mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
959 lines
24 KiB
C++
959 lines
24 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is Oracle Corporation code.
|
|
*
|
|
* The Initial Developer of the Original Code is Oracle Corporation.
|
|
* Portions created by the Initial Developer are Copyright (C) 2005
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Stuart Parmenter <pavlov@pavlov.net>
|
|
* Vladimir Vukicevic <vladimir@pobox.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#ifdef _MSC_VER
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
#include <math.h>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#include "cairo.h"
|
|
|
|
#include "gfxContext.h"
|
|
|
|
#include "gfxColor.h"
|
|
#include "gfxMatrix.h"
|
|
#include "gfxASurface.h"
|
|
#include "gfxPattern.h"
|
|
#include "gfxPlatform.h"
|
|
|
|
|
|
gfxContext::gfxContext(gfxASurface *surface) :
|
|
mSurface(surface)
|
|
{
|
|
MOZ_COUNT_CTOR(gfxContext);
|
|
|
|
mCairo = cairo_create(surface->CairoSurface());
|
|
mFlags = surface->GetDefaultContextFlags();
|
|
}
|
|
gfxContext::~gfxContext()
|
|
{
|
|
cairo_destroy(mCairo);
|
|
|
|
MOZ_COUNT_DTOR(gfxContext);
|
|
}
|
|
|
|
gfxASurface *
|
|
gfxContext::OriginalSurface()
|
|
{
|
|
return mSurface;
|
|
}
|
|
|
|
already_AddRefed<gfxASurface>
|
|
gfxContext::CurrentSurface(gfxFloat *dx, gfxFloat *dy)
|
|
{
|
|
cairo_surface_t *s = cairo_get_group_target(mCairo);
|
|
if (s == mSurface->CairoSurface()) {
|
|
if (dx && dy)
|
|
cairo_surface_get_device_offset(s, dx, dy);
|
|
gfxASurface *ret = mSurface;
|
|
NS_ADDREF(ret);
|
|
return ret;
|
|
}
|
|
|
|
if (dx && dy)
|
|
cairo_surface_get_device_offset(s, dx, dy);
|
|
return gfxASurface::Wrap(s);
|
|
}
|
|
|
|
void
|
|
gfxContext::Save()
|
|
{
|
|
cairo_save(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::Restore()
|
|
{
|
|
cairo_restore(mCairo);
|
|
}
|
|
|
|
// drawing
|
|
void
|
|
gfxContext::NewPath()
|
|
{
|
|
cairo_new_path(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::ClosePath()
|
|
{
|
|
cairo_close_path(mCairo);
|
|
}
|
|
|
|
already_AddRefed<gfxPath> gfxContext::CopyPath() const
|
|
{
|
|
nsRefPtr<gfxPath> path = new gfxPath(cairo_copy_path(mCairo));
|
|
return path.forget();
|
|
}
|
|
|
|
void gfxContext::AppendPath(gfxPath* path)
|
|
{
|
|
if (path->mPath->status == CAIRO_STATUS_SUCCESS && path->mPath->num_data != 0)
|
|
cairo_append_path(mCairo, path->mPath);
|
|
}
|
|
|
|
gfxPoint
|
|
gfxContext::CurrentPoint() const
|
|
{
|
|
double x, y;
|
|
cairo_get_current_point(mCairo, &x, &y);
|
|
return gfxPoint(x, y);
|
|
}
|
|
|
|
void
|
|
gfxContext::Stroke()
|
|
{
|
|
cairo_stroke_preserve(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::Fill()
|
|
{
|
|
cairo_fill_preserve(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::MoveTo(const gfxPoint& pt)
|
|
{
|
|
cairo_move_to(mCairo, pt.x, pt.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::NewSubPath()
|
|
{
|
|
cairo_new_sub_path(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::LineTo(const gfxPoint& pt)
|
|
{
|
|
cairo_line_to(mCairo, pt.x, pt.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::CurveTo(const gfxPoint& pt1, const gfxPoint& pt2, const gfxPoint& pt3)
