gecko/gfx/layers/ipc/CompositorParent.cpp

1325 lines
42 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 ts=2 et tw=80 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <map>
#include "base/basictypes.h"
#if defined(MOZ_WIDGET_ANDROID)
# include <android/log.h>
# include "AndroidBridge.h"
#endif
#include "AsyncPanZoomController.h"
#include "AutoOpenSurface.h"
#include "BasicLayers.h"
#include "CompositorParent.h"
#include "LayerManagerOGL.h"
#include "nsGkAtoms.h"
#include "nsIWidget.h"
#include "RenderTrace.h"
#include "ShadowLayersParent.h"
#include "BasicLayers.h"
#include "LayerManagerOGL.h"
#include "nsIWidget.h"
#include "nsGkAtoms.h"
#include "RenderTrace.h"
#include "nsStyleAnimation.h"
#include "nsDisplayList.h"
#include "AnimationCommon.h"
#include "nsAnimationManager.h"
#include "TiledLayerBuffer.h"
using namespace base;
using namespace mozilla::ipc;
using namespace std;
namespace mozilla {
namespace layers {
// FIXME/bug 774386: we're assuming that there's only one
// CompositorParent, but that's not always true. This assumption only
// affects CrossProcessCompositorParent below.
static CompositorParent* sCurrentCompositor;
static Thread* sCompositorThread = nullptr;
// manual reference count of the compositor thread.
static int sCompositorThreadRefCount = 0;
static MessageLoop* sMainLoop = nullptr;
// When ContentParent::StartUp() is called, we use the Thread global.
// When StartUpWithExistingThread() is used, we have to use the two
// duplicated globals, because there's no API to make a Thread from an
// existing thread.
static PlatformThreadId sCompositorThreadID = 0;
static MessageLoop* sCompositorLoop = nullptr;
struct LayerTreeState {
nsRefPtr<Layer> mRoot;
nsRefPtr<AsyncPanZoomController> mController;
};
static uint8_t sPanZoomUserDataKey;
struct PanZoomUserData : public LayerUserData {
PanZoomUserData(AsyncPanZoomController* aController)
: mController(aController)
{ }
// We don't keep a strong ref here because PanZoomUserData is only
// set transiently, and APZC is thread-safe refcounted so
// AddRef/Release is expensive.
AsyncPanZoomController* mController;
};
/**
* Lookup the indirect shadow tree for |aId| and return it if it
* exists. Otherwise null is returned. This must only be called on
* the compositor thread.
*/
static const LayerTreeState* GetIndirectShadowTree(uint64_t aId);
static void DeferredDeleteCompositorParent(CompositorParent* aNowReadyToDie)
{
aNowReadyToDie->Release();
}
static void DeleteCompositorThread()
{
if (NS_IsMainThread()){
delete sCompositorThread;
sCompositorThread = nullptr;
sCompositorLoop = nullptr;
sCompositorThreadID = 0;
} else {
sMainLoop->PostTask(FROM_HERE, NewRunnableFunction(&DeleteCompositorThread));
}
}
static void ReleaseCompositorThread()
{
if(--sCompositorThreadRefCount == 0) {
DeleteCompositorThread();
}
}
void
CompositorParent::StartUpWithExistingThread(MessageLoop* aMsgLoop,
PlatformThreadId aThreadID)
{
MOZ_ASSERT(!sCompositorThread);
CreateCompositorMap();
sCompositorLoop = aMsgLoop;
sCompositorThreadID = aThreadID;
sMainLoop = MessageLoop::current();
sCompositorThreadRefCount = 1;
}
void CompositorParent::StartUp()
{
MOZ_ASSERT(!sCompositorLoop);
CreateCompositorMap();
CreateThread();
sMainLoop = MessageLoop::current();
}
void CompositorParent::ShutDown()
{
DestroyThread();
DestroyCompositorMap();
}
bool CompositorParent::CreateThread()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on the main Thread!");
if (sCompositorThread || sCompositorLoop) {
return true;
}
sCompositorThreadRefCount = 1;
sCompositorThread = new Thread("Compositor");
if (!sCompositorThread->Start()) {
delete sCompositorThread;
sCompositorThread = nullptr;
return false;
}
return true;
}
void CompositorParent::DestroyThread()
{
NS_ASSERTION(NS_IsMainThread(), "Should be on the main Thread!");
ReleaseCompositorThread();
}
MessageLoop* CompositorParent::CompositorLoop()
{
return sCompositorThread ? sCompositorThread->message_loop() : sCompositorLoop;
}
CompositorParent::CompositorParent(nsIWidget* aWidget,
bool aRenderToEGLSurface,
int aSurfaceWidth, int aSurfaceHeight)
: mWidget(aWidget)
, mCurrentCompositeTask(NULL)
, mPaused(false)
, mXScale(1.0)
, mYScale(1.0)
, mIsFirstPaint(false)
, mLayersUpdated(false)
, mRenderToEGLSurface(aRenderToEGLSurface)
, mEGLSurfaceSize(aSurfaceWidth, aSurfaceHeight)
, mPauseCompositionMonitor("PauseCompositionMonitor")
, mResumeCompositionMonitor("ResumeCompositionMonitor")
{
NS_ABORT_IF_FALSE(sCompositorThread != nullptr || sCompositorThreadID,
"The compositor thread must be Initialized before instanciating a COmpositorParent.");
MOZ_COUNT_CTOR(CompositorParent);
mCompositorID = 0;
// FIXME: This holds on the the fact that right now the only thing that
// can destroy this instance is initialized on the compositor thread after
// this task has been processed.
