mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
296 lines
12 KiB
C++
296 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2011 Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "DynamicsCompressor.h"
|
|
#include "AudioSegment.h"
|
|
|
|
#include <cmath>
|
|
#include "AudioNodeEngine.h"
|
|
#include "nsDebug.h"
|
|
|
|
using mozilla::WEBAUDIO_BLOCK_SIZE;
|
|
using mozilla::AudioBlockCopyChannelWithScale;
|
|
|
|
namespace WebCore {
|
|
|
|
DynamicsCompressor::DynamicsCompressor(float sampleRate, unsigned numberOfChannels)
|
|
: m_numberOfChannels(numberOfChannels)
|
|
, m_sampleRate(sampleRate)
|
|
, m_compressor(sampleRate, numberOfChannels)
|
|
{
|
|
// Uninitialized state - for parameter recalculation.
|
|
m_lastFilterStageRatio = -1;
|
|
m_lastAnchor = -1;
|
|
m_lastFilterStageGain = -1;
|
|
|
|
setNumberOfChannels(numberOfChannels);
|
|
initializeParameters();
|
|
}
|
|
|
|
void DynamicsCompressor::setParameterValue(unsigned parameterID, float value)
|
|
{
|
|
MOZ_ASSERT(parameterID < ParamLast);
|
|
if (parameterID < ParamLast)
|
|
m_parameters[parameterID] = value;
|
|
}
|
|
|
|
void DynamicsCompressor::initializeParameters()
|
|
{
|
|
// Initializes compressor to default values.
|
|
|
|
m_parameters[ParamThreshold] = -24; // dB
|
|
m_parameters[ParamKnee] = 30; // dB
|
|
m_parameters[ParamRatio] = 12; // unit-less
|
|
m_parameters[ParamAttack] = 0.003f; // seconds
|
|
m_parameters[ParamRelease] = 0.250f; // seconds
|
|
m_parameters[ParamPreDelay] = 0.006f; // seconds
|
|
|
|
// Release zone values 0 -> 1.
|
|
m_parameters[ParamReleaseZone1] = 0.09f;
|
|
m_parameters[ParamReleaseZone2] = 0.16f;
|
|
m_parameters[ParamReleaseZone3] = 0.42f;
|
|
m_parameters[ParamReleaseZone4] = 0.98f;
|
|
|
|
m_parameters[ParamFilterStageGain] = 4.4f; // dB
|
|
m_parameters[ParamFilterStageRatio] = 2;
|
|
m_parameters[ParamFilterAnchor] = 15000 / nyquist();
|
|
|
|
m_parameters[ParamPostGain] = 0; // dB
|
|
m_parameters[ParamReduction] = 0; // dB
|
|
|
|
// Linear crossfade (0 -> 1).
|
|
m_parameters[ParamEffectBlend] = 1;
|
|
}
|
|
|
|
float DynamicsCompressor::parameterValue(unsigned parameterID)
|
|
{
|
|
MOZ_ASSERT(parameterID < ParamLast);
|
|
return m_parameters[parameterID];
|
|
}
|
|
|
|
void DynamicsCompressor::setEmphasisStageParameters(unsigned stageIndex, float gain, float normalizedFrequency /* 0 -> 1 */)
|
|
{
|
|
float gk = 1 - gain / 20;
|
|
float f1 = normalizedFrequency * gk;
|
|
float f2 = normalizedFrequency / gk;
|
|
float r1 = expf(-f1 * M_PI);
|
|
float r2 = expf(-f2 * M_PI);
|
|
|
|
MOZ_ASSERT(m_numberOfChannels == m_preFilterPacks.Length());
|
|
|
|
for (unsigned i = 0; i < m_numberOfChannels; ++i) {
|
|
// Set pre-filter zero and pole to create an emphasis filter.
|
|
ZeroPole& preFilter = m_preFilterPacks[i]->filters[stageIndex];
|
|
preFilter.setZero(r1);
|
|
preFilter.setPole(r2);
|
|
|
|
// Set post-filter with zero and pole reversed to create the de-emphasis filter.
|
|
// If there were no compressor kernel in between, they would cancel each other out (allpass filter).