|
|
{
|
|
cairo_curve_to(mCairo, pt1.x, pt1.y, pt2.x, pt2.y, pt3.x, pt3.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::QuadraticCurveTo(const gfxPoint& pt1, const gfxPoint& pt2)
|
|
{
|
|
double cx, cy;
|
|
cairo_get_current_point(mCairo, &cx, &cy);
|
|
cairo_curve_to(mCairo,
|
|
(cx + pt1.x * 2.0) / 3.0,
|
|
(cy + pt1.y * 2.0) / 3.0,
|
|
(pt1.x * 2.0 + pt2.x) / 3.0,
|
|
(pt1.y * 2.0 + pt2.y) / 3.0,
|
|
pt2.x,
|
|
pt2.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::Arc(const gfxPoint& center, gfxFloat radius,
|
|
gfxFloat angle1, gfxFloat angle2)
|
|
{
|
|
cairo_arc(mCairo, center.x, center.y, radius, angle1, angle2);
|
|
}
|
|
|
|
void
|
|
gfxContext::NegativeArc(const gfxPoint& center, gfxFloat radius,
|
|
gfxFloat angle1, gfxFloat angle2)
|
|
{
|
|
cairo_arc_negative(mCairo, center.x, center.y, radius, angle1, angle2);
|
|
}
|
|
|
|
void
|
|
gfxContext::Line(const gfxPoint& start, const gfxPoint& end)
|
|
{
|
|
MoveTo(start);
|
|
LineTo(end);
|
|
}
|
|
|
|
// XXX snapToPixels is only valid when snapping for filled
|
|
// rectangles and for even-width stroked rectangles.
|
|
// For odd-width stroked rectangles, we need to offset x/y by
|
|
// 0.5...
|
|
void
|
|
gfxContext::Rectangle(const gfxRect& rect, PRBool snapToPixels)
|
|
{
|
|
if (snapToPixels) {
|
|
gfxRect snappedRect(rect);
|
|
|
|
if (UserToDevicePixelSnapped(snappedRect, PR_TRUE))
|
|
{
|
|
cairo_matrix_t mat;
|
|
cairo_get_matrix(mCairo, &mat);
|
|
cairo_identity_matrix(mCairo);
|
|
Rectangle(snappedRect);
|
|
cairo_set_matrix(mCairo, &mat);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
cairo_rectangle(mCairo, rect.pos.x, rect.pos.y, rect.size.width, rect.size.height);
|
|
}
|
|
|
|
void
|
|
gfxContext::Ellipse(const gfxPoint& center, const gfxSize& dimensions)
|
|
{
|
|
gfxSize halfDim = dimensions / 2.0;
|
|
gfxRect r(center - halfDim, dimensions);
|
|
gfxCornerSizes c(halfDim, halfDim, halfDim, halfDim);
|
|
|
|
RoundedRectangle (r, c);
|
|
}
|
|
|
|
void
|
|
gfxContext::Polygon(const gfxPoint *points, PRUint32 numPoints)
|
|
{
|
|
if (numPoints == 0)
|
|
return;
|
|
|
|
cairo_move_to(mCairo, points[0].x, points[0].y);
|
|
for (PRUint32 i = 1; i < numPoints; ++i) {
|
|
cairo_line_to(mCairo, points[i].x, points[i].y);
|
|
}
|
|
}
|
|
|
|
void
|
|
gfxContext::DrawSurface(gfxASurface *surface, const gfxSize& size)
|
|
{
|
|
cairo_save(mCairo);
|
|
cairo_set_source_surface(mCairo, surface->CairoSurface(), 0, 0);
|
|
cairo_new_path(mCairo);
|
|
|
|
// pixel-snap this
|
|
Rectangle(gfxRect(gfxPoint(0.0, 0.0), size), PR_TRUE);
|
|
|
|
cairo_fill(mCairo);
|
|
cairo_restore(mCairo);
|
|
}
|
|
|
|
// transform stuff
|
|
void
|
|
gfxContext::Translate(const gfxPoint& pt)
|
|
{
|
|
cairo_translate(mCairo, pt.x, pt.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::Scale(gfxFloat x, gfxFloat y)
|
|
{
|
|
cairo_scale(mCairo, x, y);
|
|
}
|
|
|
|
void
|
|
gfxContext::Rotate(gfxFloat angle)
|
|
{
|
|
cairo_rotate(mCairo, angle);
|
|
}
|
|
|
|
void
|
|
gfxContext::Multiply(const gfxMatrix& matrix)
|
|
{
|
|
