mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
3423 lines
119 KiB
C++
3423 lines
119 KiB
C++
/* vim:set ts=2 sw=2 sts=2 et cindent: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifdef XP_WIN
|
|
// Include Windows headers required for enabling high precision timers.
|
|
#include "windows.h"
|
|
#include "mmsystem.h"
|
|
#endif
|
|
|
|
#include "mozilla/DebugOnly.h"
|
|
#include <stdint.h>
|
|
|
|
#include "MediaDecoderStateMachine.h"
|
|
#include "AudioStream.h"
|
|
#include "nsTArray.h"
|
|
#include "MediaDecoder.h"
|
|
#include "MediaDecoderReader.h"
|
|
#include "mozilla/mozalloc.h"
|
|
#include "VideoUtils.h"
|
|
#include "mozilla/dom/TimeRanges.h"
|
|
#include "nsDeque.h"
|
|
#include "AudioSegment.h"
|
|
#include "VideoSegment.h"
|
|
#include "ImageContainer.h"
|
|
#include "nsComponentManagerUtils.h"
|
|
#include "nsITimer.h"
|
|
#include "nsContentUtils.h"
|
|
#include "MediaShutdownManager.h"
|
|
#include "SharedThreadPool.h"
|
|
#include "MediaTaskQueue.h"
|
|
#include "nsIEventTarget.h"
|
|
#include "prenv.h"
|
|
#include "mozilla/Preferences.h"
|
|
#include "gfx2DGlue.h"
|
|
|
|
#include <algorithm>
|
|
|
|
namespace mozilla {
|
|
|
|
using namespace mozilla::layers;
|
|
using namespace mozilla::dom;
|
|
using namespace mozilla::gfx;
|
|
|
|
// avoid redefined macro in unified build
|
|
#undef DECODER_LOG
|
|
#undef VERBOSE_LOG
|
|
|
|
#ifdef PR_LOGGING
|
|
extern PRLogModuleInfo* gMediaDecoderLog;
|
|
#define DECODER_LOG(type, msg, ...) \
|
|
PR_LOG(gMediaDecoderLog, type, ("Decoder=%p " msg, mDecoder.get(), ##__VA_ARGS__))
|
|
#define VERBOSE_LOG(msg, ...) \
|
|
PR_BEGIN_MACRO \
|
|
if (!PR_GetEnv("MOZ_QUIET")) { \
|
|
DECODER_LOG(PR_LOG_DEBUG, msg, ##__VA_ARGS__); \
|
|
} \
|
|
PR_END_MACRO
|
|
#define SAMPLE_LOG(msg, ...) \
|
|
PR_BEGIN_MACRO \
|
|
if (PR_GetEnv("MEDIA_LOG_SAMPLES")) { \
|
|
DECODER_LOG(PR_LOG_DEBUG, msg, ##__VA_ARGS__); \
|
|
} \
|
|
PR_END_MACRO
|
|
#else
|
|
#define DECODER_LOG(type, msg, ...)
|
|
#define VERBOSE_LOG(msg, ...)
|
|
#define SAMPLE_LOG(msg, ...)
|
|
#endif
|
|
|
|
// GetCurrentTime is defined in winbase.h as zero argument macro forwarding to
|
|
// GetTickCount() and conflicts with MediaDecoderStateMachine::GetCurrentTime
|
|
// implementation. With unified builds, putting this in headers is not enough.
|
|
#ifdef GetCurrentTime
|
|
#undef GetCurrentTime
|
|
#endif
|
|
|
|
// Wait this number of seconds when buffering, then leave and play
|
|
// as best as we can if the required amount of data hasn't been
|
|
// retrieved.
|
|
static const uint32_t BUFFERING_WAIT_S = 30;
|
|
|
|
// If audio queue has less than this many usecs of decoded audio, we won't risk
|
|
// trying to decode the video, we'll skip decoding video up to the next
|
|
// keyframe. We may increase this value for an individual decoder if we
|
|
// encounter video frames which take a long time to decode.
|
|
static const uint32_t LOW_AUDIO_USECS = 300000;
|
|
|
|
// If more than this many usecs of decoded audio is queued, we'll hold off
|
|
// decoding more audio. If we increase the low audio threshold (see
|
|
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
|
|
// less than the low audio threshold.
|
|
const int64_t AMPLE_AUDIO_USECS = 1000000;
|
|
|
|
// When we're only playing audio and we don't have a video stream, we divide
|
|
// AMPLE_AUDIO_USECS and LOW_AUDIO_USECS by the following value. This reduces
|
|
// the amount of decoded audio we buffer, reducing our memory usage. We only
|
|
// need to decode far ahead when we're decoding video using software decoding,
|
|
// as otherwise a long video decode could cause an audio underrun.
|
|
const int64_t NO_VIDEO_AMPLE_AUDIO_DIVISOR = 8;
|
|
|
|
// Maximum number of bytes we'll allocate and write at once to the audio
|
|
// hardware when the audio stream contains missing frames and we're
|
|
// writing silence in order to fill the gap. We limit our silence-writes
|
|
// to 32KB in order to avoid allocating an impossibly large chunk of
|
|
// memory if we encounter a large chunk of silence.
|
|
const uint32_t SILENCE_BYTES_CHUNK = 32 * 1024;
|
|
|
|
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
|
|
// we're not "prerolling video", we'll skip the video up to the next keyframe
|
|
// which is at or after the current playback position.
|
|
static const uint32_t LOW_VIDEO_FRAMES = 1;
|
|
|
|
// Arbitrary "frame duration" when playing only audio.
|
|
static const int AUDIO_DURATION_USECS = 40000;
|
|
|
|
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
|
|
// use this as a factor in all our calculations. Increasing this will cause
|
|
// us to be more likely to increase our low audio threshold, and to
|
|
// increase it by more.
|
|
static const int THRESHOLD_FACTOR = 2;
|
|
|
|
// If we have less than this much undecoded data available, we'll consider
|
|
// ourselves to be running low on undecoded data. We determine how much
|
|
// undecoded data we have remaining using the reader's GetBuffered()
|
|
// implementation.
|
|
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
|
|
|
|
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
|
|
// the skip-to-keyframe logic can activate when we're running low on data.
|
|
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
|
|
"LOW_DATA_THRESHOLD_USECS is too small");
|
|
|
|
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
|
|
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 60000;
|
|
|
|
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
|
|
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
|
|
// normal buffering mode. This exists so that if the decode-ahead exhausts the
|
|
// downloaded data while decode/playback is just starting up (for example
|
|
// after a seek while the media is still playing, or when playing a media
|
|
// as soon as it's load started), we won't necessarily stop for 30s and wait
|
|
// for buffering. We may actually be able to playback in this case, so exit
|
|
// buffering early and try to play. If it turns out we can't play, we'll fall
|
|
// back to buffering normally.
|
|
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;
|
|
|
|
// If we're quick buffering, we'll remain in buffering mode while we have less than
|
|
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
|
|
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
|
|
|
|
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
|
|
// quick buffering in a timely fashion, as the decode pauses when it
|
|
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
|
|
// QUICK_BUFFERING_LOW_DATA_USECS.
|
|
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
|
|
"QUICK_BUFFERING_LOW_DATA_USECS is too large");
|
|
|
|
// This value has been chosen empirically.
|
|
static const uint32_t AUDIOSTREAM_MIN_WRITE_BEFORE_START_USECS = 200000;
|
|
|
|
// The amount of instability we tollerate in calls to
|
|
// MediaDecoderStateMachine::UpdateEstimatedDuration(); changes of duration
|
|
// less than this are ignored, as they're assumed to be the result of
|
|
// instability in the duration estimation.
|
|
static const int64_t ESTIMATED_DURATION_FUZZ_FACTOR_USECS = USECS_PER_S / 2;
|
|
|
|
static TimeDuration UsecsToDuration(int64_t aUsecs) {
|
|
return TimeDuration::FromMilliseconds(static_cast<double>(aUsecs) / USECS_PER_MS);
|
|
}
|
|
|
|
static int64_t DurationToUsecs(TimeDuration aDuration) {
|
|
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
|
|
}
|
|
|
|
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
|
|
MediaDecoderReader* aReader,
|
|
bool aRealTime) :
|
|
mDecoder(aDecoder),
|
|
mState(DECODER_STATE_DECODING_METADATA),
|
|
mInRunningStateMachine(false),
|
|
mSyncPointInMediaStream(-1),
|
|
mSyncPointInDecodedStream(-1),
|
|
mResetPlayStartTime(false),
|
|
mPlayDuration(0),
|
|
mStartTime(-1),
|
|
mEndTime(-1),
|
|
mFragmentEndTime(-1),
|
|
mReader(aReader),
|
|
mCurrentFrameTime(0),
|
|
mAudioStartTime(-1),
|
|
mAudioEndTime(-1),
|
|
mVideoFrameEndTime(-1),
|
|
mVolume(1.0),
|
|
mPlaybackRate(1.0),
|
|
mPreservesPitch(true),
|
|
mBasePosition(0),
|
|
mAmpleVideoFrames(2),
|
|
mLowAudioThresholdUsecs(LOW_AUDIO_USECS),
|
|
mAmpleAudioThresholdUsecs(AMPLE_AUDIO_USECS),
|
|
mAudioRequestPending(false),
|
|
mVideoRequestPending(false),
|
|
mAudioCaptured(false),
|
|
mTransportSeekable(true),
|
|
mMediaSeekable(true),
|
|
mPositionChangeQueued(false),
|
|
mAudioCompleted(false),
|
|
mGotDurationFromMetaData(false),
|
|
mDispatchedEventToDecode(false),
|
|
mStopAudioThread(true),
|
|
mQuickBuffering(false),
|
|
mMinimizePreroll(false),
|
|
mDecodeThreadWaiting(false),
|
|
mRealTime(aRealTime),
|
|
mDispatchedDecodeMetadataTask(false),
|
|
mDropAudioUntilNextDiscontinuity(false),
|
|
mDropVideoUntilNextDiscontinuity(false),
|
|
mDecodeToSeekTarget(false),
|
|
mCurrentTimeBeforeSeek(0),
|
|
mLastFrameStatus(MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED),
|
|
mTimerId(0)
|
|
{
|
|
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
|
|
// Only enable realtime mode when "media.realtime_decoder.enabled" is true.
|
|
if (Preferences::GetBool("media.realtime_decoder.enabled", false) == false)
|
|
mRealTime = false;
|
|
|
|
mAmpleVideoFrames =
|
|
std::max<uint32_t>(Preferences::GetUint("media.video-queue.default-size", 10), 3);
|
|
|
|
mBufferingWait = mRealTime ? 0 : BUFFERING_WAIT_S;
|
|
mLowDataThresholdUsecs = mRealTime ? 0 : LOW_DATA_THRESHOLD_USECS;
|
|
|
|
mVideoPrerollFrames = mRealTime ? 0 : mAmpleVideoFrames / 2;
|
|
mAudioPrerollUsecs = mRealTime ? 0 : LOW_AUDIO_USECS * 2;
|
|
|
|
#ifdef XP_WIN
|
|
// Ensure high precision timers are enabled on Windows, otherwise the state
|
|
// machine thread isn't woken up at reliable intervals to set the next frame,
|
|
// and we drop frames while painting. Note that multiple calls to this
|
|
// function per-process is OK, provided each call is matched by a corresponding
|
|
// timeEndPeriod() call.
|
|
timeBeginPeriod(1);
|
|
#endif
|
|
}
|
|
|
|
MediaDecoderStateMachine::~MediaDecoderStateMachine()
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
|
|
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
|
|
NS_ASSERTION(!mPendingWakeDecoder.get(),
|
|
"WakeDecoder should have been revoked already");
|
|
|
|
MOZ_ASSERT(!mDecodeTaskQueue, "Should be released in SHUTDOWN");
|
|
// No need to cancel the timer here for we've done that in SHUTDOWN.
|
|
MOZ_ASSERT(!mTimer, "Should be released in SHUTDOWN");
|
|
mReader = nullptr;
|
|
|
|
#ifdef XP_WIN
|
|
timeEndPeriod(1);
|
|
#endif
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasFutureAudio() {
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
|
|
// We've got audio ready to play if:
|
|
// 1. We've not completed playback of audio, and
|
|
// 2. we either have more than the threshold of decoded audio available, or
|
|
// we've completely decoded all audio (but not finished playing it yet
|
|
// as per 1).
|
|
return !mAudioCompleted &&
|
|
(AudioDecodedUsecs() > LOW_AUDIO_USECS * mPlaybackRate || AudioQueue().IsFinished());
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HaveNextFrameData() {
|
|
AssertCurrentThreadInMonitor();
|
|
return (!HasAudio() || HasFutureAudio()) &&
|
|
(!HasVideo() || VideoQueue().GetSize() > 0);
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetDecodedAudioDuration() {
|
|
NS_ASSERTION(OnDecodeThread() || OnStateMachineThread(),
|
|
"Should be on decode thread or state machine thread");
|
|
AssertCurrentThreadInMonitor();
|
|
int64_t audioDecoded = AudioQueue().Duration();
|
|
if (mAudioEndTime != -1) {
|
|
audioDecoded += mAudioEndTime - GetMediaTime();
|
|
}
|
|
return audioDecoded;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SendStreamAudio(AudioData* aAudio,
|
|
DecodedStreamData* aStream,
|
|
AudioSegment* aOutput)
|
|
{
|
|
NS_ASSERTION(OnDecodeThread() ||
|
|
OnStateMachineThread(), "Should be on decode thread or state machine thread");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (aAudio->mTime <= aStream->mLastAudioPacketTime) {
|
|
// ignore packet that we've already processed
|
|
return;
|
|
}
|
|
aStream->mLastAudioPacketTime = aAudio->mTime;
|
|
aStream->mLastAudioPacketEndTime = aAudio->GetEndTime();
|
|
|
|
// This logic has to mimic AudioLoop closely to make sure we write
|
|
// the exact same silences
|
|
CheckedInt64 audioWrittenOffset = UsecsToFrames(mInfo.mAudio.mRate,
|
|
aStream->mInitialTime + mStartTime) + aStream->mAudioFramesWritten;
|
|
CheckedInt64 frameOffset = UsecsToFrames(mInfo.mAudio.mRate, aAudio->mTime);
|
|
if (!audioWrittenOffset.isValid() || !frameOffset.isValid())
|
|
return;
|
|
if (audioWrittenOffset.value() < frameOffset.value()) {
|
|
// Write silence to catch up
|
|
VERBOSE_LOG("writing %d frames of silence to MediaStream",
|
|
int32_t(frameOffset.value() - audioWrittenOffset.value()));
|
|
AudioSegment silence;
|
|
silence.InsertNullDataAtStart(frameOffset.value() - audioWrittenOffset.value());
|
|
aStream->mAudioFramesWritten += silence.GetDuration();
|
|
aOutput->AppendFrom(&silence);
|
|
}
|
|
|
|
int64_t offset;
|
|
if (aStream->mAudioFramesWritten == 0) {
|
|
NS_ASSERTION(frameOffset.value() <= audioWrittenOffset.value(),
|
|
"Otherwise we'd have taken the write-silence path");
|
|
// We're starting in the middle of a packet. Split the packet.
|
|
offset = audioWrittenOffset.value() - frameOffset.value();
|
|
} else {
|
|
// Write the entire packet.
