/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sw=4 et tw=99 ft=cpp: * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla SpiderMonkey JavaScript 1.9 code, released * June 12, 2009. * * The Initial Developer of the Original Code is * the Mozilla Corporation. * * Contributor(s): * Luke Wagner * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef jsvector_h_ #define jsvector_h_ #include #include "jstl.h" namespace js { /* * This template class provides a default implementation for vector operations * when the element type is not known to be a POD, as judged by IsPodType. */ template struct VectorImpl { /* Destroys constructed objects in the range [begin, end). */ static inline void destroy(T *begin, T *end) { for (T *p = begin; p != end; ++p) p->~T(); } /* Constructs objects in the uninitialized range [begin, end). */ static inline void initialize(T *begin, T *end) { for (T *p = begin; p != end; ++p) new(p) T(); } /* * Copy-constructs objects in the uninitialized range * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). */ template static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) { for (const U *p = srcbeg; p != srcend; ++p, ++dst) new(dst) T(*p); } /* * Copy-constructs objects in the uninitialized range [dst, dst+n) from the * same object u. */ template static inline void copyConstructN(T *dst, size_t n, const U &u) { for (T *end = dst + n; dst != end; ++dst) new(dst) T(u); } /* * Grows the given buffer to have capacity newcap, preserving the objects * constructed in the range [begin, end) and updating v. Assumes that (1) * newcap has not overflowed, and (2) multiplying newcap by sizeof(T) will * not overflow. */ static inline bool growTo(Vector &v, size_t newcap) { JS_ASSERT(!v.usingInlineStorage()); T *newbuf = reinterpret_cast(v.malloc(newcap * sizeof(T))); if (!newbuf) return false; for (T *dst = newbuf, *src = v.heapBegin(); src != v.heapEnd(); ++dst, ++src) new(dst) T(*src); VectorImpl::destroy(v.heapBegin(), v.heapEnd()); v.free(v.heapBegin()); v.heapEnd() = newbuf + v.heapLength(); v.heapBegin() = newbuf; v.heapCapacity() = newcap; return true; } }; /* * This partial template specialization provides a default implementation for * vector operations when the element type is known to be a POD, as judged by * IsPodType. */ template struct VectorImpl { static inline void destroy(T *, T *) {} static inline void initialize(T *begin, T *end) { /* * You would think that memset would be a big win (or even break even) * when we know T is a POD. But currently it's not. This is probably * because |append| tends to be given small ranges and memset requires * a function call that doesn't get inlined. * * memset(begin, 0, sizeof(T) * (end-begin)); */ for (T *p = begin; p != end; ++p) new(p) T(); } template static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) { /* * See above memset comment. Also, notice that copyConstruct is * currently templated (T != U), so memcpy won't work without * requiring T == U. * * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg)); */ for (const U *p = srcbeg; p != srcend; ++p, ++dst) *dst = *p; } static inline void copyConstructN(T *dst, size_t n, const T &t) { for (T *end = dst + n; dst != end; ++dst) *dst = t; } static inline bool growTo(Vector &v, size_t newcap) { JS_ASSERT(!v.usingInlineStorage()); size_t bytes = sizeof(T) * newcap; T *newbuf = reinterpret_cast(v.realloc(v.heapBegin(), bytes)); if (!newbuf) return false; v.heapEnd() = newbuf + v.heapLength(); v.heapBegin() = newbuf; v.heapCapacity() = newcap; return true; } }; /* * JS-friendly, STL-like container providing a short-lived, dynamic buffer. * Vector calls the constructors/destructors of all elements stored in * its internal buffer, so non-PODs may be safely used. Additionally, * Vector will store the first N elements in-place before resorting to * dynamic allocation. * * T requirements: * - default and copy constructible, assignable, destructible * - operations do not throw * N requirements: * - any value, however, N is clamped to min/max values * AllocPolicy: * - see "Allocation policies" in jstl.h (default ContextAllocPolicy) * * N.B: Vector is not reentrant: T member functions called during Vector member * functions must not call back into the same object. */ template class Vector : AllocPolicy { /* utilities */ static const