const cairo_matrix_t& mat = reinterpret_cast<const cairo_matrix_t&>(matrix);
|
|
cairo_transform(mCairo, &mat);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetMatrix(const gfxMatrix& matrix)
|
|
{
|
|
const cairo_matrix_t& mat = reinterpret_cast<const cairo_matrix_t&>(matrix);
|
|
cairo_set_matrix(mCairo, &mat);
|
|
}
|
|
|
|
void
|
|
gfxContext::IdentityMatrix()
|
|
{
|
|
cairo_identity_matrix(mCairo);
|
|
}
|
|
|
|
gfxMatrix
|
|
gfxContext::CurrentMatrix() const
|
|
{
|
|
cairo_matrix_t mat;
|
|
cairo_get_matrix(mCairo, &mat);
|
|
return gfxMatrix(*reinterpret_cast<gfxMatrix*>(&mat));
|
|
}
|
|
|
|
static void NudgeToInteger(double *aVal)
|
|
{
|
|
float f = float(*aVal);
|
|
float r = NS_roundf(f);
|
|
if (f == r) {
|
|
*aVal = r;
|
|
}
|
|
}
|
|
|
|
void
|
|
gfxContext::NudgeCurrentMatrixToIntegers()
|
|
{
|
|
cairo_matrix_t mat;
|
|
cairo_get_matrix(mCairo, &mat);
|
|
NudgeToInteger(&mat.xx);
|
|
NudgeToInteger(&mat.xy);
|
|
NudgeToInteger(&mat.yx);
|
|
NudgeToInteger(&mat.yy);
|
|
NudgeToInteger(&mat.x0);
|
|
NudgeToInteger(&mat.y0);
|
|
cairo_set_matrix(mCairo, &mat);
|
|
}
|
|
|
|
gfxPoint
|
|
gfxContext::DeviceToUser(const gfxPoint& point) const
|
|
{
|
|
gfxPoint ret = point;
|
|
cairo_device_to_user(mCairo, &ret.x, &ret.y);
|
|
return ret;
|
|
}
|
|
|
|
gfxSize
|
|
gfxContext::DeviceToUser(const gfxSize& size) const
|
|
{
|
|
gfxSize ret = size;
|
|
cairo_device_to_user_distance(mCairo, &ret.width, &ret.height);
|
|
return ret;
|
|
}
|
|
|
|
gfxRect
|
|
gfxContext::DeviceToUser(const gfxRect& rect) const
|
|
{
|
|
gfxRect ret = rect;
|
|
cairo_device_to_user(mCairo, &ret.pos.x, &ret.pos.y);
|
|
cairo_device_to_user_distance(mCairo, &ret.size.width, &ret.size.height);
|
|
return ret;
|
|
}
|
|
|
|
gfxPoint
|
|
gfxContext::UserToDevice(const gfxPoint& point) const
|
|
{
|
|
gfxPoint ret = point;
|
|
cairo_user_to_device(mCairo, &ret.x, &ret.y);
|
|
return ret;
|
|
}
|
|
|
|
gfxSize
|
|
gfxContext::UserToDevice(const gfxSize& size) const
|
|
{
|
|
gfxSize ret = size;
|
|
cairo_user_to_device_distance(mCairo, &ret.width, &ret.height);
|
|
return ret;
|
|
}
|
|
|
|
gfxRect
|
|
gfxContext::UserToDevice(const gfxRect& rect) const
|
|
{
|
|
double xmin, ymin, xmax, ymax;
|
|
xmin = rect.pos.x;
|
|
ymin = rect.pos.y;
|
|
xmax = rect.pos.x + rect.size.width;
|
|
ymax = rect.pos.y + rect.size.height;
|
|
|
|
double x[3], y[3];
|
|
x[0] = xmin; y[0] = ymax;
|
|
x[1] = xmax; y[1] = ymax;
|
|
x[2] = xmax; y[2] = ymin;
|
|
|
|
cairo_user_to_device(mCairo, &xmin, &ymin);
|
|
xmax = xmin;
|
|
ymax = ymin;
|
|
for (int i = 0; i < 3; i++) {
|
|
cairo_user_to_device(mCairo, &x[i], &y[i]);
|
|
xmin = PR_MIN(xmin, x[i]);
|
|
xmax = PR_MAX(xmax, x[i]);
|
|
ymin = PR_MIN(ymin, y[i]);
|
|
ymax = PR_MAX(ymax, y[i]);
|
|
}
|
|
|
|
return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
|
|
}
|
|
|
|
PRBool
|
|
gfxContext::UserToDevicePixelSnapped(gfxRect& rect, PRBool ignoreScale) const
|
|
{
|
|
if (GetFlags() & FLAG_DISABLE_SNAPPING)
|
|
return PR_FALSE;
|
|
|
|
// if we're not at 1.0 scale, don't snap, unless we're
|
|
// ignoring the scale. If we're not -just- a scale,
|
|
// never snap.