|
|
ZeroPole& postFilter = m_postFilterPacks[i]->filters[stageIndex];
|
|
postFilter.setZero(r2);
|
|
postFilter.setPole(r1);
|
|
}
|
|
}
|
|
|
|
void DynamicsCompressor::setEmphasisParameters(float gain, float anchorFreq, float filterStageRatio)
|
|
{
|
|
setEmphasisStageParameters(0, gain, anchorFreq);
|
|
setEmphasisStageParameters(1, gain, anchorFreq / filterStageRatio);
|
|
setEmphasisStageParameters(2, gain, anchorFreq / (filterStageRatio * filterStageRatio));
|
|
setEmphasisStageParameters(3, gain, anchorFreq / (filterStageRatio * filterStageRatio * filterStageRatio));
|
|
}
|
|
|
|
void DynamicsCompressor::process(const AudioChunk* sourceChunk, AudioChunk* destinationChunk, unsigned framesToProcess)
|
|
{
|
|
// Though numberOfChannels is retrived from destinationBus, we still name it numberOfChannels instead of numberOfDestinationChannels.
|
|
// It's because we internally match sourceChannels's size to destinationBus by channel up/down mix. Thus we need numberOfChannels
|
|
// to do the loop work for both m_sourceChannels and m_destinationChannels.
|
|
|
|
unsigned numberOfChannels = destinationChunk->mChannelData.Length();
|
|
unsigned numberOfSourceChannels = sourceChunk->mChannelData.Length();
|
|
|
|
MOZ_ASSERT(numberOfChannels == m_numberOfChannels && numberOfSourceChannels);
|
|
|
|
if (numberOfChannels != m_numberOfChannels || !numberOfSourceChannels) {
|
|
destinationChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
|
|
return;
|
|
}
|
|
|
|
switch (numberOfChannels) {
|
|
case 2: // stereo
|
|
m_sourceChannels[0] = static_cast<const float*>(sourceChunk->mChannelData[0]);
|
|
|
|
if (numberOfSourceChannels > 1)
|
|
m_sourceChannels[1] = static_cast<const float*>(sourceChunk->mChannelData[1]);
|
|
else
|
|
// Simply duplicate mono channel input data to right channel for stereo processing.
|
|
m_sourceChannels[1] = m_sourceChannels[0];
|
|
|
|
break;
|
|
default:
|
|
// FIXME : support other number of channels.
|
|
NS_WARNING("Support other number of channels");
|
|
destinationChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0; i < numberOfChannels; ++i)
|
|
m_destinationChannels[i] = const_cast<float*>(static_cast<const float*>(
|
|
destinationChunk->mChannelData[i]));
|
|
|
|
float filterStageGain = parameterValue(ParamFilterStageGain);
|
|
float filterStageRatio = parameterValue(ParamFilterStageRatio);
|
|
float anchor = parameterValue(ParamFilterAnchor);
|
|
|
|
if (filterStageGain != m_lastFilterStageGain || filterStageRatio != m_lastFilterStageRatio || anchor != m_lastAnchor) {
|
|
m_lastFilterStageGain = filterStageGain;
|
|
m_lastFilterStageRatio = filterStageRatio;
|
|
m_lastAnchor = anchor;
|
|
|
|
setEmphasisParameters(filterStageGain, anchor, filterStageRatio);
|
|
}
|
|
|
|
float sourceWithVolume[WEBAUDIO_BLOCK_SIZE];
|
|
|
|
// Apply pre-emphasis filter.
|
|
// Note that the final three stages are computed in-place in the destination buffer.
|
|
for (unsigned i = 0; i < numberOfChannels; ++i) {
|
|
const float* sourceData;
|
|
if (sourceChunk->mVolume == 1.0f) {
|
|
// Fast path, the volume scale doesn't need to get taken into account
|
|
sourceData = m_sourceChannels[i];
|
|
} else {
|
|
AudioBlockCopyChannelWithScale(m_sourceChannels[i],
|
|
sourceChunk->mVolume,
|
|
sourceWithVolume);
|
|
sourceData = sourceWithVolume;
|
|
}
|
|
|
|
float* destinationData = m_destinationChannels[i];
|
|
ZeroPole* preFilters = m_preFilterPacks[i]->filters;
|
|
|
|
preFilters[0].process(sourceData, destinationData, framesToProcess);
|
|
preFilters[1].process(destinationData, destinationData, framesToProcess);
|
|
preFilters[2].process(destinationData, destinationData, framesToProcess);
|
|
preFilters[3].process(destinationData, destinationData, framesToProcess);
|
|
}
|
|
|
|
float dbThreshold = parameterValue(ParamThreshold);
|
|
float dbKnee = parameterValue(ParamKnee);
|
|
float ratio = parameterValue(ParamRatio);
|
|
float attackTime = parameterValue(ParamAttack);
|
|
float releaseTime = parameterValue(ParamRelease);
|
|
float preDelayTime = parameterValue(ParamPreDelay);
|
|
|
|
// This is effectively a master volume on the compressed signal (pre-blending).