|
|
offset = 0;
|
|
}
|
|
|
|
if (offset >= aAudio->mFrames)
|
|
return;
|
|
|
|
aAudio->EnsureAudioBuffer();
|
|
nsRefPtr<SharedBuffer> buffer = aAudio->mAudioBuffer;
|
|
AudioDataValue* bufferData = static_cast<AudioDataValue*>(buffer->Data());
|
|
nsAutoTArray<const AudioDataValue*,2> channels;
|
|
for (uint32_t i = 0; i < aAudio->mChannels; ++i) {
|
|
channels.AppendElement(bufferData + i*aAudio->mFrames + offset);
|
|
}
|
|
aOutput->AppendFrames(buffer.forget(), channels, aAudio->mFrames);
|
|
VERBOSE_LOG("writing %d frames of data to MediaStream for AudioData at %lld",
|
|
aAudio->mFrames - int32_t(offset), aAudio->mTime);
|
|
aStream->mAudioFramesWritten += aAudio->mFrames - int32_t(offset);
|
|
}
|
|
|
|
static void WriteVideoToMediaStream(layers::Image* aImage,
|
|
int64_t aDuration,
|
|
const IntSize& aIntrinsicSize,
|
|
VideoSegment* aOutput)
|
|
{
|
|
nsRefPtr<layers::Image> image = aImage;
|
|
aOutput->AppendFrame(image.forget(), aDuration, aIntrinsicSize);
|
|
}
|
|
|
|
static const TrackID TRACK_AUDIO = 1;
|
|
static const TrackID TRACK_VIDEO = 2;
|
|
static const TrackRate RATE_VIDEO = USECS_PER_S;
|
|
|
|
void MediaDecoderStateMachine::SendStreamData()
|
|
{
|
|
NS_ASSERTION(OnDecodeThread() ||
|
|
OnStateMachineThread(), "Should be on decode thread or state machine thread");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
DecodedStreamData* stream = mDecoder->GetDecodedStream();
|
|
if (!stream)
|
|
return;
|
|
|
|
if (mState == DECODER_STATE_DECODING_METADATA)
|
|
return;
|
|
|
|
// If there's still an audio thread alive, then we can't send any stream
|
|
// data yet since both SendStreamData and the audio thread want to be in
|
|
// charge of popping the audio queue. We're waiting for the audio thread
|
|
// to die before sending anything to our stream.
|
|
if (mAudioThread)
|
|
return;
|
|
|
|
int64_t minLastAudioPacketTime = INT64_MAX;
|
|
bool finished =
|
|
(!mInfo.HasAudio() || AudioQueue().IsFinished()) &&
|
|
(!mInfo.HasVideo() || VideoQueue().IsFinished());
|
|
if (mDecoder->IsSameOriginMedia()) {
|
|
SourceMediaStream* mediaStream = stream->mStream;
|
|
StreamTime endPosition = 0;
|
|
|
|
if (!stream->mStreamInitialized) {
|
|
if (mInfo.HasAudio()) {
|
|
AudioSegment* audio = new AudioSegment();
|
|
mediaStream->AddTrack(TRACK_AUDIO, mInfo.mAudio.mRate, 0, audio);
|
|
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_AUDIO,
|
|
GetStateMachineThread(), GetWakeDecoderRunnable());
|
|
}
|
|
if (mInfo.HasVideo()) {
|
|
VideoSegment* video = new VideoSegment();
|
|
mediaStream->AddTrack(TRACK_VIDEO, RATE_VIDEO, 0, video);
|
|
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_VIDEO,
|
|
GetStateMachineThread(), GetWakeDecoderRunnable());
|
|
}
|
|
stream->mStreamInitialized = true;
|
|
}
|
|
|
|
if (mInfo.HasAudio()) {
|
|
nsAutoTArray<AudioData*,10> audio;
|
|
// It's OK to hold references to the AudioData because while audio
|
|
// is captured, only the decoder thread pops from the queue (see below).
|
|
AudioQueue().GetElementsAfter(stream->mLastAudioPacketTime, &audio);
|
|
AudioSegment output;
|
|
for (uint32_t i = 0; i < audio.Length(); ++i) {
|
|
SendStreamAudio(audio[i], stream, &output);
|
|
}
|
|
if (output.GetDuration() > 0) {
|
|
mediaStream->AppendToTrack(TRACK_AUDIO, &output);
|
|
}
|
|
if (AudioQueue().IsFinished() && !stream->mHaveSentFinishAudio) {
|
|
mediaStream->EndTrack(TRACK_AUDIO);
|
|
stream->mHaveSentFinishAudio = true;
|
|
}
|
|
minLastAudioPacketTime = std::min(minLastAudioPacketTime, stream->mLastAudioPacketTime);
|
|
endPosition = std::max(endPosition,
|
|
mediaStream->TicksToTimeRoundDown(mInfo.mAudio.mRate,
|
|
stream->mAudioFramesWritten));
|
|
}
|
|
|
|
if (mInfo.HasVideo()) {
|
|
nsAutoTArray<VideoData*,10> video;
|
|
// It's OK to hold references to the VideoData only the decoder thread
|
|
// pops from the queue.
|
|
VideoQueue().GetElementsAfter(stream->mNextVideoTime, &video);
|
|
VideoSegment output;
|
|
for (uint32_t i = 0; i < video.Length(); ++i) {
|
|
VideoData* v = video[i];
|
|
if (stream->mNextVideoTime < v->mTime) {
|
|
VERBOSE_LOG("writing last video to MediaStream %p for %lldus",
|
|
mediaStream, v->mTime - stream->mNextVideoTime);
|
|
// Write last video frame to catch up. mLastVideoImage can be null here
|
|
// which is fine, it just means there's no video.
|
|
WriteVideoToMediaStream(stream->mLastVideoImage,
|
|
v->mTime - stream->mNextVideoTime, stream->mLastVideoImageDisplaySize,
|
|
&output);
|
|
stream->mNextVideoTime = v->mTime;
|
|
}
|
|
if (stream->mNextVideoTime < v->GetEndTime()) {
|
|
VERBOSE_LOG("writing video frame %lldus to MediaStream %p for %lldus",
|
|
v->mTime, mediaStream, v->GetEndTime() - stream->mNextVideoTime);
|
|
WriteVideoToMediaStream(v->mImage,
|
|
v->GetEndTime() - stream->mNextVideoTime, v->mDisplay,
|
|
&output);
|
|
stream->mNextVideoTime = v->GetEndTime();
|
|
stream->mLastVideoImage = v->mImage;
|
|
stream->mLastVideoImageDisplaySize = v->mDisplay;
|
|
} else {
|
|
VERBOSE_LOG("skipping writing video frame %lldus (end %lldus) to MediaStream",
|
|
v->mTime, v->GetEndTime());
|
|
}
|
|
}
|
|
if (output.GetDuration() > 0) {
|
|
mediaStream->AppendToTrack(TRACK_VIDEO, &output);
|
|
}
|
|
if (VideoQueue().IsFinished() && !stream->mHaveSentFinishVideo) {
|
|
mediaStream->EndTrack(TRACK_VIDEO);
|
|
stream->mHaveSentFinishVideo = true;
|
|
}
|
|
endPosition = std::max(endPosition,
|
|
mediaStream->TicksToTimeRoundDown(RATE_VIDEO, stream->mNextVideoTime - stream->mInitialTime));
|
|
}
|
|
|
|
if (!stream->mHaveSentFinish) {
|
|
stream->mStream->AdvanceKnownTracksTime(endPosition);
|
|
}
|
|
|
|
if (finished && !stream->mHaveSentFinish) {
|
|
stream->mHaveSentFinish = true;
|
|
stream->mStream->Finish();
|
|
}
|
|
}
|
|
|
|
if (mAudioCaptured) {
|
|
// Discard audio packets that are no longer needed.
|
|
while (true) {
|
|
const AudioData* a = AudioQueue().PeekFront();
|
|
// Packet times are not 100% reliable so this may discard packets that
|
|
// actually contain data for mCurrentFrameTime. This means if someone might
|
|
// create a new output stream and we actually don't have the audio for the
|
|
// very start. That's OK, we'll play silence instead for a brief moment.
|
|
// That's OK. Seeking to this time would have a similar issue for such
|
|
// badly muxed resources.
|
|
if (!a || a->GetEndTime() >= minLastAudioPacketTime)
|
|
break;
|
|
mAudioEndTime = std::max(mAudioEndTime, a->GetEndTime());
|
|
delete AudioQueue().PopFront();
|
|
}
|
|
|
|
if (finished) {
|
|
mAudioCompleted = true;
|
|
UpdateReadyState();
|
|
}
|
|
}
|
|
}
|
|
|
|
MediaDecoderStateMachine::WakeDecoderRunnable*
|
|
MediaDecoderStateMachine::GetWakeDecoderRunnable()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (!mPendingWakeDecoder.get()) {
|
|
mPendingWakeDecoder = new WakeDecoderRunnable(this);
|
|
}
|
|
return mPendingWakeDecoder.get();
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio(int64_t aAmpleAudioUSecs)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (AudioQueue().GetSize() == 0 ||
|
|
GetDecodedAudioDuration() < aAmpleAudioUSecs) {
|
|
return false;
|
|
}
|
|
if (!mAudioCaptured) {
|
|
return true;
|
|
}
|
|
|
|
DecodedStreamData* stream = mDecoder->GetDecodedStream();
|
|
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishAudio) {
|
|
if (!stream->mStream->HaveEnoughBuffered(TRACK_AUDIO)) {
|
|
return false;
|
|
}
|
|
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_AUDIO,
|
|
GetStateMachineThread(), GetWakeDecoderRunnable());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (static_cast<uint32_t>(VideoQueue().GetSize()) < mAmpleVideoFrames * mPlaybackRate) {
|
|
return false;
|
|
}
|
|
|
|
DecodedStreamData* stream = mDecoder->GetDecodedStream();
|
|
if (stream && stream->mStreamInitialized && !stream->mHaveSentFinishVideo) {
|
|
if (!stream->mStream->HaveEnoughBuffered(TRACK_VIDEO)) {
|
|
return false;
|
|
}
|
|
stream->mStream->DispatchWhenNotEnoughBuffered(TRACK_VIDEO,
|
|
GetStateMachineThread(), GetWakeDecoderRunnable());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::NeedToDecodeVideo()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
return IsVideoDecoding() &&
|
|
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
|
|
(!mMinimizePreroll && !HaveEnoughDecodedVideo()));
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::DecodeVideo()
|
|
{
|
|
int64_t currentTime = 0;
|
|
bool skipToNextKeyFrame = false;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
|
|
if (mState != DECODER_STATE_DECODING &&
|
|
mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_SEEKING) {
|
|
mVideoRequestPending = false;
|
|
DispatchDecodeTasksIfNeeded();
|
|
return;
|
|
}
|
|
|
|
// We don't want to consider skipping to the next keyframe if we've
|
|
// only just started up the decode loop, so wait until we've decoded
|
|
// some frames before enabling the keyframe skip logic on video.
|
|
if (mIsVideoPrerolling &&
|
|
(static_cast<uint32_t>(VideoQueue().GetSize())
|
|
>= mVideoPrerollFrames * mPlaybackRate))
|
|
{
|
|
mIsVideoPrerolling = false;
|
|
}
|
|
|
|
// We'll skip the video decode to the nearest keyframe if we're low on
|
|
// audio, or if we're low on video, provided we're not running low on
|
|
// data to decode. If we're running low on downloaded data to decode,
|
|
// we won't start keyframe skipping, as we'll be pausing playback to buffer
|
|
// soon anyway and we'll want to be able to display frames immediately
|
|
// after buffering finishes.
|
|
if (mState == DECODER_STATE_DECODING &&
|
|
mIsVideoDecoding &&
|
|
((!mIsAudioPrerolling && mIsAudioDecoding &&
|
|
GetDecodedAudioDuration() < mLowAudioThresholdUsecs * mPlaybackRate) ||
|
|
(!mIsVideoPrerolling && IsVideoDecoding() &&
|
|
// don't skip frame when |clock time| <= |mVideoFrameEndTime| for
|
|
// we are still in the safe range without underrunning video frames
|
|
GetClock() > mVideoFrameEndTime &&
|
|
(static_cast<uint32_t>(VideoQueue().GetSize())
|
|
< LOW_VIDEO_FRAMES * mPlaybackRate))) &&
|
|
!HasLowUndecodedData())
|
|
{
|
|
skipToNextKeyFrame = true;
|
|
DECODER_LOG(PR_LOG_DEBUG, "Skipping video decode to the next keyframe");
|
|
}
|
|
currentTime = mState == DECODER_STATE_SEEKING ? 0 : GetMediaTime();
|
|
|
|
// Time the video decode, so that if it's slow, we can increase our low
|
|
// audio threshold to reduce the chance of an audio underrun while we're
|
|
// waiting for a video decode to complete.
|
|
mVideoDecodeStartTime = TimeStamp::Now();
|
|
}
|
|
|
|
mReader->RequestVideoData(skipToNextKeyFrame, currentTime);
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::NeedToDecodeAudio()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
return IsAudioDecoding() &&
|
|
((mState == DECODER_STATE_SEEKING && mDecodeToSeekTarget) ||
|
|
(!mMinimizePreroll &&
|
|
!HaveEnoughDecodedAudio(mAmpleAudioThresholdUsecs * mPlaybackRate) &&
|
|
(mState != DECODER_STATE_SEEKING || mDecodeToSeekTarget)));
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::DecodeAudio()
|
|
{
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
|
|
if (mState != DECODER_STATE_DECODING &&
|
|
mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_SEEKING) {
|
|
mAudioRequestPending = false;
|
|
DispatchDecodeTasksIfNeeded();
|
|
mon.NotifyAll();
|
|
return;
|
|
}
|
|
|
|
// We don't want to consider skipping to the next keyframe if we've
|
|
// only just started up the decode loop, so wait until we've decoded
|
|
// some audio data before enabling the keyframe skip logic on audio.
|
|
if (mIsAudioPrerolling &&
|
|
GetDecodedAudioDuration() >= mAudioPrerollUsecs * mPlaybackRate) {
|
|
mIsAudioPrerolling = false;
|
|
}
|
|
}
|
|
mReader->RequestAudioData();
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsAudioSeekComplete()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
SAMPLE_LOG("IsAudioSeekComplete() curTarVal=%d mAudDis=%d aqFin=%d aqSz=%d",
|
|
mCurrentSeekTarget.IsValid(), mDropAudioUntilNextDiscontinuity, AudioQueue().IsFinished(), AudioQueue().GetSize());
|
|
return
|
|
!HasAudio() ||
|
|
(mCurrentSeekTarget.IsValid() &&
|
|
!mDropAudioUntilNextDiscontinuity &&
|
|
(AudioQueue().IsFinished() || AudioQueue().GetSize() > 0));
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsVideoSeekComplete()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
SAMPLE_LOG("IsVideoSeekComplete() curTarVal=%d mVidDis=%d vqFin=%d vqSz=%d",
|
|
mCurrentSeekTarget.IsValid(), mDropVideoUntilNextDiscontinuity, VideoQueue().IsFinished(), VideoQueue().GetSize());
|
|
return
|
|
!HasVideo() ||
|
|
(mCurrentSeekTarget.IsValid() &&
|
|
!mDropVideoUntilNextDiscontinuity &&
|
|
(VideoQueue().IsFinished() || VideoQueue().GetSize() > 0));
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnAudioEOS()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
SAMPLE_LOG("OnAudioEOS");
|
|
mAudioRequestPending = false;
|
|
AudioQueue().Finish();
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_METADATA: {
|
|
MaybeFinishDecodeMetadata();
|
|
return;
|
|
}
|
|
case DECODER_STATE_BUFFERING:
|
|
case DECODER_STATE_DECODING: {
|
|
CheckIfDecodeComplete();
|
|
SendStreamData();
|
|
// The ready state can change when we've decoded data, so update the
|
|
// ready state, so that DOM events can fire.
|
|
UpdateReadyState();
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeekTarget.IsValid()) {
|
|
// We've received an EOS from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
mDropAudioUntilNextDiscontinuity = false;
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
// Ignore other cases.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnAudioDecoded(AudioData* aAudioSample)
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
nsAutoPtr<AudioData> audio(aAudioSample);
|
|
MOZ_ASSERT(audio);
|
|
mAudioRequestPending = false;
|
|
|
|
SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
|
|
(audio ? audio->mTime : -1),
|
|
(audio ? audio->GetEndTime() : -1),
|
|
(audio ? audio->mDiscontinuity : 0));
|
|
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_METADATA: {
|
|
Push(audio.forget());
|
|
MaybeFinishDecodeMetadata();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING:
|
|
case DECODER_STATE_DECODING: {
|
|
// In buffering and decoding state, we simply enqueue samples.
