gecko/netwerk/protocol/http/nsHttp.cpp

329 lines
8.5 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim:set ts=4 sw=4 sts=4 et cin: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// HttpLog.h should generally be included first
#include "HttpLog.h"
#include "nsHttp.h"
#include "pldhash.h"
#include "mozilla/Mutex.h"
#include "mozilla/HashFunctions.h"
#include "nsCRT.h"
#if defined(PR_LOGGING)
PRLogModuleInfo *gHttpLog = nullptr;
#endif
namespace mozilla {
namespace net {
// define storage for all atoms
#define HTTP_ATOM(_name, _value) nsHttpAtom nsHttp::_name = { _value };
#include "nsHttpAtomList.h"
#undef HTTP_ATOM
// find out how many atoms we have
#define HTTP_ATOM(_name, _value) Unused_ ## _name,
enum {
#include "nsHttpAtomList.h"
NUM_HTTP_ATOMS
};
#undef HTTP_ATOM
// we keep a linked list of atoms allocated on the heap for easy clean up when
// the atom table is destroyed. The structure and value string are allocated
// as one contiguous block.
struct HttpHeapAtom {
struct HttpHeapAtom *next;
char value[1];
};
static struct PLDHashTable sAtomTable = {0};
static struct HttpHeapAtom *sHeapAtoms = nullptr;
static Mutex *sLock = nullptr;
HttpHeapAtom *
NewHeapAtom(const char *value) {
int len = strlen(value);
HttpHeapAtom *a =
reinterpret_cast<HttpHeapAtom *>(malloc(sizeof(*a) + len));
if (!a)
return nullptr;
memcpy(a->value, value, len + 1);
// add this heap atom to the list of all heap atoms
a->next = sHeapAtoms;
sHeapAtoms = a;
return a;
}
// Hash string ignore case, based on PL_HashString
static PLDHashNumber
StringHash(PLDHashTable *table, const void *key)
{
PLDHashNumber h = 0;
for (const char *s = reinterpret_cast<const char*>(key); *s; ++s)
h = AddToHash(h, nsCRT::ToLower(*s));
return h;
}
static bool
StringCompare(PLDHashTable *table, const PLDHashEntryHdr *entry,
const void *testKey)
{
const void *entryKey =
reinterpret_cast<const PLDHashEntryStub *>(entry)->key;
return PL_strcasecmp(reinterpret_cast<const char *>(entryKey),
reinterpret_cast<const char *>(testKey)) == 0;
}
static const PLDHashTableOps ops = {
PL_DHashAllocTable,
PL_DHashFreeTable,
StringHash,
StringCompare,
PL_DHashMoveEntryStub,
PL_DHashClearEntryStub,
PL_DHashFinalizeStub,
nullptr
};
// We put the atoms in a hash table for speedy lookup.. see ResolveAtom.
nsresult
nsHttp::CreateAtomTable()
{
MOZ_ASSERT(!sAtomTable.ops, "atom table already initialized");
if (!sLock) {
sLock = new Mutex("nsHttp.sLock");
}
// The capacity for this table is initialized to a value greater than the
// number of known atoms (NUM_HTTP_ATOMS) because we expect to encounter a
// few random headers right off the bat.
if (!PL_DHashTableInit(&sAtomTable, &ops, nullptr,
sizeof(PLDHashEntryStub),
NUM_HTTP_ATOMS + 10, fallible_t())) {
sAtomTable.ops = nullptr;
return NS_ERROR_OUT_OF_MEMORY;
}
// fill the table with our known atoms
const char *const atoms[] = {
#define HTTP_ATOM(_name, _value) nsHttp::_name._val,
#include "nsHttpAtomList.h"
#undef HTTP_ATOM
nullptr
};
for (int i = 0; atoms[i]; ++i) {
PLDHashEntryStub *stub = reinterpret_cast<PLDHashEntryStub *>
(PL_DHashTableOperate(&sAtomTable, atoms[i], PL_DHASH_ADD));
if (!stub)
return NS_ERROR_OUT_OF_MEMORY;
MOZ_ASSERT(!stub->key, "duplicate static atom");
stub->key = atoms[i];
}
return NS_OK;
}
void
nsHttp::DestroyAtomTable()
{
if (sAtomTable.ops) {
PL_DHashTableFinish(&sAtomTable);
sAtomTable.ops = nullptr;
}
while (sHeapAtoms) {
HttpHeapAtom *next = sHeapAtoms->next;
free(sHeapAtoms);
sHeapAtoms = next;
}
if (sLock) {
delete sLock;
sLock = nullptr;
}
}
Mutex *
nsHttp::GetLock()
{
return sLock;
}
// this function may be called from multiple threads
nsHttpAtom
nsHttp::ResolveAtom(const char *str)
{
nsHttpAtom atom = { nullptr };
if (!str || !sAtomTable.ops)
return atom;
MutexAutoLock lock(*sLock);
PLDHashEntryStub *stub = reinterpret_cast<PLDHashEntryStub *>
(PL_DHashTableOperate(&sAtomTable, str, PL_DHASH_ADD));
if (!stub)
return atom; // out of memory
if (stub->key) {
atom._val = reinterpret_cast<const char *>(stub->key);
return atom;
}
// if the atom could not be found in the atom table, then we'll go
// and allocate a new atom on the heap.
