/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #define FILTER_PROCESSING_SCALAR #include "FilterProcessingSIMD-inl.h" namespace mozilla { namespace gfx { void FilterProcessing::ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride) { for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { int32_t sourceIndex = y * sourceStride + 4 * x; int32_t targetIndex = y * alphaStride + x; alphaData[targetIndex] = sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; } } } TemporaryRef FilterProcessing::ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface) { return ConvertToB8G8R8A8_SIMD(aSurface); } template static TemporaryRef ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2) { IntSize size = aInput1->GetSize(); RefPtr target = Factory::CreateDataSourceSurface(size, FORMAT_B8G8R8A8); if (!target) { return nullptr; } uint8_t* source1Data = aInput1->GetData(); uint8_t* source2Data = aInput2->GetData(); uint8_t* targetData = target->GetData(); uint32_t targetStride = target->Stride(); uint32_t source1Stride = aInput1->Stride(); uint32_t source2Stride = aInput2->Stride(); for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { uint32_t targetIndex = y * targetStride + 4 * x; uint32_t source1Index = y * source1Stride + 4 * x; uint32_t source2Index = y * source2Stride + 4 * x; uint32_t qa = source1Data[source1Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; uint32_t qb = source2Data[source2Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; for (int32_t i = std::min(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); i <= std::max(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); i++) { uint32_t ca = source1Data[source1Index + i]; uint32_t cb = source2Data[source2Index + i]; uint32_t val; switch (aBlendMode) { case BLEND_MODE_MULTIPLY: val = ((255 - qa) * cb + (255 - qb + cb) * ca); break; case BLEND_MODE_SCREEN: val = 255 * (cb + ca) - ca * cb; break; case BLEND_MODE_DARKEN: val = umin((255 - qa) * cb + 255 * ca, (255 - qb) * ca + 255 * cb); break; case BLEND_MODE_LIGHTEN: val = umax((255 - qa) * cb + 255 * ca, (255 - qb) * ca + 255 * cb); break; default: MOZ_CRASH(); } val = umin(FilterProcessing::FastDivideBy255(val), 255U); targetData[targetIndex + i] = static_cast(val); } uint32_t alpha = 255 * 255 - (255 - qa) * (255 - qb); targetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = FilterProcessing::FastDivideBy255(alpha); } } return target; } TemporaryRef FilterProcessing::ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, BlendMode aBlendMode) { switch (aBlendMode) { case BLEND_MODE_MULTIPLY: return gfx::ApplyBlending_Scalar(aInput1, aInput2); case BLEND_MODE_SCREEN: return gfx::ApplyBlending_Scalar(aInput1, aInput2); case BLEND_MODE_DARKEN: return gfx::ApplyBlending_Scalar(aInput1, aInput2); case BLEND_MODE_LIGHTEN: return gfx::ApplyBlending_Scalar(aInput1, aInput2); default: return nullptr; } } template static void ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) { static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE || Operator == MORPHOLOGY_OPERATOR_DILATE, "unexpected morphology operator"); for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++) { int32_t startX = aDestRect.x - aRadius; int32_t endX = aDestRect.x + aRadius; for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++, startX++, endX++) { int32_t sourceIndex = y * aSourceStride + 4 * startX; uint8_t u[4]; for (size_t i = 0; i < 4; i++) { u[i] = aSourceData[sourceIndex + i]; } sourceIndex += 4; for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) { for (size_t i = 0; i < 4; i++) { if (Operator == MORPHOLOGY_OPERATOR_ERODE) { u[i] = umin(u[i], aSourceData[sourceIndex + i]); } else { u[i] = umax(u[i], aSourceData[sourceIndex + i]); } } } int32_t destIndex = y * aDestStride + 4 * x; for (size_t i = 0; i < 4; i++) { aDestData[destIndex+i] = u[i]; } } } } void FilterProcessing::ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius, MorphologyOperator aOp) { if (aOp == MORPHOLOGY_OPERATOR_ERODE) { gfx::ApplyMorphologyHorizontal_Scalar( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } else { gfx::ApplyMorphologyHorizontal_Scalar( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } } template static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) { static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE || Operator == MORPHOLOGY_OPERATOR_DILATE, "unexpected morphology operator"); int32_t startY = aDestRect.y - aRadius; int32_t endY = aDestRect.y + aRadius; for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++, startY++, endY++) { for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++) { int32_t sourceIndex = startY * aSourceStride + 4 * x; uint8_t u[4]; for (size_t i = 0; i < 4; i++) { u[i] = aSourceData[sourceIndex + i]; } sourceIndex += aSourceStride; for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) { for (size_t i = 0; i < 4; i++) { if (Operator == MORPHOLOGY_OPERATOR_ERODE) { u[i] = umin(u[i], aSourceData[sourceIndex + i]); } else { u[i] = umax(u[i], aSourceData[sourceIndex + i]); } } } int32_t destIndex = y * aDestStride + 4 * x; for (size_t i = 0; i < 4; i++) { aDestData[destIndex+i] = u[i]; } } } } void FilterProcessing::ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData, int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius, MorphologyOperator aOp) { if (aOp == MORPHOLOGY_OPERATOR_ERODE) { gfx::ApplyMorphologyVertical_Scalar( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } else { gfx::ApplyMorphologyVertical_Scalar( aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius); } } TemporaryRef FilterProcessing::ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix) { return ApplyColorMatrix_SIMD(aInput, aMatrix); } void FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest, CompositeOperator aOperator) { return ApplyComposition_SIMD(aSource, aDest, aOperator); } void FilterProcessing::SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride) { for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { int32_t sourceIndex = y * sourceStride + 4 * x; int32_t targetIndex = y * channelStride + x; channel0Data[targetIndex] = sourceData[sourceIndex]; channel1Data[targetIndex] = sourceData[sourceIndex+1]; channel2Data[targetIndex] = sourceData[sourceIndex+2]; channel3Data[targetIndex] = sourceData[sourceIndex+3]; } } } void FilterProcessing::CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data) { for (int32_t y = 0; y < size.height; y++) { for (int32_t x = 0; x < size.width; x++) { int32_t resultIndex = y * resultStride + 4 * x; int32_t channelIndex = y * channelStride + x; resultData[resultIndex] = channel0Data[channelIndex]; resultData[resultIndex+1] = channel1Data[channelIndex]; resultData[resultIndex+2] = channel2Data[channelIndex]; resultData[resultIndex+3] = channel3Data[channelIndex]; } } } void FilterProcessing::DoPremultiplicationCalculation_Scalar(const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride, uint8_t* aSourceData, int32_t aSourceStride) { for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x++) { int32_t inputIndex = y * aSourceStride + 4 * x; int32_t targetIndex = y * aTargetStride + 4 * x; uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] = FastDivideBy255(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha); aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] = FastDivideBy255(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha); aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] = FastDivideBy255(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha); aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha; } } } void FilterProcessing::DoUnpremultiplicationCalculation_Scalar( const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride, uint8_t* aSourceData, int32_t aSourceStride) { for (int32_t y = 0; y < aSize.height; y++) { for (int32_t x = 0; x < aSize.width; x++) { int32_t inputIndex = y * aSourceStride + 4 * x; int32_t targetIndex = y * aTargetStride + 4 * x; uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A]; uint16_t alphaFactor = sAlphaFactors[alpha]; // inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t // because the input is premultiplied and thus inputColor <= inputAlpha. // The maximum value this can attain is 65520 (which is less than 65535) // for color == alpha == 244: // 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520 aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] = (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alphaFactor + 128) >> 8; aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] = (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alphaFactor + 128) >> 8; aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] = (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alphaFactor + 128) >> 8; aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha; } } } TemporaryRef FilterProcessing::RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency, int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect) { return RenderTurbulence_SIMD( aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch, aTileRect); } TemporaryRef FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4) { return ApplyArithmeticCombine_SIMD(aInput1, aInput2, aK1, aK2, aK3, aK4); } } // namespace mozilla } // namespace gfx