mirror of
https://gitlab.winehq.org/wine/wine-gecko.git
synced 2024-09-13 09:24:08 -07:00
04017096dd
--HG-- extra : transplant_source : %E4l%83zo%0E%08%14%FF%F7%9D%D6%8C%FD%A2%07a%2A%8Aq
306 lines
13 KiB
C++
306 lines
13 KiB
C++
/*
|
|
* Copyright (C) 2010, Google Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "HRTFPanner.h"
|
|
#include "HRTFDatabaseLoader.h"
|
|
|
|
#include "FFTConvolver.h"
|
|
#include "HRTFDatabase.h"
|
|
#include "WebAudioUtils.h"
|
|
|
|
using namespace std;
|
|
using namespace mozilla;
|
|
using mozilla::dom::WebAudioUtils;
|
|
|
|
namespace WebCore {
|
|
|
|
// The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds).
|
|
// We ASSERT the delay values used in process() with this value.
|
|
const double MaxDelayTimeSeconds = 0.002;
|
|
|
|
const int UninitializedAzimuth = -1;
|
|
const unsigned RenderingQuantum = 128;
|
|
|
|
HRTFPanner::HRTFPanner(float sampleRate, mozilla::TemporaryRef<HRTFDatabaseLoader> databaseLoader)
|
|
: m_databaseLoader(databaseLoader)
|
|
, m_sampleRate(sampleRate)
|
|
, m_crossfadeSelection(CrossfadeSelection1)
|
|
, m_azimuthIndex1(UninitializedAzimuth)
|
|
, m_azimuthIndex2(UninitializedAzimuth)
|
|
// m_elevation1 and m_elevation2 are initialized in pan()
|
|
, m_crossfadeX(0)
|
|
, m_crossfadeIncr(0)
|
|
, m_convolverL1(HRTFElevation::fftSizeForSampleRate(sampleRate))
|
|
, m_convolverR1(m_convolverL1.fftSize())
|
|
, m_convolverL2(m_convolverL1.fftSize())
|
|
, m_convolverR2(m_convolverL1.fftSize())
|
|
, m_delayLineL(ceilf(MaxDelayTimeSeconds * sampleRate),
|
|
WebAudioUtils::ComputeSmoothingRate(0.02, sampleRate))
|
|
, m_delayLineR(ceilf(MaxDelayTimeSeconds * sampleRate),
|
|
WebAudioUtils::ComputeSmoothingRate(0.02, sampleRate))
|
|
{
|
|
MOZ_ASSERT(m_databaseLoader);
|
|
MOZ_COUNT_CTOR(HRTFPanner);
|
|
|
|
m_tempL1.SetLength(RenderingQuantum);
|
|
m_tempR1.SetLength(RenderingQuantum);
|
|
m_tempL2.SetLength(RenderingQuantum);
|
|
m_tempR2.SetLength(RenderingQuantum);
|
|
}
|
|
|
|
HRTFPanner::~HRTFPanner()
|
|
{
|
|
MOZ_COUNT_DTOR(HRTFPanner);
|
|
}
|
|
|
|
void HRTFPanner::reset()
|
|
{
|
|
m_azimuthIndex1 = UninitializedAzimuth;
|
|
m_azimuthIndex2 = UninitializedAzimuth;
|
|
// m_elevation1 and m_elevation2 are initialized in pan()
|
|
m_crossfadeSelection = CrossfadeSelection1;
|
|
m_crossfadeX = 0.0f;
|
|
m_crossfadeIncr = 0.0f;
|
|
m_convolverL1.reset();
|
|
m_convolverR1.reset();
|
|
m_convolverL2.reset();
|
|
m_convolverR2.reset();
|
|
m_delayLineL.Reset();
|
|
m_delayLineR.Reset();
|
|
}
|
|
|
|
int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend)
|
|
{
|
|
// Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360.
|
|
// The azimuth index may then be calculated from this positive value.
|
|
if (azimuth < 0)
|
|
azimuth += 360.0;
|
|
|
|
HRTFDatabase* database = m_databaseLoader->database();
|
|
MOZ_ASSERT(database);
|
|
|
|
int numberOfAzimuths = database->numberOfAzimuths();
|
|
const double angleBetweenAzimuths = 360.0 / numberOfAzimuths;
|
|
|
|
// Calculate the azimuth index and the blend (0 -> 1) for interpolation.
|
|
double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths;
|
|
int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat);
|
|
azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex);
|
|
|
|
// We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at.
|
|
// This minimizes the clicks and graininess for moving sources which occur otherwise.