|
|
Push(audio.forget());
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeekTarget.IsValid()) {
|
|
// We've received a sample from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
if (audio->mDiscontinuity) {
|
|
mDropAudioUntilNextDiscontinuity = false;
|
|
}
|
|
if (!mDropAudioUntilNextDiscontinuity) {
|
|
// We must be after the discontinuity; we're receiving samples
|
|
// at or after the seek target.
|
|
if (mCurrentSeekTarget.mType == SeekTarget::PrevSyncPoint &&
|
|
mCurrentSeekTarget.mTime > mCurrentTimeBeforeSeek &&
|
|
audio->mTime < mCurrentTimeBeforeSeek) {
|
|
// We are doing a fastSeek, but we ended up *before* the previous
|
|
// playback position. This is surprising UX, so switch to an accurate
|
|
// seek and decode to the seek target. This is not conformant to the
|
|
// spec, fastSeek should always be fast, but until we get the time to
|
|
// change all Readers to seek to the keyframe after the currentTime
|
|
// in this case, we'll just decode forward. Bug 1026330.
|
|
mCurrentSeekTarget.mType = SeekTarget::Accurate;
|
|
}
|
|
if (mCurrentSeekTarget.mType == SeekTarget::PrevSyncPoint) {
|
|
// Non-precise seek; we can stop the seek at the first sample.
|
|
AudioQueue().Push(audio.forget());
|
|
} else {
|
|
// We're doing an accurate seek. We must discard
|
|
// MediaData up to the one containing exact seek target.
|
|
if (NS_FAILED(DropAudioUpToSeekTarget(audio.forget()))) {
|
|
DecodeError();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
// Ignore other cases.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::Push(AudioData* aSample)
|
|
{
|
|
MOZ_ASSERT(aSample);
|
|
// TODO: Send aSample to MSG and recalculate readystate before pushing,
|
|
// otherwise AdvanceFrame may pop the sample before we have a chance
|
|
// to reach playing.
|
|
AudioQueue().Push(aSample);
|
|
if (mState > DECODER_STATE_DECODING_METADATA) {
|
|
SendStreamData();
|
|
// The ready state can change when we've decoded data, so update the
|
|
// ready state, so that DOM events can fire.
|
|
UpdateReadyState();
|
|
DispatchDecodeTasksIfNeeded();
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::Push(VideoData* aSample)
|
|
{
|
|
MOZ_ASSERT(aSample);
|
|
// TODO: Send aSample to MSG and recalculate readystate before pushing,
|
|
// otherwise AdvanceFrame may pop the sample before we have a chance
|
|
// to reach playing.
|
|
VideoQueue().Push(aSample);
|
|
if (mState > DECODER_STATE_DECODING_METADATA) {
|
|
SendStreamData();
|
|
// The ready state can change when we've decoded data, so update the
|
|
// ready state, so that DOM events can fire.
|
|
UpdateReadyState();
|
|
DispatchDecodeTasksIfNeeded();
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnDecodeError()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
DecodeError();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::MaybeFinishDecodeMetadata()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
if ((IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
|
|
(IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
|
|
return;
|
|
}
|
|
if (NS_FAILED(FinishDecodeMetadata())) {
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnVideoEOS()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
SAMPLE_LOG("OnVideoEOS");
|
|
mVideoRequestPending = false;
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_METADATA: {
|
|
VideoQueue().Finish();
|
|
MaybeFinishDecodeMetadata();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING:
|
|
case DECODER_STATE_DECODING: {
|
|
VideoQueue().Finish();
|
|
CheckIfDecodeComplete();
|
|
SendStreamData();
|
|
// The ready state can change when we've decoded data, so update the
|
|
// ready state, so that DOM events can fire.
|
|
UpdateReadyState();
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
return;
|
|
}
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeekTarget.IsValid()) {
|
|
// We've received a sample from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
// Null sample. Hit end of stream. If we have decoded a frame,
|
|
// insert it into the queue so that we have something to display.
|
|
if (mFirstVideoFrameAfterSeek) {
|
|
VideoQueue().Push(mFirstVideoFrameAfterSeek.forget());
|
|
}
|
|
VideoQueue().Finish();
|
|
mDropVideoUntilNextDiscontinuity = false;
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
// Ignore other cases.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::OnVideoDecoded(VideoData* aVideoSample)
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
nsAutoPtr<VideoData> video(aVideoSample);
|
|
mVideoRequestPending = false;
|
|
|
|
SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
|
|
(video ? video->mTime : -1),
|
|
(video ? video->GetEndTime() : -1),
|
|
(video ? video->mDiscontinuity : 0));
|
|
|
|
switch (mState) {
|
|
case DECODER_STATE_DECODING_METADATA: {
|
|
Push(video.forget());
|
|
MaybeFinishDecodeMetadata();
|
|
return;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING:
|
|
case DECODER_STATE_DECODING: {
|
|
Push(video.forget());
|
|
// If the requested video sample was slow to arrive, increase the
|
|
// amount of audio we buffer to ensure that we don't run out of audio.
|
|
// TODO: Detect when we're truly async, and don't do this if so, as
|
|
// it's not necessary.
|
|
TimeDuration decodeTime = TimeStamp::Now() - mVideoDecodeStartTime;
|
|
if (THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
|
|
!HasLowUndecodedData())
|
|
{
|
|
mLowAudioThresholdUsecs =
|
|
std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), AMPLE_AUDIO_USECS);
|
|
mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
|
|
mAmpleAudioThresholdUsecs);
|
|
DECODER_LOG(PR_LOG_DEBUG, "Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
|
|
mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
|
|
}
|
|
return;
|
|
}
|
|
case DECODER_STATE_SEEKING: {
|
|
if (!mCurrentSeekTarget.IsValid()) {
|
|
// We've received a sample from a previous decode. Discard it.
|
|
return;
|
|
}
|
|
if (mDropVideoUntilNextDiscontinuity) {
|
|
if (video->mDiscontinuity) {
|
|
mDropVideoUntilNextDiscontinuity = false;
|
|
}
|
|
}
|
|
if (!mDropVideoUntilNextDiscontinuity) {
|
|
// We must be after the discontinuity; we're receiving samples
|
|
// at or after the seek target.
|
|
if (mCurrentSeekTarget.mType == SeekTarget::PrevSyncPoint &&
|
|
mCurrentSeekTarget.mTime > mCurrentTimeBeforeSeek &&
|
|
video->mTime < mCurrentTimeBeforeSeek) {
|
|
// We are doing a fastSeek, but we ended up *before* the previous
|
|
// playback position. This is surprising UX, so switch to an accurate
|
|
// seek and decode to the seek target. This is not conformant to the
|
|
// spec, fastSeek should always be fast, but until we get the time to
|
|
// change all Readers to seek to the keyframe after the currentTime
|
|
// in this case, we'll just decode forward. Bug 1026330.
|
|
mCurrentSeekTarget.mType = SeekTarget::Accurate;
|
|
}
|
|
if (mCurrentSeekTarget.mType == SeekTarget::PrevSyncPoint) {
|
|
// Non-precise seek; we can stop the seek at the first sample.
|
|
VideoQueue().Push(video.forget());
|
|
} else {
|
|
// We're doing an accurate seek. We still need to discard
|
|
// MediaData up to the one containing exact seek target.
|
|
if (NS_FAILED(DropVideoUpToSeekTarget(video.forget()))) {
|
|
DecodeError();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
CheckIfSeekComplete();
|
|
return;
|
|
}
|
|
default: {
|
|
// Ignore other cases.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::CheckIfSeekComplete()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
const bool videoSeekComplete = IsVideoSeekComplete();
|
|
if (HasVideo() && !videoSeekComplete) {
|
|
// We haven't reached the target. Ensure we have requested another sample.
|
|
if (NS_FAILED(EnsureVideoDecodeTaskQueued())) {
|
|
NS_WARNING("Failed to request video during seek");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
const bool audioSeekComplete = IsAudioSeekComplete();
|
|
if (HasAudio() && !audioSeekComplete) {
|
|
// We haven't reached the target. Ensure we have requested another sample.
|
|
if (NS_FAILED(EnsureAudioDecodeTaskQueued())) {
|
|
NS_WARNING("Failed to request audio during seek");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
SAMPLE_LOG("CheckIfSeekComplete() audioSeekComplete=%d videoSeekComplete=%d",
|
|
audioSeekComplete, videoSeekComplete);
|
|
|
|
if (audioSeekComplete && videoSeekComplete) {
|
|
mDecodeToSeekTarget = false;
|
|
RefPtr<nsIRunnable> task(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::SeekCompleted));
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(task);
|
|
if (NS_FAILED(rv)) {
|
|
DecodeError();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsAudioDecoding()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
return HasAudio() && !AudioQueue().IsFinished();
|
|
}
|
|
|
|
bool
|
|
MediaDecoderStateMachine::IsVideoDecoding()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
return HasVideo() && !VideoQueue().IsFinished();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::CheckIfDecodeComplete()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
if (mState == DECODER_STATE_SHUTDOWN ||
|
|
mState == DECODER_STATE_SEEKING ||
|
|
mState == DECODER_STATE_COMPLETED) {
|
|
// Don't change our state if we've already been shutdown, or we're seeking,
|
|
// since we don't want to abort the shutdown or seek processes.
|
|
return;
|
|
}
|
|
if (!IsVideoDecoding() && !IsAudioDecoding()) {
|
|
// We've finished decoding all active streams,
|
|
// so move to COMPLETED state.
|
|
mState = DECODER_STATE_COMPLETED;
|
|
DispatchDecodeTasksIfNeeded();
|
|
ScheduleStateMachine();
|
|
}
|
|
DECODER_LOG(PR_LOG_DEBUG, "CheckIfDecodeComplete %scompleted",
|
|
((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsPlaying()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
return !mPlayStartTime.IsNull();
|
|
}
|
|
|
|
// If we have already written enough frames to the AudioStream, start the
|
|
// playback.
|
|
static void
|
|
StartAudioStreamPlaybackIfNeeded(AudioStream* aStream)
|
|
{
|
|
// We want to have enough data in the buffer to start the stream.
|
|
if (static_cast<double>(aStream->GetWritten()) / aStream->GetRate() >=
|
|
static_cast<double>(AUDIOSTREAM_MIN_WRITE_BEFORE_START_USECS) / USECS_PER_S) {
|
|
aStream->Start();
|
|
}
|
|
}
|
|
|
|
static void WriteSilence(AudioStream* aStream, uint32_t aFrames)
|
|
{
|
|
uint32_t numSamples = aFrames * aStream->GetChannels();
|
|
nsAutoTArray<AudioDataValue, 1000> buf;
|
|
buf.SetLength(numSamples);
|
|
memset(buf.Elements(), 0, numSamples * sizeof(AudioDataValue));
|
|
aStream->Write(buf.Elements(), aFrames);
|
|
|
|
StartAudioStreamPlaybackIfNeeded(aStream);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::AudioLoop()
|
|
{
|
|
NS_ASSERTION(OnAudioThread(), "Should be on audio thread.");
|
|
DECODER_LOG(PR_LOG_DEBUG, "Begun audio thread/loop");
|
|
int64_t audioDuration = 0;
|
|
int64_t audioStartTime = -1;
|
|
uint32_t channels, rate;
|
|
double volume = -1;
|
|
bool setVolume;
|
|
double playbackRate = -1;
|
|
bool setPlaybackRate;
|
|
bool preservesPitch;
|
|
bool setPreservesPitch;
|
|
AudioChannel audioChannel;
|
|
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mAudioCompleted = false;
|
|
audioStartTime = mAudioStartTime;
|
|
NS_ASSERTION(audioStartTime != -1, "Should have audio start time by now");
|
|
channels = mInfo.mAudio.mChannels;
|
|
rate = mInfo.mAudio.mRate;
|
|
|
|
audioChannel = mDecoder->GetAudioChannel();
|
|
volume = mVolume;
|
|
preservesPitch = mPreservesPitch;
|
|
playbackRate = mPlaybackRate;
|
|
}
|
|
|
|
{
|
|
// AudioStream initialization can block for extended periods in unusual
|
|
// circumstances, so we take care to drop the decoder monitor while
|
|
// initializing.
|
|
RefPtr<AudioStream> audioStream(new AudioStream());
|
|
audioStream->Init(channels, rate, audioChannel, AudioStream::HighLatency);
|
|
audioStream->SetVolume(volume);
|
|
if (audioStream->SetPreservesPitch(preservesPitch) != NS_OK) {
|
|
NS_WARNING("Setting the pitch preservation failed at AudioLoop start.");
|
|
}
|
|
if (playbackRate != 1.0) {
|
|
NS_ASSERTION(playbackRate != 0,
|
|
"Don't set the playbackRate to 0 on an AudioStream.");
|
|
if (audioStream->SetPlaybackRate(playbackRate) != NS_OK) {
|
|
NS_WARNING("Setting the playback rate failed at AudioLoop start.");
|
|
}
|
|
}
|
|
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mAudioStream = audioStream.forget();
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
// Wait while we're not playing, and we're not shutting down, or we're
|
|
// playing and we've got no audio to play.
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(mState != DECODER_STATE_DECODING_METADATA,
|
|
"Should have meta data before audio started playing.");
|
|
while (mState != DECODER_STATE_SHUTDOWN &&
|
|
!mStopAudioThread &&
|
|
(!IsPlaying() ||
|
|
mState == DECODER_STATE_BUFFERING ||
|
|
(AudioQueue().GetSize() == 0 &&
|
|
!AudioQueue().AtEndOfStream())))
|
|
{
|
|
if (!IsPlaying() && !mAudioStream->IsPaused()) {
|
|
mAudioStream->Pause();
|
|
}
|
|
mon.Wait();
|
|
}
|
|
|
|
// If we're shutting down, break out and exit the audio thread.
|
|
// Also break out if audio is being captured.
|
|
if (mState == DECODER_STATE_SHUTDOWN ||
|
|
mStopAudioThread ||
|
|
AudioQueue().AtEndOfStream())
|
|
{
|
|
break;
|
|
}
|
|
|
|
// We only want to go to the expense of changing the volume if
|
|
// the volume has changed.
|
|
setVolume = volume != mVolume;
|
|
volume = mVolume;
|
|
|
|
// Same for the playbackRate.
|
|
setPlaybackRate = playbackRate != mPlaybackRate;
|
|
playbackRate = mPlaybackRate;
|
|
|
|
// Same for the pitch preservation.
|
|
setPreservesPitch = preservesPitch != mPreservesPitch;
|
|
preservesPitch = mPreservesPitch;
|
|
|
|
if (IsPlaying() && mAudioStream->IsPaused()) {
|
|
mAudioStream->Resume();
|
|
}
|
|
}
|
|
|
|
if (setVolume) {
|
|
mAudioStream->SetVolume(volume);
|
|
}
|
|
if (setPlaybackRate) {
|
|
NS_ASSERTION(playbackRate != 0,
|
|
"Don't set the playbackRate to 0 in the AudioStreams");
|
|
if (mAudioStream->SetPlaybackRate(playbackRate) != NS_OK) {
|
|
NS_WARNING("Setting the playback rate failed in AudioLoop.");
|
|
}
|
|
}
|
|
if (setPreservesPitch) {
|
|
if (mAudioStream->SetPreservesPitch(preservesPitch) != NS_OK) {
|
|
NS_WARNING("Setting the pitch preservation failed in AudioLoop.");
|
|
}
|
|
}
|
|
NS_ASSERTION(AudioQueue().GetSize() > 0,
|
|
"Should have data to play");
|
|
// See if there's a gap in the audio. If there is, push silence into the
|
|
// audio hardware, so we can play across the gap.
|
|
const AudioData* s = AudioQueue().PeekFront();
|
|
|
|
// Calculate the number of frames that have been pushed onto the audio
|
|
// hardware.
|
|
CheckedInt64 playedFrames = UsecsToFrames(audioStartTime, rate) +
|
|
audioDuration;
|
|
// Calculate the timestamp of the next chunk of audio in numbers of
|
|
// samples.