|
|
float dbPostGain = parameterValue(ParamPostGain);
|
|
|
|
// Linear blending value from dry to completely processed (0 -> 1)
|
|
// 0 means the signal is completely unprocessed.
|
|
// 1 mixes in only the compressed signal.
|
|
float effectBlend = parameterValue(ParamEffectBlend);
|
|
|
|
float releaseZone1 = parameterValue(ParamReleaseZone1);
|
|
float releaseZone2 = parameterValue(ParamReleaseZone2);
|
|
float releaseZone3 = parameterValue(ParamReleaseZone3);
|
|
float releaseZone4 = parameterValue(ParamReleaseZone4);
|
|
|
|
// Apply compression to the pre-filtered signal.
|
|
// The processing is performed in place.
|
|
m_compressor.process(m_destinationChannels.get(),
|
|
m_destinationChannels.get(),
|
|
numberOfChannels,
|
|
framesToProcess,
|
|
|
|
dbThreshold,
|
|
dbKnee,
|
|
ratio,
|
|
attackTime,
|
|
releaseTime,
|
|
preDelayTime,
|
|
dbPostGain,
|
|
effectBlend,
|
|
|
|
releaseZone1,
|
|
releaseZone2,
|
|
releaseZone3,
|
|
releaseZone4
|
|
);
|
|
|
|
// Update the compression amount.
|
|
setParameterValue(ParamReduction, m_compressor.meteringGain());
|
|
|
|
// Apply de-emphasis filter.
|
|
for (unsigned i = 0; i < numberOfChannels; ++i) {
|
|
float* destinationData = m_destinationChannels[i];
|
|
ZeroPole* postFilters = m_postFilterPacks[i]->filters;
|
|
|
|
postFilters[0].process(destinationData, destinationData, framesToProcess);
|
|
postFilters[1].process(destinationData, destinationData, framesToProcess);
|
|
postFilters[2].process(destinationData, destinationData, framesToProcess);
|
|
postFilters[3].process(destinationData, destinationData, framesToProcess);
|
|
}
|
|
}
|
|
|
|
void DynamicsCompressor::reset()
|
|
{
|
|
m_lastFilterStageRatio = -1; // for recalc
|
|
m_lastAnchor = -1;
|
|
m_lastFilterStageGain = -1;
|
|
|
|
for (unsigned channel = 0; channel < m_numberOfChannels; ++channel) {
|
|
for (unsigned stageIndex = 0; stageIndex < 4; ++stageIndex) {
|
|
m_preFilterPacks[channel]->filters[stageIndex].reset();
|
|
m_postFilterPacks[channel]->filters[stageIndex].reset();
|
|
}
|
|
}
|
|
|
|
m_compressor.reset();
|
|
}
|
|
|
|
void DynamicsCompressor::setNumberOfChannels(unsigned numberOfChannels)
|
|
{
|
|
if (m_preFilterPacks.Length() == numberOfChannels)
|
|
return;
|
|
|
|
m_preFilterPacks.Clear();
|
|
m_postFilterPacks.Clear();
|
|
for (unsigned i = 0; i < numberOfChannels; ++i) {
|
|
m_preFilterPacks.AppendElement(new ZeroPoleFilterPack4());
|
|
m_postFilterPacks.AppendElement(new ZeroPoleFilterPack4());
|
|
}
|
|
|
|
m_sourceChannels = new const float* [numberOfChannels];
|
|
m_destinationChannels = new float* [numberOfChannels];
|
|
|
|
m_compressor.setNumberOfChannels(numberOfChannels);
|
|
m_numberOfChannels = numberOfChannels;
|
|
}
|
|
|
|
} // namespace WebCore
|