|
|
cairo_matrix_t mat;
|
|
cairo_get_matrix(mCairo, &mat);
|
|
if (!ignoreScale &&
|
|
(mat.xx != 1.0 || mat.yy != 1.0 || mat.xy != 0.0 || mat.yx != 0.0))
|
|
return PR_FALSE;
|
|
|
|
gfxPoint p1 = UserToDevice(rect.pos);
|
|
gfxPoint p2 = UserToDevice(rect.pos + gfxSize(rect.size.width, 0.0));
|
|
gfxPoint p3 = UserToDevice(rect.pos + rect.size);
|
|
|
|
// Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
|
|
// two opposite corners define the entire rectangle. So check if
|
|
// the axis-aligned rectangle with opposite corners p1 and p3
|
|
// define an axis-aligned rectangle whose other corners are p2 and p4.
|
|
// We actually only need to check one of p2 and p4, since an affine
|
|
// transform maps parallelograms to parallelograms.
|
|
if (p2 == gfxPoint(p1.x, p3.y) || p2 == gfxPoint(p3.x, p1.y)) {
|
|
p1.Round();
|
|
p3.Round();
|
|
|
|
rect.pos = gfxPoint(NS_MIN(p1.x, p3.x), NS_MIN(p1.y, p3.y));
|
|
rect.size = gfxSize(NS_MAX(p1.x, p3.x) - rect.pos.x,
|
|
NS_MAX(p1.y, p3.y) - rect.pos.y);
|
|
return PR_TRUE;
|
|
}
|
|
|
|
return PR_FALSE;
|
|
}
|
|
|
|
PRBool
|
|
gfxContext::UserToDevicePixelSnapped(gfxPoint& pt, PRBool ignoreScale) const
|
|
{
|
|
if (GetFlags() & FLAG_DISABLE_SNAPPING)
|
|
return PR_FALSE;
|
|
|
|
// if we're not at 1.0 scale, don't snap, unless we're
|
|
// ignoring the scale. If we're not -just- a scale,
|
|
// never snap.
|
|
cairo_matrix_t mat;
|
|
cairo_get_matrix(mCairo, &mat);
|
|
if ((!ignoreScale && (mat.xx != 1.0 || mat.yy != 1.0)) ||
|
|
(mat.xy != 0.0 || mat.yx != 0.0))
|
|
return PR_FALSE;
|
|
|
|
pt = UserToDevice(pt);
|
|
pt.Round();
|
|
return PR_TRUE;
|
|
}
|
|
|
|
void
|
|
gfxContext::PixelSnappedRectangleAndSetPattern(const gfxRect& rect,
|
|
gfxPattern *pattern)
|
|
{
|
|
gfxRect r(rect);
|
|
|
|
// Bob attempts to pixel-snap the rectangle, and returns true if
|
|
// the snapping succeeds. If it does, we need to set up an
|
|
// identity matrix, because the rectangle given back is in device
|
|
// coordinates.
|
|
//
|
|
// We then have to call a translate to dr.pos afterwards, to make
|
|
// sure the image lines up in the right place with our pixel
|
|
// snapped rectangle.
|
|
//
|
|
// If snapping wasn't successful, we just translate to where the
|
|
// pattern would normally start (in app coordinates) and do the
|
|
// same thing.