|
|
CheckedInt64 sampleTime = UsecsToFrames(s->mTime, rate);
|
|
CheckedInt64 missingFrames = sampleTime - playedFrames;
|
|
if (!missingFrames.isValid() || !sampleTime.isValid()) {
|
|
NS_WARNING("Int overflow adding in AudioLoop()");
|
|
break;
|
|
}
|
|
|
|
int64_t framesWritten = 0;
|
|
if (missingFrames.value() > 0) {
|
|
// The next audio chunk begins some time after the end of the last chunk
|
|
// we pushed to the audio hardware. We must push silence into the audio
|
|
// hardware so that the next audio chunk begins playback at the correct
|
|
// time.
|
|
missingFrames = std::min<int64_t>(UINT32_MAX, missingFrames.value());
|
|
VERBOSE_LOG("playing %d frames of silence", int32_t(missingFrames.value()));
|
|
framesWritten = PlaySilence(static_cast<uint32_t>(missingFrames.value()),
|
|
channels, playedFrames.value());
|
|
} else {
|
|
framesWritten = PlayFromAudioQueue(sampleTime.value(), channels);
|
|
}
|
|
audioDuration += framesWritten;
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
CheckedInt64 playedUsecs = FramesToUsecs(audioDuration, rate) + audioStartTime;
|
|
if (!playedUsecs.isValid()) {
|
|
NS_WARNING("Int overflow calculating audio end time");
|
|
break;
|
|
}
|
|
mAudioEndTime = playedUsecs.value();
|
|
}
|
|
}
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (AudioQueue().AtEndOfStream() &&
|
|
mState != DECODER_STATE_SHUTDOWN &&
|
|
!mStopAudioThread)
|
|
{
|
|
// If the media was too short to trigger the start of the audio stream,
|
|
// start it now.
|
|
mAudioStream->Start();
|
|
// Last frame pushed to audio hardware, wait for the audio to finish,
|
|
// before the audio thread terminates.
|
|
bool seeking = false;
|
|
{
|
|
int64_t oldPosition = -1;
|
|
int64_t position = GetMediaTime();
|
|
while (oldPosition != position &&
|
|
mAudioEndTime - position > 0 &&
|
|
mState != DECODER_STATE_SEEKING &&
|
|
mState != DECODER_STATE_SHUTDOWN)
|
|
{
|
|
const int64_t DRAIN_BLOCK_USECS = 100000;
|
|
Wait(std::min(mAudioEndTime - position, DRAIN_BLOCK_USECS));
|
|
oldPosition = position;
|
|
position = GetMediaTime();
|
|
}
|
|
seeking = mState == DECODER_STATE_SEEKING;
|
|
}
|
|
|
|
if (!seeking && !mAudioStream->IsPaused()) {
|
|
{
|
|
ReentrantMonitorAutoExit exit(mDecoder->GetReentrantMonitor());
|
|
mAudioStream->Drain();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DECODER_LOG(PR_LOG_DEBUG, "Reached audio stream end.");
|
|
{
|
|
// Must hold lock while shutting down and anulling the audio stream to prevent
|
|
// state machine thread trying to use it while we're destroying it.
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mAudioStream->Shutdown();
|
|
mAudioStream = nullptr;
|
|
if (!mAudioCaptured) {
|
|
mAudioCompleted = true;
|
|
UpdateReadyState();
|
|
// Kick the decode thread; it may be sleeping waiting for this to finish.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
}
|
|
|
|
DECODER_LOG(PR_LOG_DEBUG, "Audio stream finished playing, audio thread exit");
|
|
}
|
|
|
|
uint32_t MediaDecoderStateMachine::PlaySilence(uint32_t aFrames,
|
|
uint32_t aChannels,
|
|
uint64_t aFrameOffset)
|
|
|
|
{
|
|
NS_ASSERTION(OnAudioThread(), "Only call on audio thread.");
|
|
NS_ASSERTION(!mAudioStream->IsPaused(), "Don't play when paused");
|
|
uint32_t maxFrames = SILENCE_BYTES_CHUNK / aChannels / sizeof(AudioDataValue);
|
|
uint32_t frames = std::min(aFrames, maxFrames);
|
|
WriteSilence(mAudioStream, frames);
|
|
return frames;
|
|
}
|
|
|
|
uint32_t MediaDecoderStateMachine::PlayFromAudioQueue(uint64_t aFrameOffset,
|
|
uint32_t aChannels)
|
|
{
|
|
NS_ASSERTION(OnAudioThread(), "Only call on audio thread.");
|
|
NS_ASSERTION(!mAudioStream->IsPaused(), "Don't play when paused");
|
|
nsAutoPtr<AudioData> audio(AudioQueue().PopFront());
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_WARN_IF_FALSE(IsPlaying(), "Should be playing");
|
|
// Awaken the decode loop if it's waiting for space to free up in the
|
|
// audio queue.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
int64_t offset = -1;
|
|
uint32_t frames = 0;
|
|
VERBOSE_LOG("playing %d frames of data to stream for AudioData at %lld",
|
|
audio->mFrames, audio->mTime);
|
|
mAudioStream->Write(audio->mAudioData,
|
|
audio->mFrames);
|
|
|
|
aChannels = mAudioStream->GetOutChannels();
|
|
|
|
StartAudioStreamPlaybackIfNeeded(mAudioStream);
|
|
|
|
offset = audio->mOffset;
|
|
frames = audio->mFrames;
|
|
|
|
if (offset != -1) {
|
|
mDecoder->UpdatePlaybackOffset(offset);
|
|
}
|
|
return frames;
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::Init(MediaDecoderStateMachine* aCloneDonor)
|
|
{
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
|
|
RefPtr<SharedThreadPool> decodePool(GetMediaDecodeThreadPool());
|
|
NS_ENSURE_TRUE(decodePool, NS_ERROR_FAILURE);
|
|
|
|
RefPtr<SharedThreadPool> stateMachinePool(
|
|
SharedThreadPool::Get(NS_LITERAL_CSTRING("Media State Machine"), 1));
|
|
NS_ENSURE_TRUE(stateMachinePool, NS_ERROR_FAILURE);
|
|
|
|
mDecodeTaskQueue = new MediaTaskQueue(decodePool.forget());
|
|
NS_ENSURE_TRUE(mDecodeTaskQueue, NS_ERROR_FAILURE);
|
|
|
|
MediaDecoderReader* cloneReader = nullptr;
|
|
if (aCloneDonor) {
|
|
cloneReader = aCloneDonor->mReader;
|
|
}
|
|
|
|
mStateMachineThreadPool = stateMachinePool;
|
|
|
|
nsresult rv;
|
|
mTimer = do_CreateInstance("@mozilla.org/timer;1", &rv);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
rv = mTimer->SetTarget(GetStateMachineThread());
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// Note: This creates a cycle, broken in shutdown.
|
|
mMediaDecodedListener =
|
|
new MediaDataDecodedListener<MediaDecoderStateMachine>(this,
|
|
mDecodeTaskQueue);
|
|
mReader->SetCallback(mMediaDecodedListener);
|
|
mReader->SetTaskQueue(mDecodeTaskQueue);
|
|
|
|
rv = mReader->Init(cloneReader);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StopPlayback()
|
|
{
|
|
DECODER_LOG(PR_LOG_DEBUG, "StopPlayback()");
|
|
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mDecoder->NotifyPlaybackStopped();
|
|
|
|
if (IsPlaying()) {
|
|
mPlayDuration = GetClock();
|
|
mPlayStartTime = TimeStamp();
|
|
}
|
|
// Notify the audio thread, so that it notices that we've stopped playing,
|
|
// so it can pause audio playback.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
NS_ASSERTION(!IsPlaying(), "Should report not playing at end of StopPlayback()");
|
|
mDecoder->UpdateStreamBlockingForStateMachinePlaying();
|
|
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetSyncPointForMediaStream()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
DecodedStreamData* stream = mDecoder->GetDecodedStream();
|
|
if (!stream) {
|
|
return;
|
|
}
|
|
|
|
mSyncPointInMediaStream = stream->GetLastOutputTime();
|
|
mSyncPointInDecodedStream = mStartTime + mPlayDuration;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetCurrentTimeViaMediaStreamSync()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(mSyncPointInDecodedStream >= 0, "Should have set up sync point");
|
|
DecodedStreamData* stream = mDecoder->GetDecodedStream();
|
|
int64_t streamDelta = stream->GetLastOutputTime() - mSyncPointInMediaStream;
|
|
return mSyncPointInDecodedStream + streamDelta;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StartPlayback()
|
|
{
|
|
DECODER_LOG(PR_LOG_DEBUG, "StartPlayback()");
|
|
|
|
NS_ASSERTION(!IsPlaying(), "Shouldn't be playing when StartPlayback() is called");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mDecoder->NotifyPlaybackStarted();
|
|
mPlayStartTime = TimeStamp::Now();
|
|
|
|
NS_ASSERTION(IsPlaying(), "Should report playing by end of StartPlayback()");
|
|
if (NS_FAILED(StartAudioThread())) {
|
|
NS_WARNING("Failed to create audio thread");
|
|
}
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
mDecoder->UpdateStreamBlockingForStateMachinePlaying();
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
|
|
{
|
|
SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld) (mStartTime=%lld)", aTime, mStartTime);
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
NS_ASSERTION(mStartTime >= 0, "Should have positive mStartTime");
|
|
mCurrentFrameTime = aTime - mStartTime;
|
|
NS_ASSERTION(mCurrentFrameTime >= 0, "CurrentTime should be positive!");
|
|
if (aTime > mEndTime) {
|
|
NS_ASSERTION(mCurrentFrameTime > GetDuration(),
|
|
"CurrentTime must be after duration if aTime > endTime!");
|
|
mEndTime = aTime;
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DurationChanged);
|
|
NS_DispatchToMainThread(event);
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
|
|
{
|
|
UpdatePlaybackPositionInternal(aTime);
|
|
|
|
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
|
|
if (!mPositionChangeQueued || fragmentEnded) {
|
|
mPositionChangeQueued = true;
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackPositionChanged);
|
|
NS_DispatchToMainThread(event);
|
|
}
|
|
|
|
mMetadataManager.DispatchMetadataIfNeeded(mDecoder, aTime);
|
|
|
|
if (fragmentEnded) {
|
|
StopPlayback();
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::ClearPositionChangeFlag()
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mPositionChangeQueued = false;
|
|
}
|
|
|
|
MediaDecoderOwner::NextFrameStatus MediaDecoderStateMachine::GetNextFrameStatus()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (IsBuffering() || IsSeeking()) {
|
|
return MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
|
|
} else if (HaveNextFrameData()) {
|
|
return MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
|
|
}
|
|
return MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetVolume(double volume)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mVolume = volume;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetAudioCaptured(bool aCaptured)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (!mAudioCaptured && aCaptured && !mStopAudioThread) {
|
|
// Make sure the state machine runs as soon as possible. That will
|
|
// stop the audio thread.
|
|
// If mStopAudioThread is true then we're already stopping the audio thread
|
|
// and since we set mAudioCaptured to true, nothing can start it again.
|
|
ScheduleStateMachine();
|
|
}
|
|
mAudioCaptured = aCaptured;
|
|
}
|
|
|
|
double MediaDecoderStateMachine::GetCurrentTime() const
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread() ||
|
|
OnStateMachineThread() ||
|
|
OnDecodeThread(),
|
|
"Should be on main, decode, or state machine thread.");
|
|
|
|
return static_cast<double>(mCurrentFrameTime) / static_cast<double>(USECS_PER_S);
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetDuration()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mEndTime == -1 || mStartTime == -1)
|
|
return -1;
|
|
return mEndTime - mStartTime;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetDuration(int64_t aDuration)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
|
|
"Should be on main or decode thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (aDuration == -1) {
|
|
return;
|
|
}
|
|
|
|
if (mStartTime != -1) {
|
|
mEndTime = mStartTime + aDuration;
|
|
} else {
|
|
mStartTime = 0;
|
|
mEndTime = aDuration;
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdateEstimatedDuration(int64_t aDuration)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
int64_t duration = GetDuration();
|
|
if (aDuration != duration &&
|
|
abs(aDuration - duration) > ESTIMATED_DURATION_FUZZ_FACTOR_USECS) {
|
|
SetDuration(aDuration);
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DurationChanged);
|
|
NS_DispatchToMainThread(event);
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetMediaEndTime(int64_t aEndTime)
|
|
{
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mEndTime = aEndTime;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetFragmentEndTime(int64_t aEndTime)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mFragmentEndTime = aEndTime < 0 ? aEndTime : aEndTime + mStartTime;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetTransportSeekable(bool aTransportSeekable)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
|
|
"Should be on main thread or the decoder thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
mTransportSeekable = aTransportSeekable;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetMediaSeekable(bool aMediaSeekable)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread() || OnDecodeThread(),
|
|
"Should be on main thread or the decoder thread.");
|
|
|
|
mMediaSeekable = aMediaSeekable;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsDormantNeeded()
|
|
{
|
|
return mReader->IsDormantNeeded();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetDormant(bool aDormant)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (!mReader) {
|
|
return;
|
|
}
|
|
|
|
if (aDormant) {
|
|
ScheduleStateMachine();
|
|
mState = DECODER_STATE_DORMANT;
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
} else if ((aDormant != true) && (mState == DECODER_STATE_DORMANT)) {
|
|
ScheduleStateMachine();
|
|
mStartTime = 0;
|
|
mCurrentFrameTime = 0;
|
|
mState = DECODER_STATE_DECODING_METADATA;
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::Shutdown()
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
|
|
// Once we've entered the shutdown state here there's no going back.
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// Change state before issuing shutdown request to threads so those
|
|
// threads can start exiting cleanly during the Shutdown call.
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state to SHUTDOWN");
|
|
ScheduleStateMachine();
|
|
mState = DECODER_STATE_SHUTDOWN;
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StartDecoding()
|
|
{
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (mState == DECODER_STATE_DECODING) {
|
|
return;
|
|
}
|
|
mState = DECODER_STATE_DECODING;
|
|
|
|
mDecodeStartTime = TimeStamp::Now();
|
|
|
|
CheckIfDecodeComplete();
|
|
if (mState == DECODER_STATE_COMPLETED) {
|
|
return;
|
|
}
|
|
|
|
// Reset other state to pristine values before starting decode.
|
|
mIsAudioPrerolling = true;
|
|
mIsVideoPrerolling = true;
|
|
|
|
// Ensure that we've got tasks enqueued to decode data if we need to.
|
|
DispatchDecodeTasksIfNeeded();
|
|
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StartWaitForResources()
|
|
{
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
mState = DECODER_STATE_WAIT_FOR_RESOURCES;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::NotifyWaitingForResourcesStatusChanged()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
if (mState != DECODER_STATE_WAIT_FOR_RESOURCES ||
|
|
mReader->IsWaitingMediaResources()) {
|
|
return;
|
|
}
|
|
// The reader is no longer waiting for resources (say a hardware decoder),
|
|
// we can now proceed to decode metadata.
|
|
mState = DECODER_STATE_DECODING_METADATA;
|
|
EnqueueDecodeMetadataTask();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::Play()
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
// When asked to play, switch to decoding state only if
|
|
// we are currently buffering. In other cases, we'll start playing anyway
|
|
// when the state machine notices the decoder's state change to PLAYING.