CompositorLoop()->PostTask(FROM_HERE, NewRunnableFunction(&AddCompositor,
this, &mCompositorID));
if (!sCurrentCompositor) {
sCurrentCompositor = this;
}
++sCompositorThreadRefCount;
}
PlatformThreadId
CompositorParent::CompositorThreadID()
{
return sCompositorThread ? sCompositorThread->thread_id() : sCompositorThreadID;
}
CompositorParent::~CompositorParent()
{
MOZ_COUNT_DTOR(CompositorParent);
if (this == sCurrentCompositor) {
sCurrentCompositor = NULL;
}
ReleaseCompositorThread();
}
void
CompositorParent::Destroy()
{
NS_ABORT_IF_FALSE(ManagedPLayersParent().Length() == 0,
"CompositorParent destroyed before managed PLayersParent");
// Ensure that the layer manager is destructed on the compositor thread.
mLayerManager = NULL;
}
static void
DispatchMemoryPressureToLayers(Layer* aLayer)
{
ShadowLayer* shadowLayer = aLayer->AsShadowLayer();
if (shadowLayer) {
TiledLayerComposer* tileComposer = shadowLayer->AsTiledLayerComposer();
if (tileComposer) {
tileComposer->MemoryPressure();
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
DispatchMemoryPressureToLayers(child);
}
}
bool
CompositorParent::RecvMemoryPressure()
{
if (!mLayerManager)
return true;
Layer* layer = mLayerManager->GetRoot();
if (layer)
DispatchMemoryPressureToLayers(layer);
return true;
}
bool
CompositorParent::RecvWillStop()
{
mPaused = true;
RemoveCompositor(mCompositorID);
// Ensure that the layer manager is destroyed before CompositorChild.
mLayerManager->Destroy();
return true;
}
bool
CompositorParent::RecvStop()
{
Destroy();
// There are chances that the ref count reaches zero on the main thread shortly
// after this function returns while some ipdl code still needs to run on
// this thread.
// We must keep the compositor parent alive untill the code handling message
// reception is finished on this thread.
this->AddRef(); // Corresponds to DeferredDeleteCompositorParent's Release
CompositorLoop()->PostTask(FROM_HERE,
NewRunnableFunction(&DeferredDeleteCompositorParent,
this));
return true;
}
bool
CompositorParent::RecvPause()
{
PauseComposition();
return true;
}
bool
CompositorParent::RecvResume()
{
ResumeComposition();
return true;
}
bool
CompositorParent::RecvMakeSnapshot(const SurfaceDescriptor& aInSnapshot,
SurfaceDescriptor* aOutSnapshot)
{
AutoOpenSurface opener(OPEN_READ_WRITE, aInSnapshot);
nsRefPtr<gfxContext> target = new gfxContext(opener.Get());
ComposeToTarget(target);
*aOutSnapshot = aInSnapshot;
return true;
}
void
CompositorParent::ScheduleRenderOnCompositorThread()
{
CancelableTask *renderTask = NewRunnableMethod(this, &CompositorParent::ScheduleComposition);
CompositorLoop()->PostTask(FROM_HERE, renderTask);
}
void
CompositorParent::PauseComposition()
{
NS_ABORT_IF_FALSE(CompositorThreadID() == PlatformThread::CurrentId(),
"PauseComposition() can only be called on the compositor thread");
MonitorAutoLock lock(mPauseCompositionMonitor);
if (!mPaused) {
mPaused = true;
#ifdef MOZ_WIDGET_ANDROID
static_cast<LayerManagerOGL*>(mLayerManager.get())->gl()->ReleaseSurface();
#endif
}
// if anyone's waiting to make sure that composition really got paused, tell them
lock.NotifyAll();
}
void
CompositorParent::ResumeComposition()
{
NS_ABORT_IF_FALSE(CompositorThreadID() == PlatformThread::CurrentId(),
"ResumeComposition() can only be called on the compositor thread");
MonitorAutoLock lock(mResumeCompositionMonitor);
mPaused = false;
#ifdef MOZ_WIDGET_ANDROID
static_cast<LayerManagerOGL*>(mLayerManager.get())->gl()->RenewSurface();
#endif
Composite();
// if anyone's waiting to make sure that composition really got resumed, tell them
lock.NotifyAll();
}
void
CompositorParent::SetEGLSurfaceSize(int width, int height)
{
NS_ASSERTION(mRenderToEGLSurface, "Compositor created without RenderToEGLSurface ar provided");
mEGLSurfaceSize.SizeTo(width, height);
if (mLayerManager) {
static_cast<LayerManagerOGL*>(mLayerManager.get())->SetSurfaceSize(mEGLSurfaceSize.width, mEGLSurfaceSize.height);
}
}
void
CompositorParent::ResumeCompositionAndResize(int width, int height)
{
mWidgetSize.width = width;
mWidgetSize.height = height;
SetEGLSurfaceSize(width, height);
ResumeComposition();
}
/*
* This will execute a pause synchronously, waiting to make sure that the compositor
* really is paused.
