gecko/toolkit/components/url-classifier/nsUrlClassifierUtils.cpp

417 lines
9.8 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsEscape.h"
#include "nsString.h"
#include "nsIURI.h"
#include "nsNetUtil.h"
#include "nsUrlClassifierUtils.h"
#include "nsTArray.h"
#include "nsReadableUtils.h"
#include "plbase64.h"
#include "prmem.h"
#include "prprf.h"
static char int_to_hex_digit(int32_t i)
{
NS_ASSERTION((i >= 0) && (i <= 15), "int too big in int_to_hex_digit");
return static_cast<char>(((i < 10) ? (i + '0') : ((i - 10) + 'A')));
}
static bool
IsDecimal(const nsACString & num)
{
for (uint32_t i = 0; i < num.Length(); i++) {
if (!isdigit(num[i])) {
return false;
}
}
return true;
}
static bool
IsHex(const nsACString & num)
{
if (num.Length() < 3) {
return false;
}
if (num[0] != '0' || !(num[1] == 'x' || num[1] == 'X')) {
return false;
}
for (uint32_t i = 2; i < num.Length(); i++) {
if (!isxdigit(num[i])) {
return false;
}
}
return true;
}
static bool
IsOctal(const nsACString & num)
{
if (num.Length() < 2) {
return false;
}
if (num[0] != '0') {
return false;
}
for (uint32_t i = 1; i < num.Length(); i++) {
if (!isdigit(num[i]) || num[i] == '8' || num[i] == '9') {
return false;
}
}
return true;
}
nsUrlClassifierUtils::nsUrlClassifierUtils() : mEscapeCharmap(nullptr)
{
}
nsresult
nsUrlClassifierUtils::Init()
{
// Everything but alpha numerics, - and .
mEscapeCharmap = new Charmap(0xffffffff, 0xfc009fff, 0xf8000001, 0xf8000001,
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);
if (!mEscapeCharmap)
return NS_ERROR_OUT_OF_MEMORY;
return NS_OK;
}
NS_IMPL_ISUPPORTS1(nsUrlClassifierUtils, nsIUrlClassifierUtils)
/////////////////////////////////////////////////////////////////////////////
// nsIUrlClassifierUtils
NS_IMETHODIMP
nsUrlClassifierUtils::GetKeyForURI(nsIURI * uri, nsACString & _retval)
{
nsCOMPtr<nsIURI> innerURI = NS_GetInnermostURI(uri);
if (!innerURI)
innerURI = uri;
nsAutoCString host;
innerURI->GetAsciiHost(host);
if (host.IsEmpty()) {
return NS_ERROR_MALFORMED_URI;
}
nsresult rv = CanonicalizeHostname(host, _retval);
NS_ENSURE_SUCCESS(rv, rv);
nsAutoCString path;
rv = innerURI->GetPath(path);
NS_ENSURE_SUCCESS(rv, rv);
// strip out anchors
int32_t ref = path.FindChar('#');
if (ref != kNotFound)
path.SetLength(ref);
nsAutoCString temp;
rv = CanonicalizePath(path, temp);
NS_ENSURE_SUCCESS(rv, rv);
_retval.Append(temp);
return NS_OK;
}
/////////////////////////////////////////////////////////////////////////////
// non-interface methods
nsresult
nsUrlClassifierUtils::CanonicalizeHostname(const nsACString & hostname,
nsACString & _retval)
{
nsAutoCString unescaped;
if (!NS_UnescapeURL(PromiseFlatCString(hostname).get(),
PromiseFlatCString(hostname).Length(),
0, unescaped)) {
unescaped.Assign(hostname);
}
nsAutoCString cleaned;
CleanupHostname(unescaped, cleaned);
nsAutoCString temp;
ParseIPAddress(cleaned, temp);
if (!temp.IsEmpty()) {
cleaned.Assign(temp);
}
ToLowerCase(cleaned);
SpecialEncode(cleaned, false, _retval);
return NS_OK;
}
nsresult
nsUrlClassifierUtils::CanonicalizePath(const nsACString & path,
nsACString & _retval)
{
_retval.Truncate();
nsAutoCString decodedPath(path);
nsAutoCString temp;
while (NS_UnescapeURL(decodedPath.get(), decodedPath.Length(), 0, temp)) {
decodedPath.Assign(temp);
temp.Truncate();
}
SpecialEncode(decodedPath, true, _retval);
// XXX: lowercase the path?
return NS_OK;
}
void
nsUrlClassifierUtils::CleanupHostname(const nsACString & hostname,
nsACString & _retval)
{
_retval.Truncate();
const char* curChar = hostname.BeginReading();
const char* end = hostname.EndReading();
char lastChar = '\0';
while (curChar != end) {
unsigned char c = static_cast<unsigned char>(*curChar);
if (c == '.' && (lastChar == '\0' || lastChar == '.')) {
// skip
} else {
_retval.Append(*curChar);
}
lastChar = c;
++curChar;
}
// cut off trailing dots
while (_retval.Length() > 0 && _retval[_retval.Length() - 1] == '.') {
_retval.SetLength(_retval.Length() - 1);
}
}
void
nsUrlClassifierUtils::ParseIPAddress(const nsACString & host,
nsACString & _retval)
{
_retval.Truncate();
nsACString::const_iterator iter, end;
host.BeginReading(iter);
host.EndReading(end);
if (host.Length() <= 15) {
// The Windows resolver allows a 4-part dotted decimal IP address to
// have a space followed by any old rubbish, so long as the total length
// of the string doesn't get above 15 characters. So, "10.192.95.89 xy"
// is resolved to 10.192.95.89.