bool sElemIsPod = tl::IsPodType::result; typedef VectorImpl Impl; friend struct VectorImpl; bool calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap); bool growHeapStorageBy(size_t lengthInc); bool convertToHeapStorage(size_t lengthInc); /* magic constants */ static const int sMaxInlineBytes = 1024; /* compute constants */ /* * Pointers to the heap-allocated buffer. Only [heapBegin(), heapEnd()) * hold valid constructed T objects. The range [heapEnd(), heapBegin() + * heapCapacity()) holds uninitialized memory. */ struct BufferPtrs { T *begin, *end; }; /* * Since a vector either stores elements inline or in a heap-allocated * buffer, reuse the storage. lengthOrCapacity serves as the union * discriminator. In inline mode (when elements are stored in u.buf), * lengthOrCapacity holds the vector's length. In heap mode (when elements * are stored in [u.ptrs.begin, u.ptrs.end)), lengthOrCapacity holds the * vector's capacity. */ static const size_t sInlineCapacity = tl::Clamp::result; /* Calculate inline buffer size; avoid 0-sized array. */ static const size_t sInlineBytes = tl::Max<1, sInlineCapacity * sizeof(T)>::result; /* member data */ size_t lengthOrCapacity; bool usingInlineStorage() const { return lengthOrCapacity <= sInlineCapacity; } union { BufferPtrs ptrs; char buf[sInlineBytes]; } u; /* Only valid when usingInlineStorage() */ size_t &inlineLength() { JS_ASSERT(usingInlineStorage()); return lengthOrCapacity; } size_t inlineLength() const { JS_ASSERT(usingInlineStorage()); return lengthOrCapacity; } T *inlineBegin() const { JS_ASSERT(usingInlineStorage()); return (T *)u.buf; } T *inlineEnd() const { JS_ASSERT(usingInlineStorage()); return ((T *)u.buf) + lengthOrCapacity; } /* Only valid when !usingInlineStorage() */ size_t heapLength() const { JS_ASSERT(!usingInlineStorage()); /* Guaranteed by calculateNewCapacity. */ JS_ASSERT(size_t(u.ptrs.end - u.ptrs.begin) == ((size_t(u.ptrs.end) - size_t(u.ptrs.begin)) / sizeof(T))); return u.ptrs.end - u.ptrs.begin; } size_t &heapCapacity() { JS_ASSERT(!usingInlineStorage()); return lengthOrCapacity; } T *&heapBegin() { JS_ASSERT(!usingInlineStorage()); return u.ptrs.begin; } T *&heapEnd() { JS_ASSERT(!usingInlineStorage()); return u.ptrs.end; } size_t heapCapacity() const { JS_ASSERT(!usingInlineStorage()); return lengthOrCapacity; } T *heapBegin() const { JS_ASSERT(!usingInlineStorage()); return u.ptrs.begin; } T *heapEnd() const { JS_ASSERT(!usingInlineStorage()); return u.ptrs.end; } #ifdef DEBUG friend class ReentrancyGuard; bool entered; #endif Vector(const Vector &); Vector &operator=(const Vector &); public: Vector(AllocPolicy = AllocPolicy()); ~Vector(); /* accessors */ size_t length() const { return usingInlineStorage() ? inlineLength() : heapLength(); } bool empty() const { return usingInlineStorage() ? inlineLength() == 0 : heapBegin() == heapEnd(); } size_t capacity() const { return usingInlineStorage() ? sInlineCapacity : heapCapacity(); } T *begin() { JS_ASSERT(!entered); return usingInlineStorage() ? inlineBegin() : heapBegin(); } const T *begin() const { JS_ASSERT(!entered); return usingInlineStorage() ? inlineBegin() : heapBegin(); } T *end() { JS_ASSERT(!entered); return usingInlineStorage() ? inlineEnd() : heapEnd(); } const T *end() const { JS_ASSERT(!entered); return usingInlineStorage() ? inlineEnd() : heapEnd(); } T &operator[](size_t i) { JS_ASSERT(!entered && i < length()); return begin()[i]; } const T &operator[](size_t i) const { JS_ASSERT(!entered && i < length()); return begin()[i]; } T &back() { JS_ASSERT(!entered && !empty()); return *(end() - 1); } const T &back() const { JS_ASSERT(!entered && !empty()); return *(end() - 1); } /* mutators */ /* If reserve(N) succeeds, the N next appends are guaranteed to succeed. */ bool reserve(size_t capacity); /* Destroy elements in the range [begin() + incr, end()). */ void shrinkBy(size_t incr); /* * Grow the vector by incr elements. If T is a POD (as judged by * tl::IsPodType), leave as uninitialized memory. Otherwise, default * construct each element. */ bool growBy(size_t incr); /* Call shrinkBy or growBy based on whether newSize > length(). */ bool resize(size_t newLength); void clear(); bool append(const T &t); bool appendN(const T &t, size_t n); template bool append(const U *begin, const U *end); template bool append(const U *begin, size_t length); void popBack(); /* * Transfers ownership of the internal buffer used by Vector to the caller. * After this call, the Vector is empty. Since the returned buffer may need * to be allocated (if the elements are currently stored in-place), the * call can fail, returning NULL. * * N.B. Although a T*, only the range [0, length()) is constructed. */ T *extractRawBuffer(); /* * Transfer ownership of an array of objects into the Vector. * N.B. This call assumes that there are no uninitialized elements in the * passed array. */ void replaceRawBuffer(T *p, size_t length); }; /* Helper functions */ /* * This helper function is specialized for appending the characters of a string * literal to a vector. This could not be done generically since one must take * care not to append the terminating '\0'. */ template bool js_AppendLiteral(Vector &v, const char (&array)[ArrayLength]) { return v.append(array, array + ArrayLength - 1); } /* Vector Implementation */ template inline Vector::Vector(AP ap) : AP(ap), lengthOrCapacity(0) #ifdef DEBUG , entered(false) #endif {} template inline Vector::~Vector() { ReentrancyGuard g(*this); if (usingInlineStorage()) { Impl::destroy(inlineBegin(), inlineEnd()); } else { Impl::destroy(heapBegin(), heapEnd()); this->free(heapBegin()); } } /* * Calculate a new capacity that is at least lengthInc greater than * curLength and check for overflow. */ template inline bool Vector::calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap) { size_t newMinCap = curLength + lengthInc; /* * Check for overflow in the above addition, below CEILING_LOG2, and later * multiplication by sizeof(T). */ if (newMinCap < curLength || newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::result) { this->reportAllocOverflow(); return false; } /* Round up to next power of 2. */ newCap = RoundUpPow2(newMinCap); /* * Do not allow a buffer large enough that the expression ((char *)end() - * (char *)begin()) overflows ptrdiff_t. See Bug 510319. */ if (newCap & tl::UnsafeRangeSizeMask::result) { this->reportAllocOverflow(); return false; } return true; } /* * This function will grow the current heap capacity to have capacity * (heapLength() + lengthInc) and fail on OOM or integer overflow. */ template inline bool Vector::growHeapStorageBy(size_t lengthInc) { size_t newCap; return calculateNewCapacity(heapLength(), lengthInc, newCap) && Impl::growTo(*this, newCap); } /* * This function will create a new heap buffer with capacity (inlineLength() + * lengthInc()), move all elements in the inline buffer to this new buffer, * and fail on OOM or integer overflow. */ template inline bool Vector::convertToHeapStorage(size_t lengthInc) { size_t newCap; if (!calculateNewCapacity(inlineLength(), lengthInc, newCap)) return false; /* Allocate buffer. */ T *newBuf = reinterpret_cast(this->malloc(newCap * sizeof(T))); if (!newBuf) return false; /* Copy inline elements into heap buffer. */ size_t length = inlineLength(); Impl::copyConstruct(newBuf, inlineBegin(), inlineEnd()); Impl::destroy(inlineBegin(), inlineEnd()); /* Switch in heap buffer. */ lengthOrCapacity = newCap; /* marks us as !usingInlineStorage() */ heapBegin() = newBuf; heapEnd() = newBuf + length; return true; } template inline bool Vector::reserve(size_t request) { ReentrancyGuard g(*this); if (usingInlineStorage()) { if (request > sInlineCapacity) return convertToHeapStorage(request - inlineLength()); } else { if (request > heapCapacity()) return growHeapStorageBy(request - heapLength()); } return true; } template inline void Vector::shrinkBy(size_t incr) { ReentrancyGuard g(*this); JS_ASSERT(incr <= length()); if (usingInlineStorage()) { Impl::destroy(inlineEnd() - incr, inlineEnd()); inlineLength() -= incr; } else { Impl::destroy(heapEnd() - incr, heapEnd()); heapEnd() -= incr; } } template inline bool Vector::growBy(size_t incr) { ReentrancyGuard g(*this); if (usingInlineStorage()) { size_t freespace = sInlineCapacity - inlineLength(); if (incr <= freespace) { T *newend = inlineEnd() + incr; if (!tl::IsPodType::result) Impl::initialize(inlineEnd(), newend); inlineLength() += incr; JS_ASSERT(usingInlineStorage()); return true; } if (!convertToHeapStorage(incr)) return false; } else { /* grow if needed */ size_t freespace = heapCapacity() - heapLength(); if (incr > freespace) { if (!growHeapStorageBy(incr)) return false; } } /* We are !usingInlineStorage(). Initialize new elements. */ JS_ASSERT(heapCapacity() - heapLength() >= incr); T *newend = heapEnd() + incr; if (!tl::IsPodType::result) Impl::initialize(heapEnd(), newend); heapEnd() = newend; return true; } template inline bool Vector::resize(size_t newLength) { size_t curLength = length(); if (newLength > curLength) return growBy(newLength - curLength); shrinkBy(curLength - newLength); return true; } template inline void Vector::clear() { ReentrancyGuard g(*this); if (usingInlineStorage()) { Impl::destroy(inlineBegin(), inlineEnd()); inlineLength() = 0; } else { Impl::destroy(heapBegin(), heapEnd()); heapEnd() = heapBegin(); } } template inline bool Vector::append(const T &t) { ReentrancyGuard g(*this); if (usingInlineStorage()) { if (inlineLength() < sInlineCapacity) { new(inlineEnd()) T(t); ++inlineLength(); JS_ASSERT(usingInlineStorage()); return true; } if (!convertToHeapStorage(1)) return false; } else { if (heapLength() == heapCapacity() && !growHeapStorageBy(1)) return false; } /* We are !usingInlineStorage(). Initialize new elements. */ JS_ASSERT(heapLength() <= heapCapacity() && heapCapacity() - heapLength() >= 1); new(heapEnd()++) T(t); return true; } template inline bool Vector::appendN(const T &t, size_t needed) { ReentrancyGuard g(*this); if (usingInlineStorage()) { size_t freespace = sInlineCapacity - inlineLength(); if (needed <= freespace) { Impl::copyConstructN(inlineEnd(), needed, t); inlineLength() += needed; JS_ASSERT(usingInlineStorage()); return true; } if (!convertToHeapStorage(needed)) return false; } else { size_t freespace = heapCapacity() - heapLength(); if (needed > freespace && !growHeapStorageBy(needed)) return false; } /* We are !usingInlineStorage(). Initialize new elements. */ JS_ASSERT(heapLength() <= heapCapacity() && heapCapacity() - heapLength() >= needed); Impl::copyConstructN(heapEnd(), needed, t); heapEnd() += needed; return true; } template template inline bool Vector::append(const U *insBegin, const U *insEnd) { ReentrancyGuard g(*this); size_t needed = PointerRangeSize(insBegin, insEnd); if (usingInlineStorage()) { size_t freespace = sInlineCapacity - inlineLength(); if (needed <= freespace) { Impl::copyConstruct(inlineEnd(), insBegin, insEnd); inlineLength() += needed; JS_ASSERT(usingInlineStorage()); return true; } if (!convertToHeapStorage(needed)) return false; } else { size_t freespace = heapCapacity() - heapLength(); if (needed > freespace && !growHeapStorageBy(needed)) return false; } /* We are !usingInlineStorage(). Initialize new elements. */ JS_ASSERT(heapLength() <= heapCapacity() && heapCapacity() - heapLength() >= needed); Impl::copyConstruct(heapEnd(), insBegin, insEnd); heapEnd() += needed; return true; } template template inline bool Vector::append(const U *insBegin, size_t length) { return this->append(insBegin, insBegin + length); } template inline void Vector::popBack() { ReentrancyGuard g(*this); JS_ASSERT(!empty()); if (usingInlineStorage()) { --inlineLength(); inlineEnd()->~T(); } else { --heapEnd(); heapEnd()->~T(); } } template inline T * Vector::extractRawBuffer() { if (usingInlineStorage()) { T *ret = reinterpret_cast(this->malloc(inlineLength() * sizeof(T))); if (!ret) return NULL; Impl::copyConstruct(ret, inlineBegin(), inlineEnd()); Impl::destroy(inlineBegin(), inlineEnd()); inlineLength() = 0; return ret; } T *ret = heapBegin(); lengthOrCapacity = 0; /* marks us as !usingInlineStorage() */ return ret; } template inline void Vector::replaceRawBuffer(T *p, size_t length) { ReentrancyGuard g(*this); /* Destroy what we have. */ if (usingInlineStorage()) { Impl::destroy(inlineBegin(), inlineEnd()); inlineLength() = 0; } else { Impl::destroy(heapBegin(), heapEnd()); this->free(heapBegin()); } /* Take in the new buffer. */ if (length <= sInlineCapacity) { /* * (lengthOrCapacity <= sInlineCapacity) means inline storage, so we * MUST use inline storage, even though p might otherwise be acceptable. */ lengthOrCapacity = length; /* marks us as usingInlineStorage() */ Impl::copyConstruct(inlineBegin(), p, p + length); Impl::destroy(p, p + length); this->free(p); } else { lengthOrCapacity = length; /* marks us as !usingInlineStorage() */ heapBegin() = p; heapEnd() = heapBegin() + length; } } } /* namespace js */ #endif /* jsvector_h_ */