*/
void
CompositorParent::SchedulePauseOnCompositorThread()
{
MonitorAutoLock lock(mPauseCompositionMonitor);
CancelableTask *pauseTask = NewRunnableMethod(this,
&CompositorParent::PauseComposition);
CompositorLoop()->PostTask(FROM_HERE, pauseTask);
// Wait until the pause has actually been processed by the compositor thread
lock.Wait();
}
void
CompositorParent::ScheduleResumeOnCompositorThread(int width, int height)
{
MonitorAutoLock lock(mResumeCompositionMonitor);
CancelableTask *resumeTask =
NewRunnableMethod(this, &CompositorParent::ResumeCompositionAndResize, width, height);
CompositorLoop()->PostTask(FROM_HERE, resumeTask);
// Wait until the resume has actually been processed by the compositor thread
lock.Wait();
}
void
CompositorParent::ScheduleTask(CancelableTask* task, int time)
{
if (time == 0) {
MessageLoop::current()->PostTask(FROM_HERE, task);
} else {
MessageLoop::current()->PostDelayedTask(FROM_HERE, task, time);
}
}
void
CompositorParent::NotifyShadowTreeTransaction()
{
if (mLayerManager) {
ShadowLayerManager *shadow = mLayerManager->AsShadowManager();
if (shadow) {
shadow->NotifyShadowTreeTransaction();
}
}
ScheduleComposition();
}
void
CompositorParent::ScheduleComposition()
{
if (mCurrentCompositeTask) {
return;
}
bool initialComposition = mLastCompose.IsNull();
TimeDuration delta;
if (!initialComposition)
delta = TimeStamp::Now() - mLastCompose;
#ifdef COMPOSITOR_PERFORMANCE_WARNING
mExpectedComposeTime = TimeStamp::Now() + TimeDuration::FromMilliseconds(15);
#endif
mCurrentCompositeTask = NewRunnableMethod(this, &CompositorParent::Composite);
// Since 60 fps is the maximum frame rate we can acheive, scheduling composition
// events less than 15 ms apart wastes computation..
if (!initialComposition && delta.ToMilliseconds() < 15) {
#ifdef COMPOSITOR_PERFORMANCE_WARNING
mExpectedComposeTime = TimeStamp::Now() + TimeDuration::FromMilliseconds(15 - delta.ToMilliseconds());
#endif
ScheduleTask(mCurrentCompositeTask, 15 - delta.ToMilliseconds());
} else {
ScheduleTask(mCurrentCompositeTask, 0);
}
}
void
CompositorParent::SetTransformation(float aScale, nsIntPoint aScrollOffset)
{
mXScale = aScale;
mYScale = aScale;
mScrollOffset = aScrollOffset;
}
/**
* DRAWING PHASE ONLY
*
* For reach RefLayer in |aRoot|, look up its referent and connect it
* to the layer tree, if found. On exiting scope, detaches all
* resolved referents.
*/
class NS_STACK_CLASS AutoResolveRefLayers {
public:
/**
* |aRoot| must remain valid in the scope of this, which should be
* guaranteed by this helper only being used during the drawing
* phase.
*/
AutoResolveRefLayers(Layer* aRoot) : mRoot(aRoot)
{ WalkTheTree<Resolve>(mRoot, nullptr); }
~AutoResolveRefLayers()
{ WalkTheTree<Detach>(mRoot, nullptr); }
private:
enum Op { Resolve, Detach };
template<Op OP>
void WalkTheTree(Layer* aLayer, Layer* aParent)
{
if (RefLayer* ref = aLayer->AsRefLayer()) {
if (const LayerTreeState* state = GetIndirectShadowTree(ref->GetReferentId())) {
if (Layer* referent = state->mRoot) {
if (OP == Resolve) {
ref->ConnectReferentLayer(referent);
if (AsyncPanZoomController* apzc = state->mController) {
referent->SetUserData(&sPanZoomUserDataKey,
new PanZoomUserData(apzc));
} else {
CompensateForContentScrollOffset(ref, referent);
}
} else {
ref->DetachReferentLayer(referent);
referent->RemoveUserData(&sPanZoomUserDataKey);
}
}
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
WalkTheTree<OP>(child, aLayer);
}
}
// XXX the fact that we have to do this evidence of bad API design.