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
if (mState == DECODER_STATE_BUFFERING) {
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state from BUFFERING to DECODING");
|
|
mState = DECODER_STATE_DECODING;
|
|
mDecodeStartTime = TimeStamp::Now();
|
|
}
|
|
// Once we start playing, we don't want to minimize our prerolling, as we
|
|
// assume the user is likely to want to keep playing in future.
|
|
mMinimizePreroll = false;
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::ResetPlayback()
|
|
{
|
|
MOZ_ASSERT(mState == DECODER_STATE_SEEKING || mState == DECODER_STATE_SHUTDOWN);
|
|
mVideoFrameEndTime = -1;
|
|
mAudioStartTime = -1;
|
|
mAudioEndTime = -1;
|
|
mAudioCompleted = false;
|
|
AudioQueue().Reset();
|
|
VideoQueue().Reset();
|
|
mFirstVideoFrameAfterSeek = nullptr;
|
|
mDropAudioUntilNextDiscontinuity = true;
|
|
mDropVideoUntilNextDiscontinuity = true;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::NotifyDataArrived(const char* aBuffer,
|
|
uint32_t aLength,
|
|
int64_t aOffset)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
|
|
mReader->NotifyDataArrived(aBuffer, aLength, aOffset);
|
|
|
|
// While playing an unseekable stream of unknown duration, mEndTime is
|
|
// updated (in AdvanceFrame()) as we play. But if data is being downloaded
|
|
// faster than played, mEndTime won't reflect the end of playable data
|
|
// since we haven't played the frame at the end of buffered data. So update
|
|
// mEndTime here as new data is downloaded to prevent such a lag.
|
|
dom::TimeRanges buffered;
|
|
if (mDecoder->IsInfinite() &&
|
|
NS_SUCCEEDED(mDecoder->GetBuffered(&buffered)))
|
|
{
|
|
uint32_t length = 0;
|
|
buffered.GetLength(&length);
|
|
if (length) {
|
|
double end = 0;
|
|
buffered.End(length - 1, &end);
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
mEndTime = std::max<int64_t>(mEndTime, end * USECS_PER_S);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::Seek(const SeekTarget& aTarget)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// We need to be able to seek both at a transport level and at a media level
|
|
// to seek.
|
|
if (!mMediaSeekable) {
|
|
return;
|
|
}
|
|
// MediaDecoder::mPlayState should be SEEKING while we seek, and
|
|
// in that case MediaDecoder shouldn't be calling us.
|
|
NS_ASSERTION(mState != DECODER_STATE_SEEKING,
|
|
"We shouldn't already be seeking");
|
|
NS_ASSERTION(mState >= DECODER_STATE_DECODING,
|
|
"We should have loaded metadata");
|
|
|
|
// Bound the seek time to be inside the media range.
|
|
NS_ASSERTION(mStartTime != -1, "Should know start time by now");
|
|
NS_ASSERTION(mEndTime != -1, "Should know end time by now");
|
|
int64_t seekTime = aTarget.mTime + mStartTime;
|
|
seekTime = std::min(seekTime, mEndTime);
|
|
seekTime = std::max(mStartTime, seekTime);
|
|
NS_ASSERTION(seekTime >= mStartTime && seekTime <= mEndTime,
|
|
"Can only seek in range [0,duration]");
|
|
mSeekTarget = SeekTarget(seekTime, aTarget.mType);
|
|
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state to SEEKING (to %lld)", mSeekTarget.mTime);
|
|
mState = DECODER_STATE_SEEKING;
|
|
if (mDecoder->GetDecodedStream()) {
|
|
mDecoder->RecreateDecodedStream(seekTime - mStartTime);
|
|
}
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StopAudioThread()
|
|
{
|
|
NS_ASSERTION(OnDecodeThread() ||
|
|
OnStateMachineThread(), "Should be on decode thread or state machine thread");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mStopAudioThread) {
|
|
// Nothing to do, since the thread is already stopping
|
|
return;
|
|
}
|
|
|
|
mStopAudioThread = true;
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
if (mAudioThread) {
|
|
DECODER_LOG(PR_LOG_DEBUG, "Shutdown audio thread");
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
mAudioThread->Shutdown();
|
|
}
|
|
mAudioThread = nullptr;
|
|
// Now that the audio thread is dead, try sending data to our MediaStream(s).
|
|
// That may have been waiting for the audio thread to stop.
|
|
SendStreamData();
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnqueueDecodeMetadataTask()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mState != DECODER_STATE_DECODING_METADATA ||
|
|
mDispatchedDecodeMetadataTask) {
|
|
return NS_OK;
|
|
}
|
|
RefPtr<nsIRunnable> task(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::CallDecodeMetadata));
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(task);
|
|
if (NS_SUCCEEDED(rv)) {
|
|
mDispatchedDecodeMetadataTask = true;
|
|
} else {
|
|
NS_WARNING("Dispatch ReadMetadata task failed.");
|
|
return rv;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::SetReaderIdle()
|
|
{
|
|
#ifdef PR_LOGGING
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
DECODER_LOG(PR_LOG_DEBUG, "SetReaderIdle() audioQueue=%lld videoQueue=%lld",
|
|
GetDecodedAudioDuration(),
|
|
VideoQueue().Duration());
|
|
}
|
|
#endif
|
|
MOZ_ASSERT(OnDecodeThread());
|
|
mReader->SetIdle();
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mState != DECODER_STATE_DECODING &&
|
|
mState != DECODER_STATE_BUFFERING &&
|
|
mState != DECODER_STATE_SEEKING) {
|
|
return;
|
|
}
|
|
|
|
// NeedToDecodeAudio() can go from false to true while we hold the
|
|
// monitor, but it can't go from true to false. This can happen because
|
|
// NeedToDecodeAudio() takes into account the amount of decoded audio
|
|
// that's been written to the AudioStream but not played yet. So if we
|
|
// were calling NeedToDecodeAudio() twice and we thread-context switch
|
|
// between the calls, audio can play, which can affect the return value
|
|
// of NeedToDecodeAudio() giving inconsistent results. So we cache the
|
|
// value returned by NeedToDecodeAudio(), and make decisions
|
|
// based on the cached value. If NeedToDecodeAudio() has
|
|
// returned false, and then subsequently returns true and we're not
|
|
// playing, it will probably be OK since we don't need to consume data
|
|
// anyway.
|
|
|
|
const bool needToDecodeAudio = NeedToDecodeAudio();
|
|
const bool needToDecodeVideo = NeedToDecodeVideo();
|
|
|
|
// If we're in completed state, we should not need to decode anything else.
|
|
MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
|
|
(!needToDecodeAudio && !needToDecodeVideo));
|
|
|
|
bool needIdle = !mDecoder->IsLogicallyPlaying() &&
|
|
mState != DECODER_STATE_SEEKING &&
|
|
!needToDecodeAudio &&
|
|
!needToDecodeVideo &&
|
|
!IsPlaying();
|
|
|
|
if (needToDecodeAudio) {
|
|
EnsureAudioDecodeTaskQueued();
|
|
}
|
|
if (needToDecodeVideo) {
|
|
EnsureVideoDecodeTaskQueued();
|
|
}
|
|
|
|
SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d dispAudio=%d needVideo=%d dispVid=%d needIdle=%d",
|
|
needToDecodeAudio, mAudioRequestPending,
|
|
needToDecodeVideo, mVideoRequestPending,
|
|
needIdle);
|
|
|
|
if (needIdle) {
|
|
RefPtr<nsIRunnable> event = NS_NewRunnableMethod(
|
|
this, &MediaDecoderStateMachine::SetReaderIdle);
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(event.forget());
|
|
if (NS_FAILED(rv) && mState != DECODER_STATE_SHUTDOWN) {
|
|
NS_WARNING("Failed to dispatch event to set decoder idle state");
|
|
}
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnqueueDecodeSeekTask()
|
|
{
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mState != DECODER_STATE_SEEKING ||
|
|
!mSeekTarget.IsValid() ||
|
|
mCurrentSeekTarget.IsValid()) {
|
|
return NS_OK;
|
|
}
|
|
mCurrentSeekTarget = mSeekTarget;
|
|
mSeekTarget.Reset();
|
|
mDropAudioUntilNextDiscontinuity = HasAudio();
|
|
mDropVideoUntilNextDiscontinuity = HasVideo();
|
|
|
|
RefPtr<nsIRunnable> task(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DecodeSeek));
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(task);
|
|
if (NS_FAILED(rv)) {
|
|
NS_WARNING("Dispatch DecodeSeek task failed.");
|
|
mCurrentSeekTarget.Reset();
|
|
DecodeError();
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
|
|
if (NeedToDecodeAudio()) {
|
|
return EnsureAudioDecodeTaskQueued();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
|
|
SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d dispatched=%d",
|
|
IsAudioDecoding(), mAudioRequestPending);
|
|
|
|
if (mState >= DECODER_STATE_COMPLETED) {
|
|
return NS_OK;
|
|
}
|
|
|
|
MOZ_ASSERT(mState > DECODER_STATE_DECODING_METADATA);
|
|
|
|
if (IsAudioDecoding() && !mAudioRequestPending) {
|
|
RefPtr<nsIRunnable> task(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DecodeAudio));
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(task);
|
|
if (NS_SUCCEEDED(rv)) {
|
|
mAudioRequestPending = true;
|
|
} else {
|
|
NS_WARNING("Failed to dispatch task to decode audio");
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
|
|
if (NeedToDecodeVideo()) {
|
|
return EnsureVideoDecodeTaskQueued();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d dispatched=%d",
|
|
IsVideoDecoding(), mVideoRequestPending);
|
|
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
|
|
if (mState >= DECODER_STATE_COMPLETED) {
|
|
return NS_OK;
|
|
}
|
|
|
|
MOZ_ASSERT(mState > DECODER_STATE_DECODING_METADATA);
|
|
|
|
if (IsVideoDecoding() && !mVideoRequestPending) {
|
|
RefPtr<nsIRunnable> task(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DecodeVideo));
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(task);
|
|
if (NS_SUCCEEDED(rv)) {
|
|
mVideoRequestPending = true;
|
|
} else {
|
|
NS_WARNING("Failed to dispatch task to decode video");
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::StartAudioThread()
|
|
{
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
if (mAudioCaptured) {
|
|
NS_ASSERTION(mStopAudioThread, "mStopAudioThread must always be true if audio is captured");
|
|
return NS_OK;
|
|
}
|
|
|
|
mStopAudioThread = false;
|
|
if (HasAudio() && !mAudioThread) {
|
|
nsresult rv = NS_NewNamedThread("Media Audio",
|
|
getter_AddRefs(mAudioThread),
|
|
nullptr,
|
|
MEDIA_THREAD_STACK_SIZE);
|
|
if (NS_FAILED(rv)) {
|
|
DECODER_LOG(PR_LOG_WARNING, "Changed state to SHUTDOWN because failed to create audio thread");
|
|
mState = DECODER_STATE_SHUTDOWN;
|
|
return rv;
|
|
}
|
|
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::AudioLoop);
|
|
mAudioThread->Dispatch(event, NS_DISPATCH_NORMAL);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::AudioDecodedUsecs()
|
|
{
|
|
NS_ASSERTION(HasAudio(),
|
|
"Should only call AudioDecodedUsecs() when we have audio");
|
|
// The amount of audio we have decoded is the amount of audio data we've
|
|
// already decoded and pushed to the hardware, plus the amount of audio
|
|
// data waiting to be pushed to the hardware.
|
|
int64_t pushed = (mAudioEndTime != -1) ? (mAudioEndTime - GetMediaTime()) : 0;
|
|
return pushed + AudioQueue().Duration();
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
// We consider ourselves low on decoded data if we're low on audio,
|
|
// provided we've not decoded to the end of the audio stream, or
|
|
// if we're low on video frames, provided
|
|
// we've not decoded to the end of the video stream.
|
|
return ((IsAudioDecoding() && AudioDecodedUsecs() < aAudioUsecs) ||
|
|
(IsVideoDecoding() &&
|
|
static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasLowUndecodedData()
|
|
{
|
|
return HasLowUndecodedData(mLowDataThresholdUsecs);
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::HasLowUndecodedData(double aUsecs)
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(mState > DECODER_STATE_DECODING_METADATA,
|
|
"Must have loaded metadata for GetBuffered() to work");
|
|
|
|
bool reliable;
|
|
double bytesPerSecond = mDecoder->ComputePlaybackRate(&reliable);
|
|
if (!reliable) {
|
|
// Default to assuming we have enough
|
|
return false;
|
|
}
|
|
|
|
MediaResource* stream = mDecoder->GetResource();
|
|
int64_t currentPos = stream->Tell();
|
|
int64_t requiredPos = currentPos + int64_t((aUsecs/1000000.0)*bytesPerSecond);
|
|
int64_t length = stream->GetLength();
|
|
if (length >= 0) {
|
|
requiredPos = std::min(requiredPos, length);
|
|
}
|
|
|
|
return stream->GetCachedDataEnd(currentPos) < requiredPos;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::DecodeError()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
|
|
if (mState == DECODER_STATE_SHUTDOWN) {
|
|
// Already shutdown.
|
|
return;
|
|
}
|
|
|
|
// Change state to shutdown before sending error report to MediaDecoder
|
|
// and the HTMLMediaElement, so that our pipeline can start exiting
|
|
// cleanly during the sync dispatch below.
|
|
DECODER_LOG(PR_LOG_WARNING, "Decode error, changed state to SHUTDOWN due to error");
|
|
ScheduleStateMachine();
|
|
mState = DECODER_STATE_SHUTDOWN;
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
|
|
// Dispatch the event to call DecodeError synchronously. This ensures
|
|
// we're in shutdown state by the time we exit the decode thread.
|
|
// If we just moved to shutdown state here on the decode thread, we may
|
|
// cause the state machine to shutdown/free memory without closing its
|
|
// media stream properly, and we'll get callbacks from the media stream
|
|
// causing a crash.
|
|
{
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::DecodeError);
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::CallDecodeMetadata()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
AutoSetOnScopeExit<bool> unsetOnExit(mDispatchedDecodeMetadataTask, false);
|
|
if (mState != DECODER_STATE_DECODING_METADATA) {
|
|
return;
|
|
}
|
|
if (NS_FAILED(DecodeMetadata())) {
|
|
DECODER_LOG(PR_LOG_WARNING, "Decode metadata failed, shutting down decoder");
|
|
DecodeError();
|
|
}
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::DecodeMetadata()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
DECODER_LOG(PR_LOG_DEBUG, "Decoding Media Headers");
|
|
if (mState != DECODER_STATE_DECODING_METADATA) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
nsresult res;
|
|
MediaInfo info;
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
res = mReader->ReadMetadata(&info, getter_Transfers(mMetadataTags));
|
|
}
|
|
if (NS_SUCCEEDED(res)) {
|
|
if (mState == DECODER_STATE_DECODING_METADATA &&
|
|
mReader->IsWaitingMediaResources()) {
|
|
// change state to DECODER_STATE_WAIT_FOR_RESOURCES
|
|
StartWaitForResources();
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
mInfo = info;
|
|
|
|
if (NS_FAILED(res) || (!info.HasValidMedia())) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
mDecoder->StartProgressUpdates();
|
|
mGotDurationFromMetaData = (GetDuration() != -1);
|
|
|
|
if (HasAudio()) {
|
|
RefPtr<nsIRunnable> decodeTask(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded));
|
|
AudioQueue().AddPopListener(decodeTask, mDecodeTaskQueue);
|
|
}
|
|
if (HasVideo()) {
|
|
RefPtr<nsIRunnable> decodeTask(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded));
|
|
VideoQueue().AddPopListener(decodeTask, mDecodeTaskQueue);
|
|
}
|
|
|
|
if (mRealTime) {
|
|
SetStartTime(0);
|
|
res = FinishDecodeMetadata();
|
|
NS_ENSURE_SUCCESS(res, res);
|
|
} else {
|
|
if (HasAudio()) {
|
|
ReentrantMonitorAutoExit unlock(mDecoder->GetReentrantMonitor());
|
|
mReader->RequestAudioData();
|
|
}
|
|
if (HasVideo()) {
|
|
ReentrantMonitorAutoExit unlock(mDecoder->GetReentrantMonitor());
|
|
mReader->RequestVideoData(false, 0);
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::FinishDecodeMetadata()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
DECODER_LOG(PR_LOG_DEBUG, "Decoding Media Headers");
|
|
|
|
if (mState == DECODER_STATE_SHUTDOWN) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
if (!mRealTime) {
|
|
|
|
const VideoData* v = VideoQueue().PeekFront();
|
|
const AudioData* a = AudioQueue().PeekFront();
|
|
|
|
int64_t startTime = std::min<int64_t>(a ? a->mTime : INT64_MAX,
|
|
v ? v->mTime : INT64_MAX);
|
|
if (startTime == INT64_MAX) {
|
|
startTime = 0;
|
|
}
|
|
DECODER_LOG(PR_LOG_DEBUG, "DecodeMetadata first video frame start %lld",
|
|
v ? v->mTime : -1);
|
|
DECODER_LOG(PR_LOG_DEBUG, "DecodeMetadata first audio frame start %lld",
|
|
a ? a->mTime : -1);
|
|
SetStartTime(startTime);
|
|
if (VideoQueue().GetSize()) {
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
RenderVideoFrame(VideoQueue().PeekFront(), TimeStamp::Now());
|
|
}
|
|
}
|
|
|
|
NS_ASSERTION(mStartTime != -1, "Must have start time");
|
|
MOZ_ASSERT((!HasVideo() && !HasAudio()) ||
|
|
!(mMediaSeekable && mTransportSeekable) || mEndTime != -1,
|
|
"Active seekable media should have end time");
|
|
MOZ_ASSERT(!(mMediaSeekable && mTransportSeekable) ||
|
|
GetDuration() != -1, "Seekable media should have duration");
|
|
DECODER_LOG(PR_LOG_DEBUG, "Media goes from %lld to %lld (duration %lld) "
|
|
"transportSeekable=%d, mediaSeekable=%d",
|
|
mStartTime, mEndTime, GetDuration(), mTransportSeekable, mMediaSeekable);
|
|
|
|
if (HasAudio() && !HasVideo()) {
|
|
// We're playing audio only. We don't need to worry about slow video
|
|
// decodes causing audio underruns, so don't buffer so much audio in
|
|
// order to reduce memory usage.
