/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsEscape.h" #include "nsString.h" #include "nsIURI.h" #include "nsNetUtil.h" #include "nsUrlClassifierUtils.h" #include "nsTArray.h" #include "nsReadableUtils.h" #include "plbase64.h" #include "prmem.h" #include "prprf.h" static char int_to_hex_digit(PRInt32 i) { NS_ASSERTION((i >= 0) && (i <= 15), "int too big in int_to_hex_digit"); return static_cast(((i < 10) ? (i + '0') : ((i - 10) + 'A'))); } static bool IsDecimal(const nsACString & num) { for (PRUint32 i = 0; i < num.Length(); i++) { if (!isdigit(num[i])) { return false; } } return true; } static bool IsHex(const nsACString & num) { if (num.Length() < 3) { return false; } if (num[0] != '0' || !(num[1] == 'x' || num[1] == 'X')) { return false; } for (PRUint32 i = 2; i < num.Length(); i++) { if (!isxdigit(num[i])) { return false; } } return true; } static bool IsOctal(const nsACString & num) { if (num.Length() < 2) { return false; } if (num[0] != '0') { return false; } for (PRUint32 i = 1; i < num.Length(); i++) { if (!isdigit(num[i]) || num[i] == '8' || num[i] == '9') { return false; } } return true; } nsUrlClassifierUtils::nsUrlClassifierUtils() : mEscapeCharmap(nsnull) { } nsresult nsUrlClassifierUtils::Init() { // Everything but alpha numerics, - and . mEscapeCharmap = new Charmap(0xffffffff, 0xfc009fff, 0xf8000001, 0xf8000001, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff); if (!mEscapeCharmap) return NS_ERROR_OUT_OF_MEMORY; return NS_OK; } NS_IMPL_ISUPPORTS1(nsUrlClassifierUtils, nsIUrlClassifierUtils) ///////////////////////////////////////////////////////////////////////////// // nsIUrlClassifierUtils NS_IMETHODIMP nsUrlClassifierUtils::GetKeyForURI(nsIURI * uri, nsACString & _retval) { nsCOMPtr innerURI = NS_GetInnermostURI(uri); if (!innerURI) innerURI = uri; nsCAutoString host; innerURI->GetAsciiHost(host); if (host.IsEmpty()) { return NS_ERROR_MALFORMED_URI; } nsresult rv = CanonicalizeHostname(host, _retval); NS_ENSURE_SUCCESS(rv, rv); nsCAutoString path; rv = innerURI->GetPath(path); NS_ENSURE_SUCCESS(rv, rv); // strip out anchors PRInt32 ref = path.FindChar('#'); if (ref != kNotFound) path.SetLength(ref); nsCAutoString temp; rv = CanonicalizePath(path, temp); NS_ENSURE_SUCCESS(rv, rv); _retval.Append(temp); return NS_OK; } ///////////////////////////////////////////////////////////////////////////// // non-interface methods nsresult nsUrlClassifierUtils::CanonicalizeHostname(const nsACString & hostname, nsACString & _retval) { nsCAutoString unescaped; if (!NS_UnescapeURL(PromiseFlatCString(hostname).get(), PromiseFlatCString(hostname).Length(), 0, unescaped)) { unescaped.Assign(hostname); } nsCAutoString cleaned; CleanupHostname(unescaped, cleaned); nsCAutoString temp; ParseIPAddress(cleaned, temp); if (!temp.IsEmpty()) { cleaned.Assign(temp); } ToLowerCase(cleaned); SpecialEncode(cleaned, false, _retval); return NS_OK; } nsresult nsUrlClassifierUtils::CanonicalizePath(const nsACString & path, nsACString & _retval) { _retval.Truncate(); nsCAutoString decodedPath(path); nsCAutoString temp; while (NS_UnescapeURL(decodedPath.get(), decodedPath.Length(), 0, temp)) { decodedPath.Assign(temp); temp.Truncate(); } SpecialEncode(decodedPath, true, _retval); // XXX: lowercase the path? return NS_OK; } void nsUrlClassifierUtils::CleanupHostname(const nsACString & hostname, nsACString & _retval) { _retval.Truncate(); const char* curChar = hostname.BeginReading(); const char* end = hostname.EndReading(); char lastChar = '\0'; while (curChar != end) { unsigned char c = static_cast(*curChar); if (c == '.' && (lastChar == '\0' || lastChar == '.')) { // skip } else { _retval.Append(*curChar); } lastChar = c; ++curChar; } // cut off trailing dots while (_retval.Length() > 0 && _retval[_retval.Length() - 1] == '.') { _retval.SetLength(_retval.Length() - 1); } } void nsUrlClassifierUtils::ParseIPAddress(const nsACString & host, nsACString & _retval) { _retval.Truncate(); nsACString::const_iterator iter, end; host.BeginReading(iter); host.EndReading(end); if (host.Length() <= 15) { // The Windows resolver allows a 4-part dotted decimal IP address to // have a space followed by any old rubbish, so long as the total length // of the string doesn't get above 15 characters. So, "10.192.95.89 xy" // is resolved to 10.192.95.89. // If the string length is greater than 15 characters, e.g. // "10.192.95.89 xy.wildcard.example.com", it will be resolved through // DNS. if (FindCharInReadable(' ', iter, end)) { end = iter; } } for (host.BeginReading(iter); iter != end; iter++) { if (!