void CompensateForContentScrollOffset(Layer* aContainer,
Layer* aShadowContent)
{
ContainerLayer* c = aShadowContent->AsContainerLayer();
if (!c) {
return;
}
const FrameMetrics& fm = c->GetFrameMetrics();
gfx3DMatrix m(aContainer->GetTransform());
m.Translate(gfxPoint3D(-fm.GetScrollOffsetInLayerPixels().x,
-fm.GetScrollOffsetInLayerPixels().y, 0));
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
m.Scale(1.0f/c->GetPreXScale(),
1.0f/c->GetPreYScale(),
1);
m.ScalePost(1.0f/c->GetPostXScale(),
1.0f/c->GetPostYScale(),
1);
aContainer->AsShadowLayer()->SetShadowTransform(m);
}
Layer* mRoot;
AutoResolveRefLayers(const AutoResolveRefLayers&) MOZ_DELETE;
AutoResolveRefLayers& operator=(const AutoResolveRefLayers&) MOZ_DELETE;
};
void
CompositorParent::Composite()
{
NS_ABORT_IF_FALSE(CompositorThreadID() == PlatformThread::CurrentId(),
"Composite can only be called on the compositor thread");
mCurrentCompositeTask = nullptr;
mLastCompose = TimeStamp::Now();
if (!CanComposite()) {
return;
}
Layer* layer = mLayerManager->GetRoot();
AutoResolveRefLayers resolve(layer);
bool requestNextFrame = TransformShadowTree(mLastCompose);
if (requestNextFrame) {
ScheduleComposition();
}
RenderTraceLayers(layer, "0000");
if (LAYERS_OPENGL == mLayerManager->GetBackendType() &&
!mTargetConfig.naturalBounds().IsEmpty()) {
LayerManagerOGL* lm = static_cast<LayerManagerOGL*>(mLayerManager.get());
lm->SetWorldTransform(
ComputeGLTransformForRotation(mTargetConfig.naturalBounds(),
mTargetConfig.rotation()));
}
mLayerManager->EndEmptyTransaction();
#ifdef COMPOSITOR_PERFORMANCE_WARNING
if (mExpectedComposeTime + TimeDuration::FromMilliseconds(15) < TimeStamp::Now()) {
printf_stderr("Compositor: Composite took %i ms.\n",
15 + (int)(TimeStamp::Now() - mExpectedComposeTime).ToMilliseconds());
}
#endif
}
void
CompositorParent::ComposeToTarget(gfxContext* aTarget)
{
if (!CanComposite()) {
return;
}
mLayerManager->BeginTransactionWithTarget(aTarget);
// Since CanComposite() is true, Composite() must end the layers txn
// we opened above.
Composite();
}
bool
CompositorParent::CanComposite()
{
return !(mPaused || !mLayerManager || !mLayerManager->GetRoot());
}
// Do a breadth-first search to find the first layer in the tree that is
// scrollable.
static void
Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset)
{
aTransform._41 += aOffset.x;
aTransform._42 += aOffset.y;
}
void
CompositorParent::TransformFixedLayers(Layer* aLayer,
const gfxPoint& aTranslation,
const gfxPoint& aScaleDiff)
{
if (aLayer->GetIsFixedPosition() &&
!aLayer->GetParent()->GetIsFixedPosition()) {
// When a scale has been applied to a layer, it focuses around (0,0).
// The anchor position is used here as a scale focus point (assuming that
// aScaleDiff has already been applied) to re-focus the scale.
const gfxPoint& anchor = aLayer->GetFixedPositionAnchor();
gfxPoint translation(aTranslation.x - (anchor.x - anchor.x / aScaleDiff.x),
aTranslation.y - (anchor.y - anchor.y / aScaleDiff.y));
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix layerTransform = aLayer->GetTransform();
Translate2D(layerTransform, translation);
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
layerTransform.Scale(1.0f/c->GetPreXScale(),
1.0f/c->GetPreYScale(),
1);
}
layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(),
1.0f/aLayer->GetPostYScale(),
1);
ShadowLayer* shadow = aLayer->AsShadowLayer();
shadow->SetShadowTransform(layerTransform);
const nsIntRect* clipRect = aLayer->GetClipRect();
if (clipRect) {
nsIntRect transformedClipRect(*clipRect);
transformedClipRect.MoveBy(translation.x, translation.y);
shadow->SetShadowClipRect(&transformedClipRect);
}
}
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
TransformFixedLayers(child, aTranslation, aScaleDiff);
}
}
// Go down shadow layer tree, setting properties to match their non-shadow
// counterparts.
static void
SetShadowProperties(Layer* aLayer)
{
// FIXME: Bug 717688 -- Do these updates in ShadowLayersParent::RecvUpdate.
ShadowLayer* shadow = aLayer->AsShadowLayer();
// Set the shadow's base transform to the layer's base transform.
shadow->SetShadowTransform(aLayer->GetBaseTransform());
shadow->SetShadowVisibleRegion(aLayer->GetVisibleRegion());
shadow->SetShadowClipRect(aLayer->GetClipRect());
shadow->SetShadowOpacity(aLayer->GetOpacity());
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
SetShadowProperties(child);
}
}
static void
SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart,
nsStyleAnimation::Value& aEnd, Animatable* aValue)
{
nsStyleAnimation::Value interpolatedValue;
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
aStart.GetUnit() == nsStyleAnimation::eUnit_None ||
aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit");
nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd,
aPortion, interpolatedValue);
if (aAnimation.property() == eCSSProperty_opacity) {
*aValue = interpolatedValue.GetFloatValue();
return;
}
nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue();
TransformData& data = aAnimation.data().get_TransformData();
nsPoint origin = data.origin();
int32_t auPerCSSPixel = nsDeviceContext::AppUnitsPerCSSPixel();
gfx3DMatrix transform =
nsDisplayTransform::GetResultingTransformMatrix(
nullptr, origin, auPerCSSPixel,
&data.bounds(), interpolatedList, &data.mozOrigin(),
&data.perspectiveOrigin(), &data.perspective());
// NB: See nsDisplayTransform::GetTransform().
gfxPoint3D newOrigin =
gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, auPerCSSPixel)),
NS_round(NSAppUnitsToFloatPixels(origin.y, auPerCSSPixel)),
0.0f);
transform.Translate(newOrigin);
InfallibleTArray<TransformFunction>* functions = new InfallibleTArray<TransformFunction>();
functions->AppendElement(TransformMatrix(transform));
*aValue = *functions;
}
static bool
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
{
AnimationArray& animations = aLayer->GetAnimations();
InfallibleTArray<AnimData>& animationData = aLayer->GetAnimationData();
bool activeAnimations = false;
for (uint32_t i = animations.Length(); i-- !=0; ) {
Animation& animation = animations[i];
AnimData& animData = animationData[i];
double numIterations = animation.numIterations() != -1 ?