// If the string length is greater than 15 characters, e.g.
// "10.192.95.89 xy.wildcard.example.com", it will be resolved through
// DNS.
if (FindCharInReadable(' ', iter, end)) {
end = iter;
}
}
for (host.BeginReading(iter); iter != end; iter++) {
if (!(isxdigit(*iter) || *iter == 'x' || *iter == 'X' || *iter == '.')) {
// not an IP
return;
}
}
host.BeginReading(iter);
nsTArray<nsCString> parts;
ParseString(PromiseFlatCString(Substring(iter, end)), '.', parts);
if (parts.Length() > 4) {
return;
}
// If any potentially-octal numbers (start with 0 but not hex) have
// non-octal digits, no part of the ip can be in octal
// XXX: this came from the old javascript implementation, is it really
// supposed to be like this?
bool allowOctal = true;
uint32_t i;
for (i = 0; i < parts.Length(); i++) {
const nsCString& part = parts[i];
if (part[0] == '0') {
for (uint32_t j = 1; j < part.Length(); j++) {
if (part[j] == 'x') {
break;
}
if (part[j] == '8' || part[j] == '9') {
allowOctal = false;
break;
}
}
}
}
for (i = 0; i < parts.Length(); i++) {
nsAutoCString canonical;
if (i == parts.Length() - 1) {
CanonicalNum(parts[i], 5 - parts.Length(), allowOctal, canonical);
} else {
CanonicalNum(parts[i], 1, allowOctal, canonical);
}
if (canonical.IsEmpty()) {
_retval.Truncate();
return;
}
if (_retval.IsEmpty()) {
_retval.Assign(canonical);
} else {
_retval.Append('.');
_retval.Append(canonical);
}
}
return;
}
void
nsUrlClassifierUtils::CanonicalNum(const nsACString& num,
uint32_t bytes,
bool allowOctal,
nsACString& _retval)
{
_retval.Truncate();
if (num.Length() < 1) {
return;
}
uint32_t val;
if (allowOctal && IsOctal(num)) {
if (PR_sscanf(PromiseFlatCString(num).get(), "%o", &val) != 1) {
return;
}
} else if (IsDecimal(num)) {
if (PR_sscanf(PromiseFlatCString(num).get(), "%u", &val) != 1) {
return;
}
} else if (IsHex(num)) {
if (PR_sscanf(PromiseFlatCString(num).get(), num[1] == 'X' ? "0X%x" : "0x%x",
&val) != 1) {
return;
}
} else {
return;
}
while (bytes--) {
char buf[20];
PR_snprintf(buf, sizeof(buf), "%u", val & 0xff);
if (_retval.IsEmpty()) {
_retval.Assign(buf);
} else {
_retval = nsDependentCString(buf) + NS_LITERAL_CSTRING(".") + _retval;
}
val >>= 8;
}
}
// This function will encode all "special" characters in typical url
// encoding, that is %hh where h is a valid hex digit. It will also fold
// any duplicated slashes.
bool
nsUrlClassifierUtils::SpecialEncode(const nsACString & url,
bool foldSlashes,
nsACString & _retval)
{
bool changed = false;
const char* curChar = url.BeginReading();
const char* end = url.EndReading();
unsigned char lastChar = '\0';
while (curChar != end) {
unsigned char c = static_cast<unsigned char>(*curChar);
if (ShouldURLEscape(c)) {
_retval.Append('%');
_retval.Append(int_to_hex_digit(c / 16));
_retval.Append(int_to_hex_digit(c % 16));
changed = true;
} else if (foldSlashes && (c == '/' && lastChar == '/')) {
// skip
} else {
_retval.Append(*curChar);
}
lastChar = c;
curChar++;
}
return changed;
}
bool
nsUrlClassifierUtils::ShouldURLEscape(const unsigned char c) const
{
return c <= 32 || c == '%' || c >=127;
}
/* static */
void
nsUrlClassifierUtils::UnUrlsafeBase64(nsACString &str)
{
nsACString::iterator iter, end;
str.BeginWriting(iter);
str.EndWriting(end);
while (iter != end) {
if (*iter == '-') {
*iter = '+';
} else if (*iter == '_') {
*iter = '/';
}
iter++;
}
}
/* static */
nsresult
nsUrlClassifierUtils::DecodeClientKey(const nsACString &key,
nsACString &_retval)
{
// Client key is sent in urlsafe base64, we need to decode it first.
nsAutoCString base64(key);
UnUrlsafeBase64(base64);
// PL_Base64Decode doesn't null-terminate unless we let it allocate,
// so we need to calculate the length ourselves.
uint32_t destLength;
destLength = base64.Length();
if (destLength > 0 && base64[destLength - 1] == '=') {
if (destLength > 1 && base64[destLength - 2] == '=') {
destLength -= 2;
} else {
destLength -= 1;
}
}
destLength = ((destLength * 3) / 4);
_retval.SetLength(destLength);
if (destLength != _retval.Length())
return NS_ERROR_OUT_OF_MEMORY;
if (!PL_Base64Decode(base64.BeginReading(), base64.Length(),
_retval.BeginWriting())) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}