|
|
|
|
gfxMatrix mat = CurrentMatrix();
|
|
if (UserToDevicePixelSnapped(r)) {
|
|
IdentityMatrix();
|
|
}
|
|
|
|
Translate(r.pos);
|
|
r.pos.x = r.pos.y = 0;
|
|
Rectangle(r);
|
|
SetPattern(pattern);
|
|
|
|
SetMatrix(mat);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetAntialiasMode(AntialiasMode mode)
|
|
{
|
|
if (mode == MODE_ALIASED) {
|
|
cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_NONE);
|
|
} else if (mode == MODE_COVERAGE) {
|
|
cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_DEFAULT);
|
|
}
|
|
}
|
|
|
|
gfxContext::AntialiasMode
|
|
gfxContext::CurrentAntialiasMode() const
|
|
{
|
|
cairo_antialias_t aa = cairo_get_antialias(mCairo);
|
|
if (aa == CAIRO_ANTIALIAS_NONE)
|
|
return MODE_ALIASED;
|
|
return MODE_COVERAGE;
|
|
}
|
|
|
|
void
|
|
gfxContext::SetDash(gfxLineType ltype)
|
|
{
|
|
static double dash[] = {5.0, 5.0};
|
|
static double dot[] = {1.0, 1.0};
|
|
|
|
switch (ltype) {
|
|
case gfxLineDashed:
|
|
SetDash(dash, 2, 0.0);
|
|
break;
|
|
case gfxLineDotted:
|
|
SetDash(dot, 2, 0.0);
|
|
break;
|
|
case gfxLineSolid:
|
|
default:
|
|
SetDash(nsnull, 0, 0.0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
gfxContext::SetDash(gfxFloat *dashes, int ndash, gfxFloat offset)
|
|
{
|
|
cairo_set_dash(mCairo, dashes, ndash, offset);
|
|
}
|
|
//void getDash() const;
|
|
|
|
void
|
|
gfxContext::SetLineWidth(gfxFloat width)
|
|
{
|
|
cairo_set_line_width(mCairo, width);
|
|
}
|
|
|
|
gfxFloat
|
|
gfxContext::CurrentLineWidth() const
|
|
{
|
|
return cairo_get_line_width(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetOperator(GraphicsOperator op)
|
|
{
|
|
if (mFlags & FLAG_SIMPLIFY_OPERATORS) {
|
|
if (op != OPERATOR_SOURCE &&
|
|
op != OPERATOR_CLEAR &&
|
|
op != OPERATOR_OVER)
|
|
op = OPERATOR_OVER;
|
|
}
|
|
|
|
cairo_set_operator(mCairo, (cairo_operator_t)op);
|
|
}
|
|
|
|
gfxContext::GraphicsOperator
|
|
gfxContext::CurrentOperator() const
|
|
{
|
|
return (GraphicsOperator)cairo_get_operator(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetLineCap(GraphicsLineCap cap)
|
|
{
|
|
cairo_set_line_cap(mCairo, (cairo_line_cap_t)cap);
|
|
}
|
|
|
|
gfxContext::GraphicsLineCap
|
|
gfxContext::CurrentLineCap() const
|
|
{
|
|
return (GraphicsLineCap)cairo_get_line_cap(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetLineJoin(GraphicsLineJoin join)
|
|
{
|
|
cairo_set_line_join(mCairo, (cairo_line_join_t)join);
|
|
}
|
|
|
|
gfxContext::GraphicsLineJoin
|
|
gfxContext::CurrentLineJoin() const
|
|
{
|
|
return (GraphicsLineJoin)cairo_get_line_join(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetMiterLimit(gfxFloat limit)
|
|
{
|
|
cairo_set_miter_limit(mCairo, limit);
|
|
}
|
|
|
|
gfxFloat
|
|
gfxContext::CurrentMiterLimit() const
|
|
{
|
|
return cairo_get_miter_limit(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetFillRule(FillRule rule)
|
|
{
|
|
cairo_set_fill_rule(mCairo, (cairo_fill_rule_t)rule);
|
|
}
|
|
|
|
gfxContext::FillRule
|
|
gfxContext::CurrentFillRule() const
|
|
{
|
|
return (FillRule)cairo_get_fill_rule(mCairo);
|
|
}
|
|
|
|
// clipping
|
|
void
|
|
gfxContext::Clip(const gfxRect& rect)
|
|
{
|
|
cairo_new_path(mCairo);
|
|