animation.numIterations() : NS_IEEEPositiveInfinity();
double positionInIteration =
ElementAnimations::GetPositionInIteration(animation.startTime(),
aPoint,
animation.duration(),
numIterations,
animation.direction());
NS_ABORT_IF_FALSE(0.0 <= positionInIteration &&
positionInIteration <= 1.0,
"position should be in [0-1]");
int segmentIndex = 0;
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < positionInIteration) {
++segment;
++segmentIndex;
}
double positionInSegment = (positionInIteration - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment);
activeAnimations = true;
// interpolate the property
Animatable interpolatedValue;
SampleValue(portion, animation, animData.mStartValues[segmentIndex],
animData.mEndValues[segmentIndex], &interpolatedValue);
ShadowLayer* shadow = aLayer->AsShadowLayer();
switch (animation.property()) {
case eCSSProperty_opacity:
{
shadow->SetShadowOpacity(interpolatedValue.get_float());
break;
}
case eCSSProperty_transform:
{
gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
shadow->SetShadowTransform(matrix);
break;
}
default:
NS_WARNING("Unhandled animated property");
}
}
for (Layer* child = aLayer->GetFirstChild(); child;
child = child->GetNextSibling()) {
activeAnimations |= SampleAnimations(child, aPoint);
}
return activeAnimations;
}
bool
CompositorParent::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame,
Layer *aLayer,
bool* aWantNextFrame)
{
bool appliedTransform = false;
for (Layer* child = aLayer->GetFirstChild();
child; child = child->GetNextSibling()) {
appliedTransform |=
ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame);
}
ContainerLayer* container = aLayer->AsContainerLayer();
if (!container) {
return appliedTransform;
}
if (LayerUserData* data = aLayer->GetUserData(&sPanZoomUserDataKey)) {
AsyncPanZoomController* controller = static_cast<PanZoomUserData*>(data)->mController;
ShadowLayer* shadow = aLayer->AsShadowLayer();
gfx3DMatrix newTransform;
*aWantNextFrame |=
controller->SampleContentTransformForFrame(aCurrentFrame,
container,
&newTransform);
shadow->SetShadowTransform(newTransform);
appliedTransform = true;
}
return appliedTransform;
}
bool
CompositorParent::TransformShadowTree(TimeStamp aCurrentFrame)
{
bool wantNextFrame = false;
Layer* layer = mLayerManager->GetPrimaryScrollableLayer();
ShadowLayer* shadow = layer->AsShadowLayer();
ContainerLayer* container = layer->AsContainerLayer();
Layer* root = mLayerManager->GetRoot();
// NB: we must sample animations *before* sampling pan/zoom
// transforms.
wantNextFrame |= SampleAnimations(root, mLastCompose);
const FrameMetrics& metrics = container->GetFrameMetrics();
// We must apply the resolution scale before a pan/zoom transform, so we call
// GetTransform here.
const gfx3DMatrix& rootTransform = root->GetTransform();
const gfx3DMatrix& currentTransform = layer->GetTransform();
// FIXME/bug 775437: unify this interface with the ~native-fennec
// derived code
//
// Attempt to apply an async content transform to any layer that has
// an async pan zoom controller (which means that it is rendered
// async using Gecko). If this fails, fall back to transforming the
// primary scrollable layer. "Failing" here means that we don't
// find a frame that is async scrollable. Note that the fallback
// code also includes Fennec which is rendered async. Fennec uses
// its own platform-specific async rendering that is done partially
// in Gecko and partially in Java.
if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) {
gfx3DMatrix treeTransform;
// Translate fixed position layers so that they stay in the correct position
// when mScrollOffset and metricsScrollOffset differ.
gfxPoint offset;
gfxPoint scaleDiff;
float rootScaleX = rootTransform.GetXScale(),
rootScaleY = rootTransform.GetYScale();
// The ratio of layers pixels to device pixels. The Java
// compositor wants to see values in units of device pixels, so we
// map our FrameMetrics values to that space. This is not exposed
// as a FrameMetrics helper because it's a deprecated conversion.
float devPixelRatioX = 1 / rootScaleX, devPixelRatioY = 1 / rootScaleY;
gfx::Point scrollOffsetLayersPixels(metrics.GetScrollOffsetInLayerPixels());
nsIntPoint scrollOffsetDevPixels(
NS_lround(scrollOffsetLayersPixels.x * devPixelRatioX),
NS_lround(scrollOffsetLayersPixels.y * devPixelRatioY));
if (mIsFirstPaint) {
mContentRect = metrics.mContentRect;
SetFirstPaintViewport(scrollOffsetDevPixels,
1/rootScaleX,
mContentRect,
metrics.mScrollableRect);
mIsFirstPaint = false;
} else if (!metrics.mContentRect.IsEqualEdges(mContentRect)) {
mContentRect = metrics.mContentRect;
SetPageRect(metrics.mScrollableRect);
}
// We synchronise the viewport information with Java after sending the above
// notifications, so that Java can take these into account in its response.