|
|
desiredAzimuthIndex = max(0, desiredAzimuthIndex);
|
|
desiredAzimuthIndex = min(numberOfAzimuths - 1, desiredAzimuthIndex);
|
|
return desiredAzimuthIndex;
|
|
}
|
|
|
|
void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioChunk* inputBus, AudioChunk* outputBus, TrackTicks framesToProcess)
|
|
{
|
|
unsigned numInputChannels =
|
|
inputBus->IsNull() ? 0 : inputBus->mChannelData.Length();
|
|
|
|
MOZ_ASSERT(numInputChannels <= 2);
|
|
MOZ_ASSERT(framesToProcess <= inputBus->mDuration);
|
|
|
|
bool isOutputGood = outputBus && outputBus->mChannelData.Length() == 2 && framesToProcess <= outputBus->mDuration;
|
|
MOZ_ASSERT(isOutputGood);
|
|
|
|
if (!isOutputGood) {
|
|
if (outputBus)
|
|
outputBus->SetNull(outputBus->mDuration);
|
|
return;
|
|
}
|
|
|
|
HRTFDatabase* database = m_databaseLoader->database();
|
|
if (!database) { // not yet loaded
|
|
outputBus->SetNull(outputBus->mDuration);
|
|
return;
|
|
}
|
|
|
|
// IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth.
|
|
double azimuth = -desiredAzimuth;
|
|
|
|
bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0;
|
|
MOZ_ASSERT(isAzimuthGood);
|
|
if (!isAzimuthGood) {
|
|
outputBus->SetNull(outputBus->mDuration);
|
|
return;
|
|
}
|
|
|
|
// Normally, we'll just be dealing with mono sources.
|
|
// If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF.
|
|
|
|
// Get source and destination pointers.
|
|
const float* sourceL = numInputChannels > 0 ?
|
|
static_cast<const float*>(inputBus->mChannelData[0]) : nullptr;
|
|
const float* sourceR = numInputChannels > 1 ?
|
|
static_cast<const float*>(inputBus->mChannelData[1]) : sourceL;
|
|
float* destinationL =
|
|
static_cast<float*>(const_cast<void*>(outputBus->mChannelData[0]));
|
|
float* destinationR =
|
|
static_cast<float*>(const_cast<void*>(outputBus->mChannelData[1]));
|
|
|
|
double azimuthBlend;
|
|
int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend);
|
|
|
|
// Initially snap azimuth and elevation values to first values encountered.
|
|
if (m_azimuthIndex1 == UninitializedAzimuth) {
|
|
m_azimuthIndex1 = desiredAzimuthIndex;
|
|
m_elevation1 = elevation;
|
|
}
|
|
if (m_azimuthIndex2 == UninitializedAzimuth) {
|
|
m_azimuthIndex2 = desiredAzimuthIndex;
|
|
m_elevation2 = elevation;
|
|
}
|
|
|
|
// Cross-fade / transition over a period of around 45 milliseconds.
|
|
// This is an empirical value tuned to be a reasonable trade-off between
|
|
// smoothness and speed.
|
|
const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096;
|
|
|
|
// Check for azimuth and elevation changes, initiating a cross-fade if needed.
|
|
if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) {
|
|
if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) {
|
|
// Cross-fade from 1 -> 2
|
|
m_crossfadeIncr = 1 / fadeFrames;
|
|
m_azimuthIndex2 = desiredAzimuthIndex;
|
|
m_elevation2 = elevation;
|
|
}
|
|
}
|
|
if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) {
|
|
if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) {
|
|
// Cross-fade from 2 -> 1
|
|
m_crossfadeIncr = -1 / fadeFrames;
|
|
m_azimuthIndex1 = desiredAzimuthIndex;
|
|
m_elevation1 = elevation;
|
|
}
|
|
}
|
|
|
|
// This algorithm currently requires that we process in power-of-two size chunks at least RenderingQuantum.
|
|
MOZ_ASSERT(framesToProcess && 0 == (framesToProcess & (framesToProcess - 1)));
|
|
MOZ_ASSERT(framesToProcess >= RenderingQuantum);
|
|
|
|
const unsigned framesPerSegment = RenderingQuantum;
|
|
const unsigned numberOfSegments = framesToProcess / framesPerSegment;
|
|
|
|
for (unsigned segment = 0; segment < numberOfSegments; ++segment) {
|
|
// Get the HRTFKernels and interpolated delays.