cairo_rectangle(mCairo, rect.pos.x, rect.pos.y, rect.size.width, rect.size.height);
|
|
cairo_clip(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::Clip()
|
|
{
|
|
cairo_clip_preserve(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::ResetClip()
|
|
{
|
|
cairo_reset_clip(mCairo);
|
|
}
|
|
|
|
void
|
|
gfxContext::UpdateSurfaceClip()
|
|
{
|
|
NewPath();
|
|
// we paint an empty rectangle to ensure the clip is propagated to
|
|
// the destination surface
|
|
SetDeviceColor(gfxRGBA(0,0,0,0));
|
|
Rectangle(gfxRect(0,1,1,0));
|
|
Fill();
|
|
}
|
|
|
|
gfxRect
|
|
gfxContext::GetClipExtents()
|
|
{
|
|
double xmin, ymin, xmax, ymax;
|
|
cairo_clip_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
|
|
return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
|
|
}
|
|
|
|
// rendering sources
|
|
|
|
void
|
|
gfxContext::SetColor(const gfxRGBA& c)
|
|
{
|
|
if (gfxPlatform::GetCMSMode() == eCMSMode_All) {
|
|
|
|
gfxRGBA cms;
|
|
gfxPlatform::TransformPixel(c, cms, gfxPlatform::GetCMSRGBTransform());
|
|
|
|
// Use the original alpha to avoid unnecessary float->byte->float
|
|
// conversion errors
|
|
cairo_set_source_rgba(mCairo, cms.r, cms.g, cms.b, c.a);
|
|
}
|
|
else
|
|
cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetDeviceColor(const gfxRGBA& c)
|
|
{
|
|
cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a);
|
|
}
|
|
|
|
PRBool
|
|
gfxContext::GetDeviceColor(gfxRGBA& c)
|
|
{
|
|
return cairo_pattern_get_rgba(cairo_get_source(mCairo),
|
|
&c.r,
|
|
&c.g,
|
|
&c.b,
|
|
&c.a) == CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
void
|
|
gfxContext::SetSource(gfxASurface *surface, const gfxPoint& offset)
|
|
{
|
|
cairo_set_source_surface(mCairo, surface->CairoSurface(), offset.x, offset.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::SetPattern(gfxPattern *pattern)
|
|
{
|
|
cairo_set_source(mCairo, pattern->CairoPattern());
|
|
}
|
|
|
|
already_AddRefed<gfxPattern>
|
|
gfxContext::GetPattern()
|
|
{
|
|
cairo_pattern_t *pat = cairo_get_source(mCairo);
|
|
NS_ASSERTION(pat, "I was told this couldn't be null");
|
|
|
|
gfxPattern *wrapper = nsnull;
|
|
if (pat)
|
|
wrapper = new gfxPattern(pat);
|
|
else
|
|
wrapper = new gfxPattern(gfxRGBA(0,0,0,0));
|
|
|
|
NS_IF_ADDREF(wrapper);
|
|
return wrapper;
|
|
}
|
|
|
|
|
|
// masking
|
|
|
|
void
|
|
gfxContext::Mask(gfxPattern *pattern)
|
|
{
|
|
cairo_mask(mCairo, pattern->CairoPattern());
|
|
}
|
|
|
|
void
|
|
gfxContext::Mask(gfxASurface *surface, const gfxPoint& offset)
|
|
{
|
|
cairo_mask_surface(mCairo, surface->CairoSurface(), offset.x, offset.y);
|
|
}
|
|
|
|
void
|
|
gfxContext::Paint(gfxFloat alpha)
|
|
{
|
|
cairo_paint_with_alpha(mCairo, alpha);
|
|
}
|
|
|
|
// groups
|
|
|
|
void
|
|
gfxContext::PushGroup(gfxASurface::gfxContentType content)
|
|
{
|
|
cairo_push_group_with_content(mCairo, (cairo_content_t) content);
|
|
}
|
|
|
|
already_AddRefed<gfxPattern>
|
|
gfxContext::PopGroup()
|
|
{
|
|
cairo_pattern_t *pat = cairo_pop_group(mCairo);
|
|
gfxPattern *wrapper = new gfxPattern(pat);
|
|
cairo_pattern_destroy(pat);
|
|
NS_IF_ADDREF(wrapper);
|
|
return wrapper;
|
|
}
|
|
|
|
void
|
|
gfxContext::PopGroupToSource()
|
|
{
|
|
cairo_pop_group_to_source(mCairo);
|
|
}