// Calculate the absolute display port to send to Java
gfx::Rect displayPortLayersPixels(metrics.mCriticalDisplayPort.IsEmpty() ?
metrics.mDisplayPort : metrics.mCriticalDisplayPort);
nsIntRect displayPortDevPixels(
NS_lround(displayPortLayersPixels.x * devPixelRatioX),
NS_lround(displayPortLayersPixels.y * devPixelRatioY),
NS_lround(displayPortLayersPixels.width * devPixelRatioX),
NS_lround(displayPortLayersPixels.height * devPixelRatioY));
displayPortDevPixels.x += scrollOffsetDevPixels.x;
displayPortDevPixels.y += scrollOffsetDevPixels.y;
SyncViewportInfo(displayPortDevPixels, 1/rootScaleX, mLayersUpdated,
mScrollOffset, mXScale, mYScale);
mLayersUpdated = false;
// Handle transformations for asynchronous panning and zooming. We determine the
// zoom used by Gecko from the transformation set on the root layer, and we
// determine the scroll offset used by Gecko from the frame metrics of the
// primary scrollable layer. We compare this to the desired zoom and scroll
// offset in the view transform we obtained from Java in order to compute the
// transformation we need to apply.
float tempScaleDiffX = rootScaleX * mXScale;
float tempScaleDiffY = rootScaleY * mYScale;
nsIntPoint metricsScrollOffset(0, 0);
if (metrics.IsScrollable()) {
metricsScrollOffset = scrollOffsetDevPixels;
}
nsIntPoint scrollCompensation(
(mScrollOffset.x / tempScaleDiffX - metricsScrollOffset.x) * mXScale,
(mScrollOffset.y / tempScaleDiffY - metricsScrollOffset.y) * mYScale);
treeTransform = gfx3DMatrix(ViewTransform(-scrollCompensation, mXScale, mYScale));
// If the contents can fit entirely within the widget area on a particular
// dimenson, we need to translate and scale so that the fixed layers remain
// within the page boundaries.
if (mContentRect.width * tempScaleDiffX < mWidgetSize.width) {
offset.x = -metricsScrollOffset.x;
scaleDiff.x = NS_MIN(1.0f, mWidgetSize.width / (float)mContentRect.width);
} else {
offset.x = clamped(mScrollOffset.x / tempScaleDiffX, (float)mContentRect.x,
mContentRect.XMost() - mWidgetSize.width / tempScaleDiffX) -
metricsScrollOffset.x;
scaleDiff.x = tempScaleDiffX;
}
if (mContentRect.height * tempScaleDiffY < mWidgetSize.height) {
offset.y = -metricsScrollOffset.y;
scaleDiff.y = NS_MIN(1.0f, mWidgetSize.height / (float)mContentRect.height);
} else {
offset.y = clamped(mScrollOffset.y / tempScaleDiffY, (float)mContentRect.y,
mContentRect.YMost() - mWidgetSize.height / tempScaleDiffY) -
metricsScrollOffset.y;
scaleDiff.y = tempScaleDiffY;
}
// The transform already takes the resolution scale into account. Since we
// will apply the resolution scale again when computing the effective
// transform, we must apply the inverse resolution scale here.
gfx3DMatrix computedTransform = treeTransform * currentTransform;
computedTransform.Scale(1.0f/container->GetPreXScale(),
1.0f/container->GetPreYScale(),
1);
computedTransform.ScalePost(1.0f/container->GetPostXScale(),
1.0f/container->GetPostYScale(),
1);
shadow->SetShadowTransform(computedTransform);
TransformFixedLayers(layer, offset, scaleDiff);
}
return wantNextFrame;
}
void
CompositorParent::SetFirstPaintViewport(const nsIntPoint& aOffset, float aZoom,
const nsIntRect& aPageRect, const gfx::Rect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aPageRect, aCssPageRect);
#endif
}
void
CompositorParent::SetPageRect(const gfx::Rect& aCssPageRect)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
#endif
}
void
CompositorParent::SyncViewportInfo(const nsIntRect& aDisplayPort,
float aDisplayResolution, bool aLayersUpdated,
nsIntPoint& aScrollOffset, float& aScaleX, float& aScaleY)
{
#ifdef MOZ_WIDGET_ANDROID
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort, aDisplayResolution, aLayersUpdated,
aScrollOffset, aScaleX, aScaleY);
#endif
}
void
CompositorParent::ShadowLayersUpdated(ShadowLayersParent* aLayerTree,
const TargetConfig& aTargetConfig,
bool isFirstPaint)
{
mTargetConfig = aTargetConfig;
mIsFirstPaint = mIsFirstPaint || isFirstPaint;
mLayersUpdated = true;
Layer* root = aLayerTree->GetRoot();
mLayerManager->SetRoot(root);
if (root) {
SetShadowProperties(root);
}
ScheduleComposition();
ShadowLayerManager *shadow = mLayerManager->AsShadowManager();
if (shadow) {
shadow->NotifyShadowTreeTransaction();
}
}
PLayersParent*
CompositorParent::AllocPLayers(const LayersBackend& aBackendHint,
const uint64_t& aId,
LayersBackend* aBackend,
int32_t* aMaxTextureSize)
{
MOZ_ASSERT(aId == 0);
// mWidget doesn't belong to the compositor thread, so it should be set to
// NULL before returning from this method, to avoid accessing it elsewhere.
