mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
294 lines
7.9 KiB
C
294 lines
7.9 KiB
C
/*
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the elliptic curve math library for prime field curves.
|
|
*
|
|
* The Initial Developer of the Original Code is
|
|
* Sun Microsystems, Inc.
|
|
* Portions created by the Initial Developer are Copyright (C) 2003
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Douglas Stebila <douglas@stebila.ca>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "ecp.h"
|
|
#include "mpi.h"
|
|
#include "mplogic.h"
|
|
#include "mpi-priv.h"
|
|
#include <stdlib.h>
|
|
|
|
/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r.
|
|
* Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
|
|
* Elliptic Curve Cryptography. */
|
|
mp_err
|
|
ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
int a_bits = mpl_significant_bits(a);
|
|
int i;
|
|
|
|
/* m1, m2 are statically-allocated mp_int of exactly the size we need */
|
|
mp_int m[10];
|
|
|
|
#ifdef ECL_THIRTY_TWO_BIT
|
|
mp_digit s[10][12];
|
|
for (i = 0; i < 10; i++) {
|
|
MP_SIGN(&m[i]) = MP_ZPOS;
|
|
MP_ALLOC(&m[i]) = 12;
|
|
MP_USED(&m[i]) = 12;
|
|
MP_DIGITS(&m[i]) = s[i];
|
|
}
|
|
#else
|
|
mp_digit s[10][6];
|
|
for (i = 0; i < 10; i++) {
|
|
MP_SIGN(&m[i]) = MP_ZPOS;
|
|
MP_ALLOC(&m[i]) = 6;
|
|
MP_USED(&m[i]) = 6;
|
|
MP_DIGITS(&m[i]) = s[i];
|
|
}
|
|
#endif
|
|
|
|
#ifdef ECL_THIRTY_TWO_BIT
|
|
/* for polynomials larger than twice the field size or polynomials
|
|
* not using all words, use regular reduction */
|
|
if ((a_bits > 768) || (a_bits <= 736)) {
|
|
MP_CHECKOK(mp_mod(a, &meth->irr, r));
|
|
} else {
|
|
for (i = 0; i < 12; i++) {
|
|
s[0][i] = MP_DIGIT(a, i);
|
|
}
|
|
s[1][0] = 0;
|
|
s[1][1] = 0;
|
|
s[1][2] = 0;
|
|
s[1][3] = 0;
|
|
s[1][4] = MP_DIGIT(a, 21);
|
|
s[1][5] = MP_DIGIT(a, 22);
|
|
s[1][6] = MP_DIGIT(a, 23);
|
|
s[1][7] = 0;
|
|
s[1][8] = 0;
|
|
s[1][9] = 0;
|
|
s[1][10] = 0;
|
|
s[1][11] = 0;
|
|
for (i = 0; i < 12; i++) {
|
|
s[2][i] = MP_DIGIT(a, i+12);
|
|
}
|
|
s[3][0] = MP_DIGIT(a, 21);
|
|
s[3][1] = MP_DIGIT(a, 22);
|
|
s[3][2] = MP_DIGIT(a, 23);
|
|
for (i = 3; i < 12; i++) {
|
|
s[3][i] = MP_DIGIT(a, i+9);
|
|
}
|
|
s[4][0] = 0;
|
|
s[4][1] = MP_DIGIT(a, 23);
|
|
s[4][2] = 0;
|
|
s[4][3] = MP_DIGIT(a, 20);
|
|
for (i = 4; i < 12; i++) {
|
|
s[4][i] = MP_DIGIT(a, i+8);
|
|
}
|
|
s[5][0] = 0;
|
|
s[5][1] = 0;
|
|
s[5][2] = 0;
|
|
s[5][3] = 0;
|
|
s[5][4] = MP_DIGIT(a, 20);
|
|
s[5][5] = MP_DIGIT(a, 21);
|
|
s[5][6] = MP_DIGIT(a, 22);
|
|
s[5][7] = MP_DIGIT(a, 23);
|
|
s[5][8] = 0;
|
|
s[5][9] = 0;
|
|
s[5][10] = 0;
|
|
s[5][11] = 0;
|
|
s[6][0] = MP_DIGIT(a, 20);
|
|
s[6][1] = 0;
|
|
s[6][2] = 0;
|
|
s[6][3] = MP_DIGIT(a, 21);
|
|
s[6][4] = MP_DIGIT(a, 22);
|
|
s[6][5] = MP_DIGIT(a, 23);
|
|
s[6][6] = 0;
|
|
s[6][7] = 0;
|
|
s[6][8] = 0;
|
|
s[6][9] = 0;
|
|
s[6][10] = 0;
|
|
s[6][11] = 0;
|
|
s[7][0] = MP_DIGIT(a, 23);
|
|
for (i = 1; i < 12; i++) {
|
|
s[7][i] = MP_DIGIT(a, i+11);
|
|
}
|
|
s[8][0] = 0;
|
|
s[8][1] = MP_DIGIT(a, 20);
|
|
s[8][2] = MP_DIGIT(a, 21);
|
|
s[8][3] = MP_DIGIT(a, 22);
|
|
s[8][4] = MP_DIGIT(a, 23);
|
|
s[8][5] = 0;
|
|
s[8][6] = 0;
|
|
s[8][7] = 0;
|
|
s[8][8] = 0;
|
|
s[8][9] = 0;
|
|
s[8][10] = 0;
|
|
s[8][11] = 0;
|
|
s[9][0] = 0;
|
|
s[9][1] = 0;
|
|
s[9][2] = 0;
|
|
s[9][3] = MP_DIGIT(a, 23);
|
|
s[9][4] = MP_DIGIT(a, 23);
|
|
s[9][5] = 0;
|
|
s[9][6] = 0;
|
|
s[9][7] = 0;
|
|
s[9][8] = 0;
|
|
s[9][9] = 0;
|
|
s[9][10] = 0;
|
|
s[9][11] = 0;
|
|
|
|
MP_CHECKOK(mp_add(&m[0], &m[1], r));
|
|
MP_CHECKOK(mp_add(r, &m[1], r));
|
|
MP_CHECKOK(mp_add(r, &m[2], r));
|
|
MP_CHECKOK(mp_add(r, &m[3], r));