|
|
|
|
PRBool
|
|
gfxContext::PointInFill(const gfxPoint& pt)
|
|
{
|
|
return cairo_in_fill(mCairo, pt.x, pt.y);
|
|
}
|
|
|
|
PRBool
|
|
gfxContext::PointInStroke(const gfxPoint& pt)
|
|
{
|
|
return cairo_in_stroke(mCairo, pt.x, pt.y);
|
|
}
|
|
|
|
gfxRect
|
|
gfxContext::GetUserPathExtent()
|
|
{
|
|
double xmin, ymin, xmax, ymax;
|
|
cairo_path_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
|
|
return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
|
|
}
|
|
|
|
gfxRect
|
|
gfxContext::GetUserFillExtent()
|
|
{
|
|
double xmin, ymin, xmax, ymax;
|
|
cairo_fill_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
|
|
return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
|
|
}
|
|
|
|
gfxRect
|
|
gfxContext::GetUserStrokeExtent()
|
|
{
|
|
double xmin, ymin, xmax, ymax;
|
|
cairo_stroke_extents(mCairo, &xmin, &ymin, &xmax, &ymax);
|
|
return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin);
|
|
}
|
|
|
|
already_AddRefed<gfxFlattenedPath>
|
|
gfxContext::GetFlattenedPath()
|
|
{
|
|
gfxFlattenedPath *path =
|
|
new gfxFlattenedPath(cairo_copy_path_flat(mCairo));
|
|
NS_IF_ADDREF(path);
|
|
return path;
|
|
}
|
|
|
|
PRBool
|
|
gfxContext::HasError()
|
|
{
|
|
return cairo_status(mCairo) != CAIRO_STATUS_SUCCESS;
|
|
}
|
|
|
|
void
|
|
gfxContext::RoundedRectangle(const gfxRect& rect,
|
|
const gfxCornerSizes& corners,
|
|
PRBool draw_clockwise)
|
|
{
|
|
//
|
|
// For CW drawing, this looks like:
|
|
//
|
|
// ...******0** 1 C
|
|
// ****
|
|
// *** 2
|
|
// **
|
|
// *
|
|
// *
|
|
// 3
|
|
// *
|
|
// *
|
|
//
|
|
// Where 0, 1, 2, 3 are the control points of the Bezier curve for
|
|
// the corner, and C is the actual corner point.
|
|
//
|
|
// At the start of the loop, the current point is assumed to be
|
|
// the point adjacent to the top left corner on the top
|
|
// horizontal. Note that corner indices start at the top left and
|
|
// continue clockwise, whereas in our loop i = 0 refers to the top
|
|
// right corner.
|
|
//
|
|
// When going CCW, the control points are swapped, and the first
|
|
// corner that's drawn is the top left (along with the top segment).
|
|
//
|
|
// There is considerable latitude in how one chooses the four
|
|
// control points for a Bezier curve approximation to an ellipse.
|
|
// For the overall path to be continuous and show no corner at the
|
|
// endpoints of the arc, points 0 and 3 must be at the ends of the
|
|
// straight segments of the rectangle; points 0, 1, and C must be
|
|
// collinear; and points 3, 2, and C must also be collinear. This
|
|
// leaves only two free parameters: the ratio of the line segments
|
|
// 01 and 0C, and the ratio of the line segments 32 and 3C. See
|
|
// the following papers for extensive discussion of how to choose
|
|
// these ratios:
|
|
//
|
|
// Dokken, Tor, et al. "Good approximation of circles by
|
|
// curvature-continuous Bezier curves." Computer-Aided
|
|
// Geometric Design 7(1990) 33--41.
|
|
// Goldapp, Michael. "Approximation of circular arcs by cubic
|
|
// polynomials." Computer-Aided Geometric Design 8(1991) 227--238.
|
|
// Maisonobe, Luc. "Drawing an elliptical arc using polylines,
|
|
// quadratic, or cubic Bezier curves."
