternTransform)
{
if (mGfxPattern) {
mGfxPattern->~Pattern();
mGfxPattern = nullptr;
}
if (!mPattern) {
mGfxPattern = new (mSurfacePattern.addr())
SurfacePattern(mSourceSurface, EXTEND_CLAMP, mTransform);
return mGfxPattern;
}
GraphicsExtend extend = (GraphicsExtend)cairo_pattern_get_extend(mPattern);
switch (cairo_pattern_get_type(mPattern)) {
case CAIRO_PATTERN_TYPE_SOLID:
{
double r, g, b, a;
cairo_pattern_get_rgba(mPattern, &r, &g, &b, &a);
new (mColorPattern.addr()) ColorPattern(Color(r, g, b, a));
return mColorPattern.addr();
}
case CAIRO_PATTERN_TYPE_SURFACE:
{
GraphicsFilter filter = (GraphicsFilter)cairo_pattern_get_filter(mPattern);
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
gfxMatrix matrix(*reinterpret_cast<gfxMatrix*>(&mat));
cairo_surface_t *surf = NULL;
cairo_pattern_get_surface(mPattern, &surf);
if (!mSourceSurface) {
nsRefPtr<gfxASurface> gfxSurf = gfxASurface::Wrap(surf);
// The underlying surface here will be kept around by the gfxPattern.
// This function is intended to be used right away.
mSourceSurface =
gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(aTarget, gfxSurf);
}
if (mSourceSurface) {
Matrix newMat = ToMatrix(matrix);
AdjustTransformForPattern(newMat, aTarget->GetTransform(), aPatternTransform);
double x, y;
cairo_surface_get_device_offset(surf, &x, &y);
newMat.Translate(-x, -y);
mGfxPattern = new (mSurfacePattern.addr())
SurfacePattern(mSourceSurface, ToExtendMode(extend), newMat, ToFilter(filter));
return mGfxPattern;
}
break;
}
case CAIRO_PATTERN_TYPE_LINEAR:
{
double x1, y1, x2, y2;
cairo_pattern_get_linear_points(mPattern, &x1, &y1, &x2, &y2);
if (!mStops) {
int count = 0;
cairo_pattern_get_color_stop_count(mPattern, &count);
std::vector<GradientStop> stops;
for (int i = 0; i < count; i++) {
GradientStop stop;
double r, g, b, a, offset;
cairo_pattern_get_color_stop_rgba(mPattern, i, &offset, &r, &g, &b, &a);
stop.offset = offset;
stop.color = Color(Float(r), Float(g), Float(b), Float(a));
stops.push_back(stop);
}
mStops = aTarget->CreateGradientStops(&stops.front(), count, ToExtendMode(extend));
}
if (mStops) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
gfxMatrix matrix(*reinterpret_cast<gfxMatrix*>(&mat));
Matrix newMat = ToMatrix(matrix);
AdjustTransformForPattern(newMat, aTarget->GetTransform(), aPatternTransform);
mGfxPattern = new (mLinearGradientPattern.addr())
LinearGradientPattern(Point(x1, y1), Point(x2, y2), mStops, newMat);
return mGfxPattern;
}
break;
}
case CAIRO_PATTERN_TYPE_RADIAL:
{
if (!mStops) {
int count = 0;
cairo_pattern_get_color_stop_count(mPattern, &count);
std::vector<GradientStop> stops;
for (int i = 0; i < count; i++) {
GradientStop stop;
double r, g, b, a, offset;
cairo_pattern_get_color_stop_rgba(mPattern, i, &offset, &r, &g, &b, &a);
stop.offset = offset;
stop.color = Color(Float(r), Float(g), Float(b), Float(a));
stops.push_back(stop);
}
mStops = aTarget->CreateGradientStops(&stops.front(), count, ToExtendMode(extend));
}
if (mStops) {
cairo_matrix_t mat;
cairo_pattern_get_matrix(mPattern, &mat);
gfxMatrix matrix(*reinterpret_cast<gfxMatrix*>(&mat));
Matrix newMat = ToMatrix(matrix);
AdjustTransformForPattern(newMat, aTarget->GetTransform(), aPatternTransform);
double x1, y1, x2, y2, r1, r2;
cairo_pattern_get_radial_circles(mPattern, &x1, &y1, &r1, &x2, &y2, &r2);
mGfxPattern = new (mRadialGradientPattern.addr())
RadialGradientPattern(Point(x1, y1), Point(x2, y2), r1, r2, mStops, newMat);
return mGfxPattern;
}
break;
}
default:
/* Reassure the compiler we are handling all the enum values. */
break;
}
new (mColorPattern.addr()) ColorPattern(Color(0, 0, 0, 0));
return mColorPattern.addr();
}
void
gfxPattern::SetExtend(GraphicsExtend extend)
{
if (mPattern) {
mStops = NULL;
if (extend == EXTEND_PAD_EDGE) {
if (cairo_pattern_get_type(mPattern) == CAIRO_PATTERN_TYPE_SURFACE) {
cairo_surface_t *surf = NULL;
cairo_pattern_get_surface (mPattern, &surf);
if (surf) {
switch (cairo_surface_get_type(surf)) {
case CAIRO_SURFACE_TYPE_WIN32_PRINTING:
case CAIRO_SURFACE_TYPE_QUARTZ:
extend = EXTEND_NONE;
break;
case CAIRO_SURFACE_TYPE_WIN32:
case CAIRO_SURFACE_TYPE_XLIB:
default:
extend = EXTEND_PAD;
break;
}
}
}
// if something went wrong, or not a surface pattern, use PAD
if (extend == EXTEND_PAD_EDGE)
extend = EXTEND_PAD;
}
cairo_pattern_set_extend(mPattern, (cairo_extend_t)extend);
} else {
// This is always a surface pattern and will default to EXTEND_PAD
// for EXTEND_PAD_EDGE.
