/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "LayerSorter.h" #include "DirectedGraph.h" #include "limits.h" #include "gfxLineSegment.h" namespace mozilla { namespace layers { enum LayerSortOrder { Undefined, ABeforeB, BBeforeA, }; /** * Recover the z component from a 2d transformed point by finding the intersection * of a line through the point in the z direction and the transformed plane. * * We want to solve: * * point = normal . (p0 - l0) / normal . l */ static gfxFloat RecoverZDepth(const gfx3DMatrix& aTransform, const gfxPoint& aPoint) { const gfxPoint3D l(0, 0, 1); gfxPoint3D l0 = gfxPoint3D(aPoint.x, aPoint.y, 0); gfxPoint3D p0 = aTransform.Transform3D(gfxPoint3D(0, 0, 0)); gfxPoint3D normal = aTransform.GetNormalVector(); gfxFloat n = normal.DotProduct(p0 - l0); gfxFloat d = normal.DotProduct(l); if (!d) { return 0; } return n/d; } /** * Determine if this transform layer should be drawn before another when they * are both preserve-3d children. * * We want to find the relative z depths of the 2 layers at points where they * intersect when projected onto the 2d screen plane. Intersections are defined * as corners that are positioned within the other quad, as well as intersections * of the lines. * * We then choose the intersection point with the greatest difference in Z * depths and use this point to determine an ordering for the two layers. * For layers that are intersecting in 3d space, this essentially guesses an * order. In a lot of cases we only intersect right at the edge point (3d cubes * in particular) and this generates the 'correct' looking ordering. For planes * that truely intersect, then there is no correct ordering and this remains * unsolved without changing our rendering code. */ static LayerSortOrder CompareDepth(Layer* aOne, Layer* aTwo) { gfxRect ourRect = aOne->GetEffectiveVisibleRegion().GetBounds(); gfxRect otherRect = aTwo->GetEffectiveVisibleRegion().GetBounds(); gfx3DMatrix ourTransform = aOne->GetTransform(); gfx3DMatrix otherTransform = aTwo->GetTransform(); // Transform both rectangles and project into 2d space. gfxQuad ourTransformedRect = ourTransform.TransformRect(ourRect); gfxQuad otherTransformedRect = otherTransform.TransformRect(otherRect); gfxRect ourBounds = ourTransformedRect.GetBounds(); gfxRect otherBounds = otherTransformedRect.GetBounds(); if (!ourBounds.Intersects(otherBounds)) { return Undefined; } // Make a list of all points that are within the other rect. // Could we just check Contains() on the bounds rects. ie, is it possible // for layers to overlap without intersections (in 2d space) and yet still // have their bounds rects not completely enclose each other? nsTArray points; for (PRUint32 i = 0; i < 4; i++) { if (ourTransformedRect.Contains(otherTransformedRect.mPoints[i])) { points.AppendElement(otherTransformedRect.mPoints[i]); } if (otherTransformedRect.Contains(ourTransformedRect.mPoints[i])) { points.AppendElement(ourTransformedRect.mPoints[i]); } } // Look for intersections between lines (in 2d space) and use these as // depth testing points. for (PRUint32 i = 0; i < 4; i++) { for (PRUint32 j = 0; j < 4; j++) { gfxPoint intersection; gfxLineSegment one(ourTransformedRect.mPoints[i], ourTransformedRect.mPoints[(i + 1) % 4]); gfxLineSegment two(otherTransformedRect.mPoints[j], otherTransformedRect.mPoints[(j + 1) % 4]); if (one.Intersects(two, intersection)) { points.AppendElement(intersection); } } } // No intersections, no defined order between these layers. if (points.IsEmpty()) { return Undefined; } // Find the relative Z depths of each intersection point and check that the layers are in the same order. gfxFloat highest = 0; for (PRUint32 i = 0; i < points.Length(); i++) { gfxFloat ourDepth = RecoverZDepth(ourTransform, points.ElementAt(i)); gfxFloat otherDepth = RecoverZDepth(otherTransform, points.ElementAt(i)); gfxFloat difference = otherDepth - ourDepth; if (fabs(difference) > fabs(highest)) { highest = difference; } } // If layers have the same depth keep the original order if (fabs(highest) < 0.1 || highest >= 0) { return ABeforeB; } else { return BBeforeA; } } #ifdef DEBUG static bool gDumpLayerSortList = getenv("MOZ_DUMP_LAYER_SORT_LIST") != 0; #define BLACK 0 #define RED 1 #define GREEN 2 #define YELLOW 3 #define BLUE 4 #define MAGENTA 5 #define CYAN 6 #define WHITE 7 //#define USE_XTERM_COLORING #ifdef USE_XTERM_COLORING #define RESET 0 #define BRIGHT 1 #define DIM 2 #define UNDERLINE 3 #define BLINK 4 #define REVERSE 7 #define HIDDEN 8 static void SetTextColor(PRUint32 aColor) { char command[13]; /* Command is the control command to the terminal */ sprintf(command, "%c[%d;%d;%dm", 0x1B, RESET, aColor + 30, BLACK + 40); printf("%s", command); } static void print_layer_internal(FILE* aFile, Layer* aLayer, PRUint32 aColor) { SetTextColor(aColor); fprintf(aFile, "%p", aLayer); SetTextColor(GREEN); } #else const char *colors[] = { "Black", "Red", "Green", "Yellow", "Blue", "Magenta", "Cyan", "White" }; static void print_layer_internal(FILE* aFile, Layer* aLayer, PRUint32 aColor) { fprintf(aFile, "%p(%s)", aLayer, colors[aColor]); } #endif static void print_layer(FILE* aFile, Layer* aLayer) { print_layer_internal(aFile, aLayer, aLayer->GetDebugColorIndex()); } static void DumpLayerList(nsTArray& aLayers) { for (PRUint32 i = 0; i < aLayers.Length(); i++) { print_layer(stderr, aLayers.ElementAt(i)); fprintf(stderr, " "); } fprintf(stderr, "\n"); } static void DumpEdgeList(DirectedGraph& aGraph) { nsTArray::Edge> edges = aGraph.GetEdgeList(); for (PRUint32 i = 0; i < edges.Length(); i++) { fprintf(stderr, "From: "); print_layer(stderr, edges.ElementAt(i).mFrom); fprintf(stderr, ", To: "); print_layer(stderr, edges.ElementAt(i).mTo); fprintf(stderr, "\n"); } } #endif // The maximum number of layers that we will attempt to sort. Anything // greater than this will be left unsorted. We should consider enabling // depth buffering for the scene in this case. #define MAX_SORTABLE_LAYERS 100 PRUint32 gColorIndex = 1; void SortLayersBy3DZOrder(nsTArray& aLayers) { PRUint32 nodeCount = aLayers.Length(); if (nodeCount > MAX_SORTABLE_LAYERS) { return; } DirectedGraph graph; #ifdef DEBUG if (gDumpLayerSortList) { for (PRUint32 i = 0; i < nodeCount; i++) { if (aLayers.ElementAt(i)->GetDebugColorIndex() == 0) { aLayers.ElementAt(i)->SetDebugColorIndex(gColorIndex++); if (gColorIndex > 7) { gColorIndex = 1; } } } fprintf(stderr, " --- Layers before sorting: --- \n"); DumpLayerList(aLayers); } #endif // Iterate layers and determine edges. for (PRUint32 i = 0; i < nodeCount; i++) { for (PRUint32 j = i + 1; j < nodeCount; j++) { Layer* a = aLayers.ElementAt(i); Layer* b = aLayers.ElementAt(j); LayerSortOrder order = CompareDepth(a, b); if (order == ABeforeB) { graph.AddEdge(a, b); } else if (order == BBeforeA) { graph.AddEdge(b, a); } } } #ifdef DEBUG if (gDumpLayerSortList) { fprintf(stderr, " --- Edge List: --- \n"); DumpEdgeList(graph); } #endif // Build a new array using the graph. nsTArray noIncoming; nsTArray sortedList; // Make a list of all layers with no incoming edges. noIncoming.AppendElements(aLayers); const nsTArray::Edge>& edges = graph.GetEdgeList(); for (PRUint32 i = 0; i < edges.Length(); i++) { noIncoming.RemoveElement(edges.ElementAt(i).mTo); } // Move each item without incoming edges into the sorted list, // and remove edges from it. do { if (!noIncoming.IsEmpty()) { PRUint32 last = noIncoming.Length() - 1; Layer* layer = noIncoming.ElementAt(last); noIncoming.RemoveElementAt(last); sortedList.AppendElement(layer); nsTArray::Edge> outgoing; graph.GetEdgesFrom(layer, outgoing); for (PRUint32 i = 0; i < outgoing.Length(); i++) { DirectedGraph::Edge edge = outgoing.ElementAt(i); graph.RemoveEdge(edge); if (!graph.NumEdgesTo(edge.mTo)) { // If this node also has no edges now, add it to the list noIncoming.AppendElement(edge.mTo); } } } // If there are no nodes without incoming edges, but there // are still edges, then we have a cycle. if (noIncoming.IsEmpty() && graph.GetEdgeCount()) { // Find the node with the least incoming edges. PRUint32 minEdges = UINT_MAX; Layer* minNode = nsnull; for (PRUint32 i = 0; i < aLayers.Length(); i++) { PRUint32 edgeCount = graph.NumEdgesTo(aLayers.ElementAt(i)); if (edgeCount && edgeCount < minEdges) { minEdges = edgeCount; minNode = aLayers.ElementAt(i); if (minEdges == 1) { break; } } } // Remove all of them! graph.RemoveEdgesTo(minNode); noIncoming.AppendElement(minNode); } } while (!noIncoming.IsEmpty()); NS_ASSERTION(!graph.GetEdgeCount(), "Cycles detected!"); #ifdef DEBUG if (gDumpLayerSortList) { fprintf(stderr, " --- Layers after sorting: --- \n"); DumpLayerList(sortedList); } #endif aLayers.Clear(); aLayers.AppendElements(sortedList); } } }