HttpHeapAtom *heapAtom = NewHeapAtom(str);
if (!heapAtom)
return atom; // out of memory
stub->key = atom._val = heapAtom->value;
return atom;
}
//
// From section 2.2 of RFC 2616, a token is defined as:
//
// token = 1*<any CHAR except CTLs or separators>
// CHAR = <any US-ASCII character (octets 0 - 127)>
// separators = "(" | ")" | "<" | ">" | "@"
// | "," | ";" | ":" | "\" | <">
// | "/" | "[" | "]" | "?" | "="
// | "{" | "}" | SP | HT
// CTL = <any US-ASCII control character
// (octets 0 - 31) and DEL (127)>
// SP = <US-ASCII SP, space (32)>
// HT = <US-ASCII HT, horizontal-tab (9)>
//
static const char kValidTokenMap[128] = {
0, 0, 0, 0, 0, 0, 0, 0, // 0
0, 0, 0, 0, 0, 0, 0, 0, // 8
0, 0, 0, 0, 0, 0, 0, 0, // 16
0, 0, 0, 0, 0, 0, 0, 0, // 24
0, 1, 0, 1, 1, 1, 1, 1, // 32
0, 0, 1, 1, 0, 1, 1, 0, // 40
1, 1, 1, 1, 1, 1, 1, 1, // 48
1, 1, 0, 0, 0, 0, 0, 0, // 56
0, 1, 1, 1, 1, 1, 1, 1, // 64
1, 1, 1, 1, 1, 1, 1, 1, // 72
1, 1, 1, 1, 1, 1, 1, 1, // 80
1, 1, 1, 0, 0, 0, 1, 1, // 88
1, 1, 1, 1, 1, 1, 1, 1, // 96
1, 1, 1, 1, 1, 1, 1, 1, // 104
1, 1, 1, 1, 1, 1, 1, 1, // 112
1, 1, 1, 0, 1, 0, 1, 0 // 120
};
bool
nsHttp::IsValidToken(const char *start, const char *end)
{
if (start == end)
return false;
for (; start != end; ++start) {
const unsigned char idx = *start;
if (idx > 127 || !kValidTokenMap[idx])
return false;
}
return true;
}
const char *
nsHttp::FindToken(const char *input, const char *token, const char *seps)
{
if (!input)
return nullptr;
int inputLen = strlen(input);
int tokenLen = strlen(token);
if (inputLen < tokenLen)
return nullptr;
const char *inputTop = input;
const char *inputEnd = input + inputLen - tokenLen;
for (; input <= inputEnd; ++input) {
if (PL_strncasecmp(input, token, tokenLen) == 0) {
if (input > inputTop && !strchr(seps, *(input - 1)))
continue;
if (input < inputEnd && !strchr(seps, *(input + tokenLen)))
continue;
return input;
}
}
return nullptr;
}
bool
nsHttp::ParseInt64(const char *input, const char **next, int64_t *r)
{
const char *start = input;
*r = 0;
while (*input >= '0' && *input <= '9') {
int64_t next = 10 * (*r) + (*input - '0');
if (next < *r) // overflow?
return false;
*r = next;
++input;
}
if (input == start) // nothing parsed?
return false;
if (next)
*next = input;
return true;
}
bool
nsHttp::IsPermanentRedirect(uint32_t httpStatus)
{
return httpStatus == 301 || httpStatus == 308;
}
bool
nsHttp::ShouldRewriteRedirectToGET(uint32_t httpStatus, nsHttpAtom method)
{
// for 301 and 302, only rewrite POST
if (httpStatus == 301 || httpStatus == 302)
return method == nsHttp::Post;
// rewrite for 303 unless it was HEAD
if (httpStatus == 303)
return method != nsHttp::Head;
// otherwise, such as for 307, do not rewrite
return false;
}
bool
nsHttp::IsSafeMethod(nsHttpAtom method)
{
// This code will need to be extended for new safe methods, otherwise
// they'll default to "not safe".
return method == nsHttp::Get ||
method == nsHttp::Head ||
method == nsHttp::Options ||
method == nsHttp::Propfind ||
method == nsHttp::Report ||
method == nsHttp::Search ||
method == nsHttp::Trace;
}
} // namespace mozilla::net
} // namespace mozilla