(isxdigit(*iter) || *iter == 'x' || *iter == 'X' || *iter == '.')) { // not an IP return; } } host.BeginReading(iter); nsTArray parts; ParseString(PromiseFlatCString(Substring(iter, end)), '.', parts); if (parts.Length() > 4) { return; } // If any potentially-octal numbers (start with 0 but not hex) have // non-octal digits, no part of the ip can be in octal // XXX: this came from the old javascript implementation, is it really // supposed to be like this? bool allowOctal = true; PRUint32 i; for (i = 0; i < parts.Length(); i++) { const nsCString& part = parts[i]; if (part[0] == '0') { for (PRUint32 j = 1; j < part.Length(); j++) { if (part[j] == 'x') { break; } if (part[j] == '8' || part[j] == '9') { allowOctal = false; break; } } } } for (i = 0; i < parts.Length(); i++) { nsCAutoString canonical; if (i == parts.Length() - 1) { CanonicalNum(parts[i], 5 - parts.Length(), allowOctal, canonical); } else { CanonicalNum(parts[i], 1, allowOctal, canonical); } if (canonical.IsEmpty()) { _retval.Truncate(); return; } if (_retval.IsEmpty()) { _retval.Assign(canonical); } else { _retval.Append('.'); _retval.Append(canonical); } } return; } void nsUrlClassifierUtils::CanonicalNum(const nsACString& num, PRUint32 bytes, bool allowOctal, nsACString& _retval) { _retval.Truncate(); if (num.Length() < 1) { return; } PRUint32 val; if (allowOctal && IsOctal(num)) { if (PR_sscanf(PromiseFlatCString(num).get(), "%o", &val) != 1) { return; } } else if (IsDecimal(num)) { if (PR_sscanf(PromiseFlatCString(num).get(), "%u", &val) != 1) { return; } } else if (IsHex(num)) { if (PR_sscanf(PromiseFlatCString(num).get(), num[1] == 'X' ? "0X%x" : "0x%x", &val) != 1) { return; } } else { return; } while (bytes--) { char buf[20]; PR_snprintf(buf, sizeof(buf), "%u", val & 0xff); if (_retval.IsEmpty()) { _retval.Assign(buf); } else { _retval = nsDependentCString(buf) + NS_LITERAL_CSTRING(".") + _retval; } val >>= 8; } } // This function will encode all "special" characters in typical url // encoding, that is %hh where h is a valid hex digit. It will also fold // any duplicated slashes. bool nsUrlClassifierUtils::SpecialEncode(const nsACString & url, bool foldSlashes, nsACString & _retval) { bool changed = false; const char* curChar = url.BeginReading(); const char* end = url.EndReading(); unsigned char lastChar = '\0'; while (curChar != end) { unsigned char c = static_cast(*curChar); if (ShouldURLEscape(c)) { _retval.Append('%'); _retval.Append(int_to_hex_digit(c / 16)); _retval.Append(int_to_hex_digit(c % 16)); changed = true; } else if (foldSlashes && (c == '/' && lastChar == '/')) { // skip } else { _retval.Append(*curChar); } lastChar = c; curChar++; } return changed; } bool nsUrlClassifierUtils::ShouldURLEscape(const unsigned char c) const { return c <= 32 || c == '%' || c >=127; } /* static */ void nsUrlClassifierUtils::UnUrlsafeBase64(nsACString &str) { nsACString::iterator iter, end; str.BeginWriting(iter); str.EndWriting(end); while (iter != end) { if (*iter == '-') { *iter = '+'; } else if (*iter == '_') { *iter = '/'; } iter++; } } /* static */ nsresult nsUrlClassifierUtils::DecodeClientKey(const nsACString &key, nsACString &_retval) { // Client key is sent in urlsafe base64, we need to decode it first. nsCAutoString base64(key); UnUrlsafeBase64(base64); // PL_Base64Decode doesn't null-terminate unless we let it allocate, // so we need to calculate the length ourselves. PRUint32 destLength; destLength = base64.Length(); if (destLength > 0 && base64[destLength - 1] == '=') { if (destLength > 1 && base64[destLength - 2] == '=') { destLength -= 2; } else { destLength -= 1; } } destLength = ((destLength * 3) / 4); _retval.SetLength(destLength); if (destLength != _retval.Length()) return NS_ERROR_OUT_OF_MEMORY; if (!PL_Base64Decode(base64.BeginReading(), base64.Length(), _retval.BeginWriting())) { return NS_ERROR_FAILURE; } return NS_OK; }