|
|
mAmpleAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
|
|
mLowAudioThresholdUsecs /= NO_VIDEO_AMPLE_AUDIO_DIVISOR;
|
|
}
|
|
|
|
// Inform the element that we've loaded the metadata and the first frame.
|
|
nsCOMPtr<nsIRunnable> metadataLoadedEvent =
|
|
new AudioMetadataEventRunner(mDecoder,
|
|
mInfo.mAudio.mChannels,
|
|
mInfo.mAudio.mRate,
|
|
HasAudio(),
|
|
HasVideo(),
|
|
mMetadataTags.forget());
|
|
NS_DispatchToMainThread(metadataLoadedEvent, NS_DISPATCH_NORMAL);
|
|
|
|
if (mState == DECODER_STATE_DECODING_METADATA) {
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state from DECODING_METADATA to DECODING");
|
|
StartDecoding();
|
|
}
|
|
|
|
// For very short media the metadata decode can decode the entire media.
|
|
// So we need to check if this has occurred, else our decode pipeline won't
|
|
// run (since it doesn't need to) and we won't detect end of stream.
|
|
CheckIfDecodeComplete();
|
|
|
|
if ((mState == DECODER_STATE_DECODING || mState == DECODER_STATE_COMPLETED) &&
|
|
mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
!IsPlaying())
|
|
{
|
|
StartPlayback();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::DecodeSeek()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
if (mState != DECODER_STATE_SEEKING) {
|
|
return;
|
|
}
|
|
|
|
// During the seek, don't have a lock on the decoder state,
|
|
// otherwise long seek operations can block the main thread.
|
|
// The events dispatched to the main thread are SYNC calls.
|
|
// These calls are made outside of the decode monitor lock so
|
|
// it is safe for the main thread to makes calls that acquire
|
|
// the lock since it won't deadlock. We check the state when
|
|
// acquiring the lock again in case shutdown has occurred
|
|
// during the time when we didn't have the lock.
|
|
int64_t seekTime = mCurrentSeekTarget.mTime;
|
|
mDecoder->StopProgressUpdates();
|
|
|
|
bool currentTimeChanged = false;
|
|
mCurrentTimeBeforeSeek = GetMediaTime();
|
|
if (mCurrentTimeBeforeSeek != seekTime) {
|
|
currentTimeChanged = true;
|
|
// Stop playback now to ensure that while we're outside the monitor
|
|
// dispatching SeekingStarted, playback doesn't advance and mess with
|
|
// mCurrentFrameTime that we've setting to seekTime here.
|
|
StopPlayback();
|
|
UpdatePlaybackPositionInternal(seekTime);
|
|
}
|
|
|
|
// Update mBasePosition only after StopPlayback() which will call GetClock()
|
|
// which will call GetVideoStreamPosition() which will read mBasePosition.
|
|
// If we update mBasePosition too early in Seek(), |pos -= mBasePosition|
|
|
// will be wrong and assertion will fail in GetVideoStreamPosition().
|
|
mBasePosition = seekTime - mStartTime;
|
|
|
|
// SeekingStarted will do a UpdateReadyStateForData which will
|
|
// inform the element and its users that we have no frames
|
|
// to display
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
nsCOMPtr<nsIRunnable> startEvent =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::SeekingStarted);
|
|
NS_DispatchToMainThread(startEvent, NS_DISPATCH_SYNC);
|
|
}
|
|
if (mState != DECODER_STATE_SEEKING) {
|
|
// May have shutdown while we released the monitor.
|
|
return;
|
|
}
|
|
|
|
if (!currentTimeChanged) {
|
|
DECODER_LOG(PR_LOG_DEBUG, "Seek !currentTimeChanged...");
|
|
mDecodeToSeekTarget = false;
|
|
nsresult rv = mDecodeTaskQueue->Dispatch(
|
|
NS_NewRunnableMethod(this, &MediaDecoderStateMachine::SeekCompleted));
|
|
if (NS_FAILED(rv)) {
|
|
DecodeError();
|
|
}
|
|
} else {
|
|
// The seek target is different than the current playback position,
|
|
// we'll need to seek the playback position, so shutdown our decode
|
|
// and audio threads.
|
|
StopAudioThread();
|
|
ResetPlayback();
|
|
|
|
nsresult res;
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
// We must not hold the state machine monitor while we call into
|
|
// the reader, since it could do I/O or deadlock some other way.
|
|
res = mReader->ResetDecode();
|
|
if (NS_SUCCEEDED(res)) {
|
|
res = mReader->Seek(seekTime,
|
|
mStartTime,
|
|
mEndTime,
|
|
mCurrentTimeBeforeSeek);
|
|
}
|
|
}
|
|
if (NS_FAILED(res)) {
|
|
DecodeError();
|
|
return;
|
|
}
|
|
|
|
// We must decode the first samples of active streams, so we can determine
|
|
// the new stream time. So dispatch tasks to do that.
|
|
mDecodeToSeekTarget = true;
|
|
DispatchDecodeTasksIfNeeded();
|
|
}
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::SeekCompleted()
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
// We must reset the seek target when exiting this function, but not
|
|
// before, as if we dropped the monitor in any function called here,
|
|
// we may begin a new seek on the state machine thread, and be in
|
|
// an inconsistent state.
|
|
AutoSetOnScopeExit<SeekTarget> reset(mCurrentSeekTarget, SeekTarget());
|
|
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
if (mState != DECODER_STATE_SEEKING) {
|
|
return;
|
|
}
|
|
|
|
int64_t seekTime = mCurrentSeekTarget.mTime;
|
|
int64_t newCurrentTime = mCurrentSeekTarget.mTime;
|
|
|
|
// Setup timestamp state.
|
|
VideoData* video = VideoQueue().PeekFront();
|
|
if (seekTime == mEndTime) {
|
|
newCurrentTime = mAudioStartTime = seekTime;
|
|
} else if (HasAudio()) {
|
|
AudioData* audio = AudioQueue().PeekFront();
|
|
newCurrentTime = mAudioStartTime = audio ? audio->mTime : seekTime;
|
|
} else {
|
|
newCurrentTime = video ? video->mTime : seekTime;
|
|
}
|
|
mPlayDuration = newCurrentTime - mStartTime;
|
|
|
|
if (HasVideo()) {
|
|
if (video) {
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
RenderVideoFrame(video, TimeStamp::Now());
|
|
}
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::Invalidate);
|
|
NS_DispatchToMainThread(event, NS_DISPATCH_NORMAL);
|
|
}
|
|
}
|
|
|
|
mDecoder->StartProgressUpdates();
|
|
if (mState == DECODER_STATE_DECODING_METADATA ||
|
|
mState == DECODER_STATE_DORMANT ||
|
|
mState == DECODER_STATE_SHUTDOWN) {
|
|
return;
|
|
}
|
|
|
|
// Change state to DECODING or COMPLETED now. SeekingStopped will
|
|
// call MediaDecoderStateMachine::Seek to reset our state to SEEKING
|
|
// if we need to seek again.
|
|
|
|
nsCOMPtr<nsIRunnable> stopEvent;
|
|
bool isLiveStream = mDecoder->GetResource()->GetLength() == -1;
|
|
if (GetMediaTime() == mEndTime && !isLiveStream) {
|
|
// Seeked to end of media, move to COMPLETED state. Note we don't do
|
|
// this if we're playing a live stream, since the end of media will advance
|
|
// once we download more data!
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
|
|
stopEvent = NS_NewRunnableMethod(mDecoder, &MediaDecoder::SeekingStoppedAtEnd);
|
|
// Explicitly set our state so we don't decode further, and so
|
|
// we report playback ended to the media element.
|
|
mState = DECODER_STATE_COMPLETED;
|
|
DispatchDecodeTasksIfNeeded();
|
|
} else {
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state from SEEKING (to %lld) to DECODING", seekTime);
|
|
stopEvent = NS_NewRunnableMethod(mDecoder, &MediaDecoder::SeekingStopped);
|
|
StartDecoding();
|
|
}
|
|
|
|
// Ensure timestamps are up to date.
|
|
UpdatePlaybackPositionInternal(newCurrentTime);
|
|
if (mDecoder->GetDecodedStream()) {
|
|
SetSyncPointForMediaStream();
|
|
}
|
|
|
|
// Try to decode another frame to detect if we're at the end...
|
|
DECODER_LOG(PR_LOG_DEBUG, "Seek completed, mCurrentFrameTime=%lld", mCurrentFrameTime);
|
|
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
NS_DispatchToMainThread(stopEvent, NS_DISPATCH_SYNC);
|
|
}
|
|
|
|
// Reset quick buffering status. This ensures that if we began the
|
|
// seek while quick-buffering, we won't bypass quick buffering mode
|
|
// if we need to buffer after the seek.
|
|
mQuickBuffering = false;
|
|
|
|
ScheduleStateMachine();
|
|
}
|
|
|
|
// Runnable to dispose of the decoder and state machine on the main thread.
|
|
class nsDecoderDisposeEvent : public nsRunnable {
|
|
public:
|
|
nsDecoderDisposeEvent(already_AddRefed<MediaDecoder> aDecoder,
|
|
already_AddRefed<MediaDecoderStateMachine> aStateMachine)
|
|
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
|
|
NS_IMETHOD Run() {
|
|
NS_ASSERTION(NS_IsMainThread(), "Must be on main thread.");
|
|
MOZ_ASSERT(mStateMachine);
|
|
MOZ_ASSERT(mDecoder);
|
|
mStateMachine->BreakCycles();
|
|
mDecoder->BreakCycles();
|
|
mStateMachine = nullptr;
|
|
mDecoder = nullptr;
|
|
return NS_OK;
|
|
}
|
|
private:
|
|
nsRefPtr<MediaDecoder> mDecoder;
|
|
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
|
|
};
|
|
|
|
// Runnable which dispatches an event to the main thread to dispose of the
|
|
// decoder and state machine. This runs on the state machine thread after
|
|
// the state machine has shutdown, and all events for that state machine have
|
|
// finished running.
|
|
class nsDispatchDisposeEvent : public nsRunnable {
|
|
public:
|
|
nsDispatchDisposeEvent(MediaDecoder* aDecoder,
|
|
MediaDecoderStateMachine* aStateMachine)
|
|
: mDecoder(aDecoder), mStateMachine(aStateMachine) {}
|
|
NS_IMETHOD Run() {
|
|
NS_DispatchToMainThread(new nsDecoderDisposeEvent(mDecoder.forget(),
|
|
mStateMachine.forget()));
|
|
return NS_OK;
|
|
}
|
|
private:
|
|
nsRefPtr<MediaDecoder> mDecoder;
|
|
nsRefPtr<MediaDecoderStateMachine> mStateMachine;
|
|
};
|
|
|
|
nsresult MediaDecoderStateMachine::RunStateMachine()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
MediaResource* resource = mDecoder->GetResource();
|
|
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
|
|
|
|
switch (mState) {
|
|
case DECODER_STATE_SHUTDOWN: {
|
|
if (IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
|
|
// Put a task in the decode queue to abort any decoding operations.
|
|
// The reader is not supposed to put any tasks to deliver samples into
|
|
// the queue after we call this (unless we request another sample from it).
|
|
RefPtr<nsIRunnable> task;
|
|
task = NS_NewRunnableMethod(mReader, &MediaDecoderReader::ResetDecode);
|
|
mDecodeTaskQueue->Dispatch(task);
|
|
|
|
{
|
|
// Wait for the thread decoding to abort decoding operations and run
|
|
// any pending callbacks. This is important, as we don't want any
|
|
// pending tasks posted to the task queue by the reader to deliver
|
|
// any samples after we've posted the reader Shutdown() task below,
|
|
// as the sample-delivery tasks will keep video frames alive until
|
|
// after we've called Reader::Shutdown(), and shutdown on B2G will
|
|
// fail as there are outstanding video frames alive.
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
mDecodeTaskQueue->Flush();
|
|
}
|
|
|
|
// We must reset playback so that all references to frames queued
|
|
// in the state machine are dropped, else the Shutdown() call below
|
|
// can fail on B2G.
|
|
ResetPlayback();
|
|
|
|
// Put a task in the decode queue to shutdown the reader.
|
|
task = NS_NewRunnableMethod(mReader, &MediaDecoderReader::Shutdown);
|
|
mDecodeTaskQueue->Dispatch(task);
|
|
|
|
StopAudioThread();
|
|
// If mAudioThread is non-null after StopAudioThread completes, we are
|
|
// running in a nested event loop waiting for Shutdown() on
|
|
// mAudioThread to complete. Return to the event loop and let it
|
|
// finish processing before continuing with shutdown.
|
|
if (mAudioThread) {
|
|
MOZ_ASSERT(mStopAudioThread);
|
|
return NS_OK;
|
|
}
|
|
|
|
{
|
|
// Wait for the thread decoding to exit.