|
|
MP_CHECKOK(mp_add(r, &m[4], r));
|
|
MP_CHECKOK(mp_add(r, &m[5], r));
|
|
MP_CHECKOK(mp_add(r, &m[6], r));
|
|
MP_CHECKOK(mp_sub(r, &m[7], r));
|
|
MP_CHECKOK(mp_sub(r, &m[8], r));
|
|
MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
|
|
s_mp_clamp(r);
|
|
}
|
|
#else
|
|
/* for polynomials larger than twice the field size or polynomials
|
|
* not using all words, use regular reduction */
|
|
if ((a_bits > 768) || (a_bits <= 736)) {
|
|
MP_CHECKOK(mp_mod(a, &meth->irr, r));
|
|
} else {
|
|
for (i = 0; i < 6; i++) {
|
|
s[0][i] = MP_DIGIT(a, i);
|
|
}
|
|
s[1][0] = 0;
|
|
s[1][1] = 0;
|
|
s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
|
|
s[1][3] = MP_DIGIT(a, 11) >> 32;
|
|
s[1][4] = 0;
|
|
s[1][5] = 0;
|
|
for (i = 0; i < 6; i++) {
|
|
s[2][i] = MP_DIGIT(a, i+6);
|
|
}
|
|
s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
|
|
s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
|
|
for (i = 2; i < 6; i++) {
|
|
s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
|
|
}
|
|
s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
|
|
s[4][1] = MP_DIGIT(a, 10) << 32;
|
|
for (i = 2; i < 6; i++) {
|
|
s[4][i] = MP_DIGIT(a, i+4);
|
|
}
|
|
s[5][0] = 0;
|
|
s[5][1] = 0;
|
|
s[5][2] = MP_DIGIT(a, 10);
|
|
s[5][3] = MP_DIGIT(a, 11);
|
|
s[5][4] = 0;
|
|
s[5][5] = 0;
|
|
s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
|
|
s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
|
|
s[6][2] = MP_DIGIT(a, 11);
|
|
s[6][3] = 0;
|
|
s[6][4] = 0;
|
|
s[6][5] = 0;
|
|
s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
|
|
for (i = 1; i < 6; i++) {
|
|
s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
|
|
}
|
|
s[8][0] = MP_DIGIT(a, 10) << 32;
|
|
s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
|
|
s[8][2] = MP_DIGIT(a, 11) >> 32;
|
|
s[8][3] = 0;
|
|
s[8][4] = 0;
|
|
s[8][5] = 0;
|
|
s[9][0] = 0;
|
|
s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
|
|
s[9][2] = MP_DIGIT(a, 11) >> 32;
|
|
s[9][3] = 0;
|
|
s[9][4] = 0;
|
|
s[9][5] = 0;
|
|
|
|
MP_CHECKOK(mp_add(&m[0], &m[1], r));
|
|
MP_CHECKOK(mp_add(r, &m[1], r));
|
|
MP_CHECKOK(mp_add(r, &m[2], r));
|
|
MP_CHECKOK(mp_add(r, &m[3], r));
|
|
MP_CHECKOK(mp_add(r, &m[4], r));
|
|
MP_CHECKOK(mp_add(r, &m[5], r));
|
|
MP_CHECKOK(mp_add(r, &m[6], r));
|
|
MP_CHECKOK(mp_sub(r, &m[7], r));
|
|
MP_CHECKOK(mp_sub(r, &m[8], r));
|
|
MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
|
|
s_mp_clamp(r);
|
|
}
|
|
#endif
|
|
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Compute the square of polynomial a, reduce modulo p384. Store the
|
|
* result in r. r could be a. Uses optimized modular reduction for p384.
|
|
*/
|
|
mp_err
|
|
ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
|
|
MP_CHECKOK(mp_sqr(a, r));
|
|
MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Compute the product of two polynomials a and b, reduce modulo p384.
|
|
* Store the result in r. r could be a or b; a could be b. Uses
|
|
* optimized modular reduction for p384. */
|
|
mp_err
|
|
ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
|
|
const GFMethod *meth)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
|
|
MP_CHECKOK(mp_mul(a, b, r));
|
|
MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Wire in fast field arithmetic and precomputation of base point for
|
|
* named curves. */
|
|
mp_err
|
|
ec_group_set_gfp384(ECGroup *group, ECCurveName name)
|
|
{
|
|
if (name == ECCurve_NIST_P384) {
|
|
group->meth->field_mod = &ec_GFp_nistp384_mod;
|
|
group->meth->field_mul = &ec_GFp_nistp384_mul;
|
|
group->meth->field_sqr = &ec_GFp_nistp384_sqr;
|
|
}
|
|
return MP_OKAY;
|
|
}
|