nsIntRect rect;
mWidget->GetClientBounds(rect);
mWidgetSize.width = rect.width;
mWidgetSize.height = rect.height;
*aBackend = aBackendHint;
if (aBackendHint == mozilla::layers::LAYERS_OPENGL) {
nsRefPtr<LayerManagerOGL> layerManager;
layerManager =
new LayerManagerOGL(mWidget, mEGLSurfaceSize.width, mEGLSurfaceSize.height, mRenderToEGLSurface);
mWidget = NULL;
mLayerManager = layerManager;
ShadowLayerManager* shadowManager = layerManager->AsShadowManager();
if (shadowManager) {
shadowManager->SetCompositorID(mCompositorID);
}
if (!layerManager->Initialize()) {
NS_ERROR("Failed to init OGL Layers");
return NULL;
}
ShadowLayerManager* slm = layerManager->AsShadowManager();
if (!slm) {
return NULL;
}
*aMaxTextureSize = layerManager->GetMaxTextureSize();
return new ShadowLayersParent(slm, this, 0);
} else if (aBackendHint == mozilla::layers::LAYERS_BASIC) {
nsRefPtr<LayerManager> layerManager = new BasicShadowLayerManager(mWidget);
mWidget = NULL;
mLayerManager = layerManager;
ShadowLayerManager* slm = layerManager->AsShadowManager();
if (!slm) {
return NULL;
}
*aMaxTextureSize = layerManager->GetMaxTextureSize();
return new ShadowLayersParent(slm, this, 0);
} else {
NS_ERROR("Unsupported backend selected for Async Compositor");
return NULL;
}
}
bool
CompositorParent::DeallocPLayers(PLayersParent* actor)
{
delete actor;
return true;
}
typedef map<uint64_t,CompositorParent*> CompositorMap;
static CompositorMap* sCompositorMap;
void CompositorParent::CreateCompositorMap()
{
if (sCompositorMap == nullptr) {
sCompositorMap = new CompositorMap;
}
}
void CompositorParent::DestroyCompositorMap()
{
if (sCompositorMap != nullptr) {
NS_ASSERTION(sCompositorMap->empty(),
"The Compositor map should be empty when destroyed>");
delete sCompositorMap;
sCompositorMap = nullptr;
}
}
CompositorParent* CompositorParent::GetCompositor(uint64_t id)
{
CompositorMap::iterator it = sCompositorMap->find(id);
return it != sCompositorMap->end() ? it->second : nullptr;
}
void CompositorParent::AddCompositor(CompositorParent* compositor, uint64_t* outID)
{
static uint64_t sNextID = 1;
++sNextID;
(*sCompositorMap)[sNextID] = compositor;
*outID = sNextID;
}
CompositorParent* CompositorParent::RemoveCompositor(uint64_t id)
{
CompositorMap::iterator it = sCompositorMap->find(id);
if (it == sCompositorMap->end()) {
return nullptr;
}
sCompositorMap->erase(it);
return it->second;
}
typedef map<uint64_t, LayerTreeState> LayerTreeMap;
static LayerTreeMap sIndirectLayerTrees;
/*static*/ uint64_t
CompositorParent::AllocateLayerTreeId()
{
MOZ_ASSERT(CompositorLoop());
MOZ_ASSERT(NS_IsMainThread());
static uint64_t ids;
return ++ids;
}
static void
EraseLayerState(uint64_t aId)
{
sIndirectLayerTrees.erase(aId);
}
/*static*/ void
CompositorParent::DeallocateLayerTreeId(uint64_t aId)
{
MOZ_ASSERT(NS_IsMainThread());
CompositorLoop()->PostTask(FROM_HERE,
NewRunnableFunction(&EraseLayerState, aId));
}
static void
UpdateControllerForLayersId(uint64_t aLayersId,
AsyncPanZoomController* aController)
{
// Adopt ref given to us by SetPanZoomControllerForLayerTree()
sIndirectLayerTrees[aLayersId].mController =
already_AddRefed<AsyncPanZoomController>(aController);
// Notify the AsyncPanZoomController about the current compositor so that it
// can request composites off the compositor thread.
aController->SetCompositorParent(sCurrentCompositor);
}
/*static*/ void
CompositorParent::SetPanZoomControllerForLayerTree(uint64_t aLayersId,
AsyncPanZoomController* aController)
{
// This ref is adopted by UpdateControllerForLayersId().
aController->AddRef();
CompositorLoop()->PostTask(FROM_HERE,
NewRunnableFunction(&UpdateControllerForLayersId,
aLayersId,
aController));
}
/**
* This class handles layer updates pushed directly from child
* processes to the compositor thread. It's associated with a
* CompositorParent on the compositor thread. While it uses the
* PCompositor protocol to manage these updates, it doesn't actually
* drive compositing itself. For that it hands off work to the
* CompositorParent it's associated with.