|
|
// http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
|
|
//
|
|
// We follow the approach in section 2 of Goldapp (least-error,
|
|
// Hermite-type approximation) and make both ratios equal to
|
|
//
|
|
// 2 2 + n - sqrt(2n + 28)
|
|
// alpha = - * ---------------------
|
|
// 3 n - 4
|
|
//
|
|
// where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ).
|
|
//
|
|
// This is the result of Goldapp's equation (10b) when the angle
|
|
// swept out by the arc is pi/2, and the parameter "a-bar" is the
|
|
// expression given immediately below equation (21).
|
|
//
|
|
// Using this value, the maximum radial error for a circle, as a
|
|
// fraction of the radius, is on the order of 0.2 x 10^-3.
|
|
// Neither Dokken nor Goldapp discusses error for a general
|
|
// ellipse; Maisonobe does, but his choice of control points
|
|
// follows different constraints, and Goldapp's expression for
|
|
// 'alpha' gives much smaller radial error, even for very flat
|
|
// ellipses, than Maisonobe's equivalent.
|
|
//
|
|
// For the various corners and for each axis, the sign of this
|
|
// constant changes, or it might be 0 -- it's multiplied by the
|
|
// appropriate multiplier from the list before using.
|
|
const gfxFloat alpha = 0.55191497064665766025;
|
|
|
|
typedef struct { gfxFloat a, b; } twoFloats;
|
|
|
|
twoFloats cwCornerMults[4] = { { -1, 0 },
|
|
{ 0, -1 },
|
|
{ +1, 0 },
|
|
{ 0, +1 } };
|
|
twoFloats ccwCornerMults[4] = { { +1, 0 },
|
|
{ 0, -1 },
|
|
{ -1, 0 },
|
|
{ 0, +1 } };
|
|
|
|
twoFloats *cornerMults = draw_clockwise ? cwCornerMults : ccwCornerMults;
|
|
|
|
gfxPoint pc, p0, p1, p2, p3;
|
|
|
|
if (draw_clockwise)
|
|
cairo_move_to(mCairo, rect.pos.x + corners[NS_CORNER_TOP_LEFT].width, rect.pos.y);
|
|
else
|
|
cairo_move_to(mCairo, rect.pos.x + rect.size.width - corners[NS_CORNER_TOP_RIGHT].width, rect.pos.y);
|
|
|
|
NS_FOR_CSS_CORNERS(i) {
|
|
// the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw)
|
|
mozilla::css::Corner c = mozilla::css::Corner(draw_clockwise ? ((i+1) % 4) : ((4-i) % 4));
|
|
|
|
// i+2 and i+3 respectively. These are used to index into the corner
|
|
// multiplier table, and were deduced by calculating out the long form
|
|
// of each corner and finding a pattern in the signs and values.
|
|
int i2 = (i+2) % 4;
|
|
int i3 = (i+3) % 4;
|
|
|
|
pc = rect.AtCorner(c);
|
|
|
|
if (corners[c].width > 0.0 && corners[c].height > 0.0) {
|
|
p0.x = pc.x + cornerMults[i].a * corners[c].width;
|
|
p0.y = pc.y + cornerMults[i].b * corners[c].height;
|
|
|
|
p3.x = pc.x + cornerMults[i3].a * corners[c].width;
|
|
p3.y = pc.y + cornerMults[i3].b * corners[c].height;
|
|
|
|
p1.x = p0.x + alpha * cornerMults[i2].a * corners[c].width;
|
|
p1.y = p0.y + alpha * cornerMults[i2].b * corners[c].height;
|
|
|
|
p2.x = p3.x - alpha * cornerMults[i3].a * corners[c].width;
|
|
p2.y = p3.y - alpha * cornerMults[i3].b * corners[c].height;
|
|
|
|
cairo_line_to (mCairo, p0.x, p0.y);
|
|
cairo_curve_to (mCairo,
|
|
p1.x, p1.y,
|
|
p2.x, p2.y,
|
|
p3.x, p3.y);
|
|
} else {
|
|
cairo_line_to (mCairo, pc.x, pc.y);
|
|
}
|
|
}
|
|
|
|
cairo_close_path (mCairo);
|
|
}
|