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
mDecodeTaskQueue->Shutdown();
|
|
mDecodeTaskQueue = nullptr;
|
|
}
|
|
|
|
// The reader's listeners hold references to the state machine,
|
|
// creating a cycle which keeps the state machine and its shared
|
|
// thread pools alive. So break it here.
|
|
AudioQueue().ClearListeners();
|
|
VideoQueue().ClearListeners();
|
|
|
|
// Now that those threads are stopped, there's no possibility of
|
|
// mPendingWakeDecoder being needed again. Revoke it.
|
|
mPendingWakeDecoder = nullptr;
|
|
|
|
MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
|
|
"How did we escape from the shutdown state?");
|
|
// We must daisy-chain these events to destroy the decoder. We must
|
|
// destroy the decoder on the main thread, but we can't destroy the
|
|
// decoder while this thread holds the decoder monitor. We can't
|
|
// dispatch an event to the main thread to destroy the decoder from
|
|
// here, as the event may run before the dispatch returns, and we
|
|
// hold the decoder monitor here. We also want to guarantee that the
|
|
// state machine is destroyed on the main thread, and so the
|
|
// event runner running this function (which holds a reference to the
|
|
// state machine) needs to finish and be released in order to allow
|
|
// that. So we dispatch an event to run after this event runner has
|
|
// finished and released its monitor/references. That event then will
|
|
// dispatch an event to the main thread to release the decoder and
|
|
// state machine.
|
|
GetStateMachineThread()->Dispatch(
|
|
new nsDispatchDisposeEvent(mDecoder, this), NS_DISPATCH_NORMAL);
|
|
|
|
mTimer->Cancel();
|
|
mTimer = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_DORMANT: {
|
|
if (IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
StopAudioThread();
|
|
// Now that those threads are stopped, there's no possibility of
|
|
// mPendingWakeDecoder being needed again. Revoke it.
|
|
mPendingWakeDecoder = nullptr;
|
|
{
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
// Wait for the thread decoding, if any, to exit.
|
|
mDecodeTaskQueue->AwaitIdle();
|
|
mReader->ReleaseMediaResources();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_WAIT_FOR_RESOURCES: {
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_DECODING_METADATA: {
|
|
// Ensure we have a decode thread to decode metadata.
|
|
return EnqueueDecodeMetadataTask();
|
|
}
|
|
|
|
case DECODER_STATE_DECODING: {
|
|
if (mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING &&
|
|
IsPlaying())
|
|
{
|
|
// We're playing, but the element/decoder is in paused state. Stop
|
|
// playing!
|
|
StopPlayback();
|
|
}
|
|
|
|
if (mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
!IsPlaying()) {
|
|
// We are playing, but the state machine does not know it yet. Tell it
|
|
// that it is, so that the clock can be properly queried.
|
|
StartPlayback();
|
|
}
|
|
|
|
AdvanceFrame();
|
|
NS_ASSERTION(mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING ||
|
|
IsStateMachineScheduled() ||
|
|
mPlaybackRate == 0.0, "Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_BUFFERING: {
|
|
TimeStamp now = TimeStamp::Now();
|
|
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
|
|
|
|
// We will remain in the buffering state if we've not decoded enough
|
|
// data to begin playback, or if we've not downloaded a reasonable
|
|
// amount of data inside our buffering time.
|
|
TimeDuration elapsed = now - mBufferingStart;
|
|
bool isLiveStream = resource->GetLength() == -1;
|
|
if ((isLiveStream || !mDecoder->CanPlayThrough()) &&
|
|
elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
|
|
(mQuickBuffering ? HasLowDecodedData(QUICK_BUFFERING_LOW_DATA_USECS)
|
|
: HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
|
|
!mDecoder->IsDataCachedToEndOfResource() &&
|
|
!resource->IsSuspended())
|
|
{
|
|
DECODER_LOG(PR_LOG_DEBUG, "Buffering: wait %ds, timeout in %.3lfs %s",
|
|
mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
|
|
(mQuickBuffering ? "(quick exit)" : ""));
|
|
ScheduleStateMachine(USECS_PER_S);
|
|
return NS_OK;
|
|
} else {
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state from BUFFERING to DECODING");
|
|
DECODER_LOG(PR_LOG_DEBUG, "Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
|
|
StartDecoding();
|
|
}
|
|
|
|
// Notify to allow blocked decoder thread to continue
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
UpdateReadyState();
|
|
if (mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
!IsPlaying())
|
|
{
|
|
StartPlayback();
|
|
}
|
|
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
case DECODER_STATE_SEEKING: {
|
|
return EnqueueDecodeSeekTask();
|
|
}
|
|
|
|
case DECODER_STATE_COMPLETED: {
|
|
// Play the remaining media. We want to run AdvanceFrame() at least
|
|
// once to ensure the current playback position is advanced to the
|
|
// end of the media, and so that we update the readyState.
|
|
if (VideoQueue().GetSize() > 0 ||
|
|
(HasAudio() && !mAudioCompleted) ||
|
|
(mDecoder->GetDecodedStream() && !mDecoder->GetDecodedStream()->IsFinished()))
|
|
{
|
|
AdvanceFrame();
|
|
NS_ASSERTION(mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING ||
|
|
mPlaybackRate == 0 ||
|
|
IsStateMachineScheduled(),
|
|
"Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
// StopPlayback in order to reset the IsPlaying() state so audio
|
|
// is restarted correctly.
|
|
StopPlayback();
|
|
|
|
if (mState != DECODER_STATE_COMPLETED) {
|
|
// While we're presenting a frame we can change state. Whatever changed
|
|
// our state should have scheduled another state machine run.
|
|
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
|
|
return NS_OK;
|
|
}
|
|
|
|
StopAudioThread();
|
|
// When we're decoding to a stream, the stream's main-thread finish signal
|
|
// will take care of calling MediaDecoder::PlaybackEnded.
|
|
if (mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
!mDecoder->GetDecodedStream()) {
|
|
int64_t videoTime = HasVideo() ? mVideoFrameEndTime : 0;
|
|
int64_t clockTime = std::max(mEndTime, std::max(videoTime, GetAudioClock()));
|
|
UpdatePlaybackPosition(clockTime);
|
|
|
|
{
|
|
// Wait for the state change is completed in the main thread,
|
|
// otherwise we might see |mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING|
|
|
// in next loop and send |MediaDecoder::PlaybackEnded| again to trigger 'ended'
|
|
// event twice in the media element.
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
nsCOMPtr<nsIRunnable> event =
|
|
NS_NewRunnableMethod(mDecoder, &MediaDecoder::PlaybackEnded);
|
|
NS_DispatchToMainThread(event, NS_DISPATCH_SYNC);
|
|
}
|
|
}
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::RenderVideoFrame(VideoData* aData,
|
|
TimeStamp aTarget)
|
|
{
|
|
NS_ASSERTION(OnStateMachineThread() || OnDecodeThread(),
|
|
"Should be on state machine or decode thread.");
|
|
mDecoder->GetReentrantMonitor().AssertNotCurrentThreadIn();
|
|
|
|
if (aData->mDuplicate) {
|
|
return;
|
|
}
|
|
|
|
VERBOSE_LOG("playing video frame %lld", aData->mTime);
|
|
|
|
VideoFrameContainer* container = mDecoder->GetVideoFrameContainer();
|
|
if (container) {
|
|
container->SetCurrentFrame(ThebesIntSize(aData->mDisplay), aData->mImage,
|
|
aTarget);
|
|
}
|
|
}
|
|
|
|
int64_t
|
|
MediaDecoderStateMachine::GetAudioClock()
|
|
{
|
|
// We must hold the decoder monitor while using the audio stream off the
|
|
// audio thread to ensure that it doesn't get destroyed on the audio thread
|
|
// while we're using it.
|
|
AssertCurrentThreadInMonitor();
|
|
if (!HasAudio() || mAudioCaptured)
|
|
return -1;
|
|
if (!mAudioStream) {
|
|
// Audio thread hasn't played any data yet.
|
|
return mAudioStartTime;
|
|
}
|
|
int64_t t = mAudioStream->GetPosition();
|
|
return (t == -1) ? -1 : t + mAudioStartTime;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetVideoStreamPosition()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (!IsPlaying()) {
|
|
return mPlayDuration + mStartTime;
|
|
}
|
|
|
|
// The playbackRate has been just been changed, reset the playstartTime.
|
|
if (mResetPlayStartTime) {
|
|
mPlayStartTime = TimeStamp::Now();
|
|
mResetPlayStartTime = false;
|
|
}
|
|
|
|
int64_t pos = DurationToUsecs(TimeStamp::Now() - mPlayStartTime) + mPlayDuration;
|
|
pos -= mBasePosition;
|
|
NS_ASSERTION(pos >= 0, "Video stream position should be positive.");
|
|
return mBasePosition + pos * mPlaybackRate + mStartTime;
|
|
}
|
|
|
|
int64_t MediaDecoderStateMachine::GetClock()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
// Determine the clock time. If we've got audio, and we've not reached
|
|
// the end of the audio, use the audio clock. However if we've finished
|
|
// audio, or don't have audio, use the system clock. If our output is being
|
|
// fed to a MediaStream, use that stream as the source of the clock.
|
|
int64_t clock_time = -1;
|
|
DecodedStreamData* stream = mDecoder->GetDecodedStream();
|
|
if (!IsPlaying()) {
|
|
clock_time = mPlayDuration + mStartTime;
|
|
} else if (stream) {
|
|
clock_time = GetCurrentTimeViaMediaStreamSync();
|
|
} else {
|
|
int64_t audio_time = GetAudioClock();
|
|
if (HasAudio() && !mAudioCompleted && audio_time != -1) {
|
|
clock_time = audio_time;
|
|
// Resync against the audio clock, while we're trusting the
|
|
// audio clock. This ensures no "drift", particularly on Linux.
|
|
mPlayDuration = clock_time - mStartTime;
|
|
mPlayStartTime = TimeStamp::Now();
|
|
} else {
|
|
// Audio is disabled on this system. Sync to the system clock.
|
|
clock_time = GetVideoStreamPosition();
|
|
// Ensure the clock can never go backwards.
|
|
NS_ASSERTION(mCurrentFrameTime <= clock_time || mPlaybackRate <= 0,
|
|
"Clock should go forwards if the playback rate is > 0.");
|
|
}
|
|
}
|
|
return clock_time;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::AdvanceFrame()
|
|
{
|
|
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(!HasAudio() || mAudioStartTime != -1,
|
|
"Should know audio start time if we have audio.");
|
|
|
|
if (mDecoder->GetState() != MediaDecoder::PLAY_STATE_PLAYING) {
|
|
return;
|
|
}
|
|
|
|
// If playbackRate is 0.0, we should stop the progress, but not be in paused
|
|
// state, per spec.
|
|
if (mPlaybackRate == 0.0) {
|
|
return;
|
|
}
|
|
|
|
int64_t clock_time = GetClock();
|
|
// Skip frames up to the frame at the playback position, and figure out
|
|
// the time remaining until it's time to display the next frame.
|
|
int64_t remainingTime = AUDIO_DURATION_USECS;
|
|
NS_ASSERTION(clock_time >= mStartTime, "Should have positive clock time.");
|
|
nsAutoPtr<VideoData> currentFrame;
|
|
#ifdef PR_LOGGING
|
|
int32_t droppedFrames = 0;
|
|
#endif
|
|
if (VideoQueue().GetSize() > 0) {
|
|
VideoData* frame = VideoQueue().PeekFront();
|
|
while (mRealTime || clock_time >= frame->mTime) {
|
|
mVideoFrameEndTime = frame->GetEndTime();
|
|
currentFrame = frame;
|
|
#ifdef PR_LOGGING
|
|
VERBOSE_LOG("discarding video frame %lld", frame->mTime);
|
|
if (droppedFrames++) {
|
|
VERBOSE_LOG("discarding video frame %lld (%d so far)", frame->mTime, droppedFrames-1);
|
|
}
|
|
#endif
|
|
VideoQueue().PopFront();
|
|
// Notify the decode thread that the video queue's buffers may have
|
|
// free'd up space for more frames.
|
|
mDecoder->GetReentrantMonitor().NotifyAll();
|
|
mDecoder->UpdatePlaybackOffset(frame->mOffset);
|
|
if (VideoQueue().GetSize() == 0)
|
|
break;
|
|
frame = VideoQueue().PeekFront();
|
|
}
|
|
// Current frame has already been presented, wait until it's time to
|
|
// present the next frame.
|
|
if (frame && !currentFrame) {
|
|
int64_t now = IsPlaying() ? clock_time : mPlayDuration;
|
|
|
|
remainingTime = frame->mTime - now;
|
|
}
|
|
}
|
|
|
|
// Check to see if we don't have enough data to play up to the next frame.
|
|
// If we don't, switch to buffering mode.
|
|
MediaResource* resource = mDecoder->GetResource();
|
|
if (mState == DECODER_STATE_DECODING &&
|
|
mDecoder->GetState() == MediaDecoder::PLAY_STATE_PLAYING &&
|
|
HasLowDecodedData(remainingTime + EXHAUSTED_DATA_MARGIN_USECS) &&
|
|
!mDecoder->IsDataCachedToEndOfResource() &&
|
|
!resource->IsSuspended()) {
|
|
if (JustExitedQuickBuffering() || HasLowUndecodedData()) {
|
|
if (currentFrame) {
|
|
VideoQueue().PushFront(currentFrame.forget());
|
|
}
|
|
StartBuffering();
|
|
// Don't go straight back to the state machine loop since that might
|
|
// cause us to start decoding again and we could flip-flop between
|
|
// decoding and quick-buffering.
|
|
ScheduleStateMachine(USECS_PER_S);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We've got enough data to keep playing until at least the next frame.
|
|
// Start playing now if need be.
|
|
if (!IsPlaying() && ((mFragmentEndTime >= 0 && clock_time < mFragmentEndTime) || mFragmentEndTime < 0)) {
|
|
StartPlayback();
|
|
}
|
|
|
|
if (currentFrame) {
|
|
// Decode one frame and display it.
|
|
TimeStamp presTime = mPlayStartTime - UsecsToDuration(mPlayDuration) +
|
|
UsecsToDuration(currentFrame->mTime - mStartTime);
|
|
NS_ASSERTION(currentFrame->mTime >= mStartTime, "Should have positive frame time");
|
|
// Filter out invalid frames by checking the frame time. FrameTime could be
|
|
// zero if it's a initial frame.
|
|
int64_t frameTime = currentFrame->mTime - mStartTime;
|
|
if (frameTime > 0 || (frameTime == 0 && mPlayDuration == 0)) {
|
|
ReentrantMonitorAutoExit exitMon(mDecoder->GetReentrantMonitor());
|
|
// If we have video, we want to increment the clock in steps of the frame
|
|
// duration.
|
|
RenderVideoFrame(currentFrame, presTime);
|
|
}
|
|
// If we're no longer playing after dropping and reacquiring the lock,
|
|
// playback must've been stopped on the decode thread (by a seek, for
|
|
// example). In that case, the current frame is probably out of date.
|
|
if (!IsPlaying()) {
|
|
ScheduleStateMachine();
|
|
return;
|
|
}
|
|
MediaDecoder::FrameStatistics& frameStats = mDecoder->GetFrameStatistics();
|
|
frameStats.NotifyPresentedFrame();
|
|
remainingTime = currentFrame->GetEndTime() - clock_time;
|
|
currentFrame = nullptr;
|
|
}
|
|
|
|
// Cap the current time to the larger of the audio and video end time.
|
|
// This ensures that if we're running off the system clock, we don't
|
|
// advance the clock to after the media end time.
|
|
if (mVideoFrameEndTime != -1 || mAudioEndTime != -1) {
|
|
// These will be non -1 if we've displayed a video frame, or played an audio frame.
|
|
clock_time = std::min(clock_time, std::max(mVideoFrameEndTime, mAudioEndTime));
|
|
if (clock_time > GetMediaTime()) {
|
|
// Only update the playback position if the clock time is greater
|
|
// than the previous playback position. The audio clock can
|
|
// sometimes report a time less than its previously reported in
|
|
// some situations, and we need to gracefully handle that.
|
|
UpdatePlaybackPosition(clock_time);
|
|
}
|
|
}
|
|
|
|
// If the number of audio/video frames queued has changed, either by
|
|
// this function popping and playing a video frame, or by the audio
|
|
// thread popping and playing an audio frame, we may need to update our
|
|
// ready state. Post an update to do so.
|
|
UpdateReadyState();
|
|
|
|
ScheduleStateMachine(remainingTime);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::Wait(int64_t aUsecs) {
|
|
NS_ASSERTION(OnAudioThread(), "Only call on the audio thread");
|
|
AssertCurrentThreadInMonitor();
|
|
TimeStamp end = TimeStamp::Now() + UsecsToDuration(std::max<int64_t>(USECS_PER_MS, aUsecs));
|
|
TimeStamp now;
|
|
while ((now = TimeStamp::Now()) < end &&
|
|
mState != DECODER_STATE_SHUTDOWN &&
|
|
mState != DECODER_STATE_SEEKING &&
|
|
!mStopAudioThread &&
|
|
IsPlaying())
|
|
{
|
|
int64_t ms = static_cast<int64_t>(NS_round((end - now).ToSeconds() * 1000));
|
|
if (ms == 0 || ms > UINT32_MAX) {
|
|
break;
|
|
}
|
|
mDecoder->GetReentrantMonitor().Wait(PR_MillisecondsToInterval(static_cast<uint32_t>(ms)));
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DropVideoUpToSeekTarget(VideoData* aSample)
|
|
{
|
|
nsAutoPtr<VideoData> video(aSample);
|
|
|
|
const int64_t target = mCurrentSeekTarget.mTime;
|
|
|
|
// If the frame end time is less than the seek target, we won't want
|
|
// to display this frame after the seek, so discard it.