|
|
HRTFKernel* kernelL1;
|
|
HRTFKernel* kernelR1;
|
|
HRTFKernel* kernelL2;
|
|
HRTFKernel* kernelR2;
|
|
double frameDelayL1;
|
|
double frameDelayR1;
|
|
double frameDelayL2;
|
|
double frameDelayR2;
|
|
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1);
|
|
database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2);
|
|
|
|
bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2;
|
|
MOZ_ASSERT(areKernelsGood);
|
|
if (!areKernelsGood) {
|
|
outputBus->SetNull(outputBus->mDuration);
|
|
return;
|
|
}
|
|
|
|
MOZ_ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds);
|
|
MOZ_ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds);
|
|
|
|
// Crossfade inter-aural delays based on transitions.
|
|
double frameDelayL = (1 - m_crossfadeX) * frameDelayL1 + m_crossfadeX * frameDelayL2;
|
|
double frameDelayR = (1 - m_crossfadeX) * frameDelayR1 + m_crossfadeX * frameDelayR2;
|
|
|
|
// Calculate the source and destination pointers for the current segment.
|
|
unsigned offset = segment * framesPerSegment;
|
|
const float* segmentSourceL = sourceL ? sourceL + offset : nullptr;
|
|
const float* segmentSourceR = sourceR ? sourceR + offset : nullptr;
|
|
float* segmentDestinationL = destinationL + offset;
|
|
float* segmentDestinationR = destinationR + offset;
|
|
|
|
// First run through delay lines for inter-aural time difference.
|
|
m_delayLineL.Process(frameDelayL, &segmentSourceL, &segmentDestinationL, 1, framesPerSegment);
|
|
m_delayLineR.Process(frameDelayR, &segmentSourceR, &segmentDestinationR, 1, framesPerSegment);
|
|
|
|
bool needsCrossfading = m_crossfadeIncr;
|
|
|
|
// Have the convolvers render directly to the final destination if we're not cross-fading.
|
|
float* convolutionDestinationL1 = needsCrossfading ? m_tempL1.Elements() : segmentDestinationL;
|
|
float* convolutionDestinationR1 = needsCrossfading ? m_tempR1.Elements() : segmentDestinationR;
|
|
float* convolutionDestinationL2 = needsCrossfading ? m_tempL2.Elements() : segmentDestinationL;
|
|
float* convolutionDestinationR2 = needsCrossfading ? m_tempR2.Elements() : segmentDestinationR;
|
|
|
|
// Now do the convolutions.
|
|
// Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading.
|
|
|
|
if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) {
|
|
m_convolverL1.process(kernelL1->fftFrame(), segmentDestinationL, convolutionDestinationL1, framesPerSegment);
|
|
m_convolverR1.process(kernelR1->fftFrame(), segmentDestinationR, convolutionDestinationR1, framesPerSegment);
|
|
}
|
|
|
|
if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) {
|
|
m_convolverL2.process(kernelL2->fftFrame(), segmentDestinationL, convolutionDestinationL2, framesPerSegment);
|
|
m_convolverR2.process(kernelR2->fftFrame(), segmentDestinationR, convolutionDestinationR2, framesPerSegment);
|
|
}
|
|
|
|
if (needsCrossfading) {
|
|
// Apply linear cross-fade.
|
|
float x = m_crossfadeX;
|
|
float incr = m_crossfadeIncr;
|
|
for (unsigned i = 0; i < framesPerSegment; ++i) {
|
|
segmentDestinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i];
|
|
segmentDestinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i];
|
|
x += incr;
|
|
}
|
|
// Update cross-fade value from local.
|
|
m_crossfadeX = x;
|
|
|
|
if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) {
|
|
// We've fully made the crossfade transition from 1 -> 2.
|
|
m_crossfadeSelection = CrossfadeSelection2;
|
|
m_crossfadeX = 1;
|
|
m_crossfadeIncr = 0;
|
|
} else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) {
|
|
// We've fully made the crossfade transition from 2 -> 1.
|
|
m_crossfadeSelection = CrossfadeSelection1;
|
|
m_crossfadeX = 0;
|
|
m_crossfadeIncr = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int HRTFPanner::maxTailFrames() const
|
|
{
|
|
// Although the ideal tail time would be the length of the impulse
|
|
// response, there is additional tail time from the approximations in the
|
|
// implementation. Because HRTFPanner is implemented with a DelayKernel
|
|
// and a FFTConvolver, the tailTime of the HRTFPanner is the sum of the
|
|
// tailTime of the DelayKernel and the tailTime of the FFTConvolver.
|
|
// The FFTConvolver has a tail time of fftSize(), including latency of
|
|
// fftSize()/2.
|
|
return m_delayLineL.MaxDelayFrames() + fftSize();
|
|
}
|
|
|
|
} // namespace WebCore
|