*/
class CrossProcessCompositorParent : public PCompositorParent,
public ShadowLayersManager
{
friend class CompositorParent;
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CrossProcessCompositorParent)
public:
CrossProcessCompositorParent() {}
virtual ~CrossProcessCompositorParent() {}
virtual void ActorDestroy(ActorDestroyReason aWhy) MOZ_OVERRIDE;
// FIXME/bug 774388: work out what shutdown protocol we need.
virtual bool RecvWillStop() MOZ_OVERRIDE { return true; }
virtual bool RecvStop() MOZ_OVERRIDE { return true; }
virtual bool RecvPause() MOZ_OVERRIDE { return true; }
virtual bool RecvResume() MOZ_OVERRIDE { return true; }
virtual bool RecvMakeSnapshot(const SurfaceDescriptor& aInSnapshot,
SurfaceDescriptor* aOutSnapshot)
{ return true; }
virtual PLayersParent* AllocPLayers(const LayersBackend& aBackendType,
const uint64_t& aId,
LayersBackend* aBackend,
int32_t* aMaxTextureSize) MOZ_OVERRIDE;
virtual bool DeallocPLayers(PLayersParent* aLayers) MOZ_OVERRIDE;
virtual void ShadowLayersUpdated(ShadowLayersParent* aLayerTree,
const TargetConfig& aTargetConfig,
bool isFirstPaint) MOZ_OVERRIDE;
virtual PGrallocBufferParent* AllocPGrallocBuffer(
const gfxIntSize&, const uint32_t&, const uint32_t&,
MaybeMagicGrallocBufferHandle*) MOZ_OVERRIDE
{ return nullptr; }
virtual bool DeallocPGrallocBuffer(PGrallocBufferParent*)
{ return false; }
virtual bool RecvMemoryPressure()
{ return true; }
private:
void DeferredDestroy();
// There can be many CPCPs, and IPDL-generated code doesn't hold a
// reference to top-level actors. So we hold a reference to
// ourself. This is released (deferred) in ActorDestroy().
nsRefPtr<CrossProcessCompositorParent> mSelfRef;
};
static void
OpenCompositor(CrossProcessCompositorParent* aCompositor,
Transport* aTransport, ProcessHandle aHandle,
MessageLoop* aIOLoop)
{
DebugOnly<bool> ok = aCompositor->Open(aTransport, aHandle, aIOLoop);
MOZ_ASSERT(ok);
}
/*static*/ PCompositorParent*
CompositorParent::Create(Transport* aTransport, ProcessId aOtherProcess)
{
nsRefPtr<CrossProcessCompositorParent> cpcp =
new CrossProcessCompositorParent();
ProcessHandle handle;
if (!base::OpenProcessHandle(aOtherProcess, &handle)) {
// XXX need to kill |aOtherProcess|, it's boned
return nullptr;
}
cpcp->mSelfRef = cpcp;
CompositorLoop()->PostTask(
FROM_HERE,
NewRunnableFunction(OpenCompositor, cpcp.get(),
aTransport, handle, XRE_GetIOMessageLoop()));
// The return value is just compared to null for success checking,
// we're not sharing a ref.
return cpcp.get();
}
static void
UpdateIndirectTree(uint64_t aId, Layer* aRoot, bool isFirstPaint)
{
sIndirectLayerTrees[aId].mRoot = aRoot;
if (ContainerLayer* root = aRoot->AsContainerLayer()) {
if (AsyncPanZoomController* apzc = sIndirectLayerTrees[aId].mController) {
apzc->NotifyLayersUpdated(root->GetFrameMetrics(), isFirstPaint);
}
}
}
static const LayerTreeState*
GetIndirectShadowTree(uint64_t aId)
{
LayerTreeMap::const_iterator cit = sIndirectLayerTrees.find(aId);
if (sIndirectLayerTrees.end() == cit) {
return nullptr;
}
return &cit->second;
}
static void
RemoveIndirectTree(uint64_t aId)
{
sIndirectLayerTrees.erase(aId);
}
void
CrossProcessCompositorParent::ActorDestroy(ActorDestroyReason aWhy)
{
MessageLoop::current()->PostTask(
FROM_HERE,
NewRunnableMethod(this, &CrossProcessCompositorParent::DeferredDestroy));
}
PLayersParent*
CrossProcessCompositorParent::AllocPLayers(const LayersBackend& aBackendType,
const uint64_t& aId,
LayersBackend* aBackend,
int32_t* aMaxTextureSize)
{
MOZ_ASSERT(aId != 0);
nsRefPtr<LayerManager> lm = sCurrentCompositor->GetLayerManager();
*aBackend = lm->GetBackendType();
*aMaxTextureSize = lm->GetMaxTextureSize();
return new ShadowLayersParent(lm->AsShadowManager(), this, aId);
}
bool
CrossProcessCompositorParent::DeallocPLayers(PLayersParent* aLayers)
{
ShadowLayersParent* slp = static_cast<ShadowLayersParent*>(aLayers);
RemoveIndirectTree(slp->GetId());
delete aLayers;
return true;
}
void
CrossProcessCompositorParent::ShadowLayersUpdated(
ShadowLayersParent* aLayerTree,
const TargetConfig& aTargetConfig,
bool isFirstPaint)
{
uint64_t id = aLayerTree->GetId();
MOZ_ASSERT(id != 0);
Layer* shadowRoot = aLayerTree->GetRoot();
if (shadowRoot) {
SetShadowProperties(shadowRoot);
}
UpdateIndirectTree(id, shadowRoot, isFirstPaint);
sCurrentCompositor->NotifyShadowTreeTransaction();
}
void
CrossProcessCompositorParent::DeferredDestroy()
{
mSelfRef = NULL;
// |this| was just destroyed, hands off
}
} // namespace layers
} // namespace mozilla