|
|
if (target >= video->GetEndTime()) {
|
|
DECODER_LOG(PR_LOG_DEBUG,
|
|
"DropVideoUpToSeekTarget() pop video frame [%lld, %lld] target=%lld",
|
|
video->mTime, video->GetEndTime(), target);
|
|
mFirstVideoFrameAfterSeek = video;
|
|
} else {
|
|
if (target >= video->mTime && video->GetEndTime() >= target) {
|
|
// The seek target lies inside this frame's time slice. Adjust the frame's
|
|
// start time to match the seek target. We do this by replacing the
|
|
// first frame with a shallow copy which has the new timestamp.
|
|
VideoData* temp = VideoData::ShallowCopyUpdateTimestamp(video, target);
|
|
video = temp;
|
|
}
|
|
mFirstVideoFrameAfterSeek = nullptr;
|
|
|
|
DECODER_LOG(PR_LOG_DEBUG,
|
|
"DropVideoUpToSeekTarget() found video frame [%lld, %lld] containing target=%lld",
|
|
video->mTime, video->GetEndTime(), target);
|
|
|
|
VideoQueue().PushFront(video.forget());
|
|
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
MediaDecoderStateMachine::DropAudioUpToSeekTarget(AudioData* aSample)
|
|
{
|
|
nsAutoPtr<AudioData> audio(aSample);
|
|
MOZ_ASSERT(audio &&
|
|
mCurrentSeekTarget.IsValid() &&
|
|
mCurrentSeekTarget.mType == SeekTarget::Accurate);
|
|
|
|
CheckedInt64 startFrame = UsecsToFrames(audio->mTime,
|
|
mInfo.mAudio.mRate);
|
|
CheckedInt64 targetFrame = UsecsToFrames(mCurrentSeekTarget.mTime,
|
|
mInfo.mAudio.mRate);
|
|
if (!startFrame.isValid() || !targetFrame.isValid()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
if (startFrame.value() + audio->mFrames <= targetFrame.value()) {
|
|
// Our seek target lies after the frames in this AudioData. Don't
|
|
// push it onto the audio queue, and keep decoding forwards.
|
|
return NS_OK;
|
|
}
|
|
if (startFrame.value() > targetFrame.value()) {
|
|
// The seek target doesn't lie in the audio block just after the last
|
|
// audio frames we've seen which were before the seek target. This
|
|
// could have been the first audio data we've seen after seek, i.e. the
|
|
// seek terminated after the seek target in the audio stream. Just
|
|
// abort the audio decode-to-target, the state machine will play
|
|
// silence to cover the gap. Typically this happens in poorly muxed
|
|
// files.
|
|
NS_WARNING("Audio not synced after seek, maybe a poorly muxed file?");
|
|
AudioQueue().Push(audio.forget());
|
|
return NS_OK;
|
|
}
|
|
|
|
// The seek target lies somewhere in this AudioData's frames, strip off
|
|
// any frames which lie before the seek target, so we'll begin playback
|
|
// exactly at the seek target.
|
|
NS_ASSERTION(targetFrame.value() >= startFrame.value(),
|
|
"Target must at or be after data start.");
|
|
NS_ASSERTION(targetFrame.value() < startFrame.value() + audio->mFrames,
|
|
"Data must end after target.");
|
|
|
|
int64_t framesToPrune = targetFrame.value() - startFrame.value();
|
|
if (framesToPrune > audio->mFrames) {
|
|
// We've messed up somehow. Don't try to trim frames, the |frames|
|
|
// variable below will overflow.
|
|
NS_WARNING("Can't prune more frames that we have!");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
uint32_t frames = audio->mFrames - static_cast<uint32_t>(framesToPrune);
|
|
uint32_t channels = audio->mChannels;
|
|
nsAutoArrayPtr<AudioDataValue> audioData(new AudioDataValue[frames * channels]);
|
|
memcpy(audioData.get(),
|
|
audio->mAudioData.get() + (framesToPrune * channels),
|
|
frames * channels * sizeof(AudioDataValue));
|
|
CheckedInt64 duration = FramesToUsecs(frames, mInfo.mAudio.mRate);
|
|
if (!duration.isValid()) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
nsAutoPtr<AudioData> data(new AudioData(audio->mOffset,
|
|
mCurrentSeekTarget.mTime,
|
|
duration.value(),
|
|
frames,
|
|
audioData.forget(),
|
|
channels));
|
|
AudioQueue().PushFront(data.forget());
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetStartTime(int64_t aStartTimeUsecs)
|
|
{
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
DECODER_LOG(PR_LOG_DEBUG, "SetStartTime(%lld)", aStartTimeUsecs);
|
|
mStartTime = 0;
|
|
if (aStartTimeUsecs != 0) {
|
|
mStartTime = aStartTimeUsecs;
|
|
if (mGotDurationFromMetaData) {
|
|
NS_ASSERTION(mEndTime != -1,
|
|
"We should have mEndTime as supplied duration here");
|
|
// We were specified a duration from a Content-Duration HTTP header.
|
|
// Adjust mEndTime so that mEndTime-mStartTime matches the specified
|
|
// duration.
|
|
mEndTime = mStartTime + mEndTime;
|
|
}
|
|
}
|
|
// Set the audio start time to be start of media. If this lies before the
|
|
// first actual audio frame we have, we'll inject silence during playback
|
|
// to ensure the audio starts at the correct time.
|
|
mAudioStartTime = mStartTime;
|
|
DECODER_LOG(PR_LOG_DEBUG, "Set media start time to %lld", mStartTime);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::UpdateReadyState() {
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
MediaDecoderOwner::NextFrameStatus nextFrameStatus = GetNextFrameStatus();
|
|
if (nextFrameStatus == mLastFrameStatus) {
|
|
return;
|
|
}
|
|
mLastFrameStatus = nextFrameStatus;
|
|
|
|
/* This is a bit tricky. MediaDecoder::UpdateReadyStateForData will run on
|
|
* the main thread and re-evaluate GetNextFrameStatus there, passing it to
|
|
* HTMLMediaElement::UpdateReadyStateForData. It doesn't use the value of
|
|
* GetNextFrameStatus we computed here, because what we're computing here
|
|
* could be stale by the time MediaDecoder::UpdateReadyStateForData runs.
|
|
* We only compute GetNextFrameStatus here to avoid posting runnables to the main
|
|
* thread unnecessarily.
|
|
*/
|
|
nsCOMPtr<nsIRunnable> event;
|
|
event = NS_NewRunnableMethod(mDecoder, &MediaDecoder::UpdateReadyStateForData);
|
|
NS_DispatchToMainThread(event);
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::JustExitedQuickBuffering()
|
|
{
|
|
return !mDecodeStartTime.IsNull() &&
|
|
mQuickBuffering &&
|
|
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
|
|
}
|
|
|
|
void MediaDecoderStateMachine::StartBuffering()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
|
|
if (mState != DECODER_STATE_DECODING) {
|
|
// We only move into BUFFERING state if we're actually decoding.
|
|
// If we're currently doing something else, we don't need to buffer,
|
|
// and more importantly, we shouldn't overwrite mState to interrupt
|
|
// the current operation, as that could leave us in an inconsistent
|
|
// state!
|
|
return;
|
|
}
|
|
|
|
if (IsPlaying()) {
|
|
StopPlayback();
|
|
}
|
|
|
|
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
|
|
// Go into quick buffering mode provided we've not just left buffering using
|
|
// a "quick exit". This stops us flip-flopping between playing and buffering
|
|
// when the download speed is similar to the decode speed.
|
|
mQuickBuffering =
|
|
!JustExitedQuickBuffering() &&
|
|
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
|
|
mBufferingStart = TimeStamp::Now();
|
|
|
|
// We need to tell the element that buffering has started.
|
|
// We can't just directly send an asynchronous runnable that
|
|
// eventually fires the "waiting" event. The problem is that
|
|
// there might be pending main-thread events, such as "data
|
|
// received" notifications, that mean we're not actually still
|
|
// buffering by the time this runnable executes. So instead
|
|
// we just trigger UpdateReadyStateForData; when it runs, it
|
|
// will check the current state and decide whether to tell
|
|
// the element we're buffering or not.
|
|
UpdateReadyState();
|
|
mState = DECODER_STATE_BUFFERING;
|
|
DECODER_LOG(PR_LOG_DEBUG, "Changed state from DECODING to BUFFERING, decoded for %.3lfs",
|
|
decodeDuration.ToSeconds());
|
|
#ifdef PR_LOGGING
|
|
MediaDecoder::Statistics stats = mDecoder->GetStatistics();
|
|
DECODER_LOG(PR_LOG_DEBUG, "Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
|
|
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
|
|
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
|
|
#endif
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::GetBuffered(dom::TimeRanges* aBuffered) {
|
|
MediaResource* resource = mDecoder->GetResource();
|
|
NS_ENSURE_TRUE(resource, NS_ERROR_FAILURE);
|
|
resource->Pin();
|
|
nsresult res = mReader->GetBuffered(aBuffered, mStartTime);
|
|
resource->Unpin();
|
|
return res;
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::CallRunStateMachine()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ASSERTION(OnStateMachineThread(), "Should be on state machine thread.");
|
|
|
|
// If audio is being captured, stop the audio thread if it's running
|
|
if (mAudioCaptured) {
|
|
StopAudioThread();
|
|
}
|
|
|
|
MOZ_ASSERT(!mInRunningStateMachine, "State machine cycles must run in sequence!");
|
|
mTimeout = TimeStamp();
|
|
mInRunningStateMachine = true;
|
|
nsresult res = RunStateMachine();
|
|
mInRunningStateMachine = false;
|
|
return res;
|
|
}
|
|
|
|
nsresult MediaDecoderStateMachine::TimeoutExpired(int aTimerId)
|
|
{
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
NS_ASSERTION(OnStateMachineThread(), "Must be on state machine thread");
|
|
mTimer->Cancel();
|
|
if (mTimerId == aTimerId) {
|
|
return CallRunStateMachine();
|
|
} else {
|
|
return NS_OK;
|
|
}
|
|
}
|
|
|
|
void MediaDecoderStateMachine::ScheduleStateMachineWithLockAndWakeDecoder() {
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
DispatchAudioDecodeTaskIfNeeded();
|
|
DispatchVideoDecodeTaskIfNeeded();
|
|
}
|
|
|
|
class TimerEvent : public nsITimerCallback, public nsRunnable {
|
|
NS_DECL_THREADSAFE_ISUPPORTS
|
|
public:
|
|
TimerEvent(MediaDecoderStateMachine* aStateMachine, int aTimerId)
|
|
: mStateMachine(aStateMachine), mTimerId(aTimerId) {}
|
|
|
|
NS_IMETHOD Run() MOZ_OVERRIDE {
|
|
return mStateMachine->TimeoutExpired(mTimerId);
|
|
}
|
|
|
|
NS_IMETHOD Notify(nsITimer* aTimer) {
|
|
return mStateMachine->TimeoutExpired(mTimerId);
|
|
}
|
|
private:
|
|
const nsRefPtr<MediaDecoderStateMachine> mStateMachine;
|
|
int mTimerId;
|
|
};
|
|
|
|
NS_IMPL_ISUPPORTS(TimerEvent, nsITimerCallback, nsIRunnable);
|
|
|
|
nsresult MediaDecoderStateMachine::ScheduleStateMachine(int64_t aUsecs) {
|
|
AssertCurrentThreadInMonitor();
|
|
NS_ABORT_IF_FALSE(GetStateMachineThread(),
|
|
"Must have a state machine thread to schedule");
|
|
|
|
if (mState == DECODER_STATE_SHUTDOWN) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
aUsecs = std::max<int64_t>(aUsecs, 0);
|
|
|
|
TimeStamp timeout = TimeStamp::Now() + UsecsToDuration(aUsecs);
|
|
if (!mTimeout.IsNull() && timeout >= mTimeout) {
|
|
// We've already scheduled a timer set to expire at or before this time,
|
|
// or have an event dispatched to run the state machine.
|
|
return NS_OK;
|
|
}
|
|
|
|
uint32_t ms = static_cast<uint32_t>((aUsecs / USECS_PER_MS) & 0xFFFFFFFF);
|
|
if (mRealTime && ms > 40) {
|
|
ms = 40;
|
|
}
|
|
|
|
// Don't cancel the timer here for this function will be called from
|
|
// different threads.
|
|
|
|
nsresult rv = NS_ERROR_FAILURE;
|
|
nsRefPtr<TimerEvent> event = new TimerEvent(this, mTimerId+1);
|
|
|
|
if (ms == 0) {
|
|
// Dispatch a runnable to the state machine thread when delay is 0.
|
|
// It will has less latency than dispatching a runnable to the state
|
|
// machine thread which will then schedule a zero-delay timer.
|
|
rv = GetStateMachineThread()->Dispatch(event, NS_DISPATCH_NORMAL);
|
|
} else if (OnStateMachineThread()) {
|
|
rv = mTimer->InitWithCallback(event, ms, nsITimer::TYPE_ONE_SHOT);
|
|
} else {
|
|
MOZ_ASSERT(false, "non-zero delay timer should be only scheduled in state machine thread");
|
|
}
|
|
|
|
if (NS_SUCCEEDED(rv)) {
|
|
mTimeout = timeout;
|
|
++mTimerId;
|
|
} else {
|
|
NS_WARNING("Failed to schedule state machine");
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::OnDecodeThread() const
|
|
{
|
|
return mDecodeTaskQueue->IsCurrentThreadIn();
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::OnStateMachineThread() const
|
|
{
|
|
bool rv = false;
|
|
mStateMachineThreadPool->IsOnCurrentThread(&rv);
|
|
return rv;
|
|
}
|
|
|
|
nsIEventTarget* MediaDecoderStateMachine::GetStateMachineThread()
|
|
{
|
|
return mStateMachineThreadPool->GetEventTarget();
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetPlaybackRate(double aPlaybackRate)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
NS_ASSERTION(aPlaybackRate != 0,
|
|
"PlaybackRate == 0 should be handled before this function.");
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
if (mPlaybackRate == aPlaybackRate) {
|
|
return;
|
|
}
|
|
|
|
// Get position of the last time we changed the rate.
|
|
if (!HasAudio()) {
|
|
// mBasePosition is a position in the video stream, not an absolute time.
|
|
if (mState == DECODER_STATE_SEEKING) {
|
|
mBasePosition = mCurrentSeekTarget.mTime - mStartTime;
|
|
} else {
|
|
mBasePosition = GetVideoStreamPosition();
|
|
}
|
|
mPlayDuration = mBasePosition;
|
|
mResetPlayStartTime = true;
|
|
mPlayStartTime = TimeStamp::Now();
|
|
}
|
|
|
|
mPlaybackRate = aPlaybackRate;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::SetPreservesPitch(bool aPreservesPitch)
|
|
{
|
|
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
|
|
ReentrantMonitorAutoEnter mon(mDecoder->GetReentrantMonitor());
|
|
|
|
mPreservesPitch = aPreservesPitch;
|
|
}
|
|
|
|
void
|
|
MediaDecoderStateMachine::SetMinimizePrerollUntilPlaybackStarts()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
mMinimizePreroll = true;
|
|
}
|
|
|
|
bool MediaDecoderStateMachine::IsShutdown()
|
|
{
|
|
AssertCurrentThreadInMonitor();
|
|
return GetState() == DECODER_STATE_SHUTDOWN;
|
|
}
|
|
|
|
void MediaDecoderStateMachine::QueueMetadata(int64_t aPublishTime,
|
|
int aChannels,
|
|
int aRate,
|
|
bool aHasAudio,
|
|
bool aHasVideo,
|
|
MetadataTags* aTags)
|
|
{
|
|
NS_ASSERTION(OnDecodeThread(), "Should be on decode thread.");
|
|
AssertCurrentThreadInMonitor();
|
|
TimedMetadata* metadata = new TimedMetadata;
|
|
metadata->mPublishTime = aPublishTime;
|
|
metadata->mChannels = aChannels;
|
|
metadata->mRate = aRate;
|
|
metadata->mHasAudio = aHasAudio;
|
|
metadata->mHasVideo = aHasVideo;
|
|
metadata->mTags = aTags;
|
|
mMetadataManager.QueueMetadata(metadata);
|
|
}
|
|
|
|
} // namespace mozilla
|
|
|
|
// avoid redefined macro in unified build
|
|
#undef DECODER_LOG
|
|
#undef VERBOSE_LOG
|