mExtend = ToExtendMode(extend);
}
}
bool
gfxPattern::IsOpaque()
{
if (mPattern) {
switch (cairo_pattern_get_type(mPattern)) {
case CAIRO_PATTERN_TYPE_SURFACE:
{
cairo_surface_t *surf = NULL;
cairo_pattern_get_surface(mPattern, &surf);
if (cairo_surface_get_content(surf) == CAIRO_CONTENT_COLOR) {
return true;
}
}
default:
return false;
}
}
if (mSourceSurface->GetFormat() == FORMAT_B8G8R8X8) {
return true;
}
return false;
}
gfxPattern::GraphicsExtend
gfxPattern::Extend() const
{
if (mPattern) {
return (GraphicsExtend)cairo_pattern_get_extend(mPattern);
} else {
return ThebesExtend(mExtend);
}
}
void
gfxPattern::SetFilter(GraphicsFilter filter)
{
if (mPattern) {
cairo_pattern_set_filter(mPattern, (cairo_filter_t)filter);
} else {
mFilter = ToFilter(filter);
}
}
gfxPattern::GraphicsFilter
gfxPattern::Filter() const
{
if (mPattern) {
return (GraphicsFilter)cairo_pattern_get_filter(mPattern);
} else {
return ThebesFilter(mFilter);
}
}
bool
gfxPattern::GetSolidColor(gfxRGBA& aColor)
{
return cairo_pattern_get_rgba(mPattern,
&aColor.r,
&aColor.g,
&aColor.b,
&aColor.a) == CAIRO_STATUS_SUCCESS;
}
already_AddRefed<gfxASurface>
gfxPattern::GetSurface()
{
if (mPattern) {
cairo_surface_t *surf = nullptr;
if (cairo_pattern_get_surface (mPattern, &surf) != CAIRO_STATUS_SUCCESS)
return nullptr;
return gfxASurface::Wrap(surf);
} else {
// We should never be trying to get the surface off an Azure gfx Pattern.
NS_ERROR("Attempt to get surface off an Azure gfxPattern!");
return NULL;
}
}
gfxPattern::GraphicsPatternType
gfxPattern::GetType() const
{
if (mPattern) {
return (GraphicsPatternType) cairo_pattern_get_type(mPattern);
} else {
// We should never be trying to get the type off an Azure gfx Pattern.
MOZ_ASSERT(0);
return PATTERN_SURFACE;
}
}
int
gfxPattern::CairoStatus()
{
if (mPattern) {
return cairo_pattern_status(mPattern);
} else {
// An Azure pattern as this point is never in error status.
return CAIRO_STATUS_SUCCESS;
}
}
void
gfxPattern::AdjustTransformForPattern(Matrix &aPatternTransform,
const Matrix &aCurrentTransform,
const Matrix *aOriginalTransform)
{
aPatternTransform.Invert();
if (!aOriginalTransform) {
// User space is unchanged, so to get from pattern space to user space,
// just invert the cairo matrix.
return;
}
// aPatternTransform now maps from pattern space to the user space defined
// by *aOriginalTransform.
Matrix mat = aCurrentTransform;
mat.Invert();
// mat maps from device space to current user space
// First, transform from pattern space to original user space. Then transform
// from original user space to device space. Then transform from
// device space to current user space.
aPatternTransform = aPatternTransform * *aOriginalTransform * mat;
}