/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* A type/length-parametrized vector class. */ #ifndef mozilla_Vector_h #define mozilla_Vector_h #include "mozilla/AllocPolicy.h" #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Move.h" #include "mozilla/NullPtr.h" #include "mozilla/ReentrancyGuard.h" #include "mozilla/TemplateLib.h" #include "mozilla/TypeTraits.h" #include "mozilla/Util.h" /* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */ #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4345) #endif namespace mozilla { template class VectorBase; namespace detail { /* * Check that the given capacity wastes the minimal amount of space if * allocated on the heap. This means that cap*sizeof(T) is as close to a * power-of-two as possible. growStorageBy() is responsible for ensuring * this. */ template static bool CapacityHasExcessSpace(size_t cap) { size_t size = cap * sizeof(T); return RoundUpPow2(size) - size >= sizeof(T); } /* * This template class provides a default implementation for vector operations * when the element type is not known to be a POD, as judged by IsPod. */ template struct VectorImpl { /* Destroys constructed objects in the range [begin, end). */ static inline void destroy(T* begin, T* end) { for (T* p = begin; p < end; ++p) p->~T(); } /* Constructs objects in the uninitialized range [begin, end). */ static inline void initialize(T* begin, T* end) { for (T* p = begin; p < end; ++p) new(p) T(); } /* * Copy-constructs objects in the uninitialized range * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). */ template static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) { for (const U* p = srcbeg; p < srcend; ++p, ++dst) new(dst) T(*p); } /* * Move-constructs objects in the uninitialized range * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend). */ template static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) { for (const U* p = srcbeg; p < srcend; ++p, ++dst) new(dst) T(Move(*p)); } /* * Copy-constructs objects in the uninitialized range [dst, dst+n) from the * same object u. */ template static inline void copyConstructN(T* dst, size_t n, const U& u) { for (T* end = dst + n; dst < end; ++dst) new(dst) T(u); } /* * Grows the given buffer to have capacity newCap, preserving the objects * constructed in the range [begin, end) and updating v. Assumes that (1) * newCap has not overflowed, and (2) multiplying newCap by sizeof(T) will * not overflow. */ static inline bool growTo(VectorBase& v, size_t newCap) { MOZ_ASSERT(!v.usingInlineStorage()); MOZ_ASSERT(!CapacityHasExcessSpace(newCap)); T* newbuf = reinterpret_cast(v.malloc_(newCap * sizeof(T))); if (!newbuf) return false; T* dst = newbuf; T* src = v.beginNoCheck(); for (; src < v.endNoCheck(); ++dst, ++src) new(dst) T(Move(*src)); VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck()); v.free_(v.mBegin); v.mBegin = newbuf; /* v.mLength is unchanged. */ v.mCapacity = newCap; return true; } }; /* * This partial template specialization provides a default implementation for * vector operations when the element type is known to be a POD, as judged by * IsPod. */ template struct VectorImpl { static inline void destroy(T*, T*) {} static inline void initialize(T* begin, T* end) { /* * You would think that memset would be a big win (or even break even) * when we know T is a POD. But currently it's not. This is probably * because |append| tends to be given small ranges and memset requires * a function call that doesn't get inlined. * * memset(begin, 0, sizeof(T) * (end-begin)); */ for (T* p = begin; p < end; ++p) new(p) T(); } template static inline void copyConstruct(T* dst, const U* srcbeg, const U* srcend) { /* * See above memset comment. Also, notice that copyConstruct is * currently templated (T != U), so memcpy won't work without * requiring T == U. * * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg)); */ for (const U* p = srcbeg; p < srcend; ++p, ++dst) *dst = *p; } template static inline void moveConstruct(T* dst, const U* srcbeg, const U* srcend) { copyConstruct(dst, srcbeg, srcend); } static inline void copyConstructN(T* dst, size_t n, const T& t) { for (T* end = dst + n; dst < end; ++dst) *dst = t; } static inline bool growTo(VectorBase& v, size_t newCap) { MOZ_ASSERT(!v.usingInlineStorage()); MOZ_ASSERT(!CapacityHasExcessSpace(newCap)); size_t oldSize = sizeof(T) * v.mCapacity; size_t newSize = sizeof(T) * newCap; T* newbuf = reinterpret_cast(v.realloc_(v.mBegin, oldSize, newSize)); if (!newbuf) return false; v.mBegin = newbuf; /* v.mLength is unchanged. */ v.mCapacity = newCap; return true; } }; } // namespace detail /* * A CRTP base class for vector-like classes. Unless you really really want * your own vector class -- and you almost certainly don't -- you should use * mozilla::Vector instead! * * See mozilla::Vector for interface requirements. */ template class VectorBase : private AllocPolicy { /* utilities */ static const bool sElemIsPod = IsPod::value; typedef detail::VectorImpl Impl; friend struct detail::VectorImpl; bool growStorageBy(size_t incr); bool convertToHeapStorage(size_t newCap); /* magic constants */ static const int sMaxInlineBytes = 1024; /* compute constants */ /* * Consider element size to be 1 for buffer sizing if there are 0 inline * elements. This allows us to compile when the definition of the element * type is not visible here. * * Explicit specialization is only allowed at namespace scope, so in order * to keep everything here, we use a dummy template parameter with partial * specialization. */ template struct ElemSize { static const size_t value = sizeof(T); }; template struct ElemSize<0, Dummy> { static const size_t value = 1; }; static const size_t sInlineCapacity = tl::Min::value>::value; /* Calculate inline buffer size; avoid 0-sized array. */ static const size_t sInlineBytes = tl::Max<1, sInlineCapacity * ElemSize::value>::value; /* member data */ /* * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin, * mBegin + mLength) hold valid constructed T objects. The range [mBegin + * mLength, mBegin + mCapacity) holds uninitialized memory. The range * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory * previously allocated by a call to reserve(). */ T* mBegin; /* Number of elements in the vector. */ size_t mLength; /* Max number of elements storable in the vector without resizing. */ size_t mCapacity; #ifdef DEBUG /* Max elements of reserved or used space in this vector. */ size_t mReserved; #endif /* Memory used for inline storage. */ AlignedStorage storage; #ifdef DEBUG friend class ReentrancyGuard; bool entered; #endif /* private accessors */ bool usingInlineStorage() const { return mBegin == const_cast(this)->inlineStorage(); } T* inlineStorage() { return static_cast(storage.addr()); } T* beginNoCheck() const { return mBegin; } T* endNoCheck() { return mBegin + mLength; } const T* endNoCheck() const { return mBegin + mLength; } #ifdef DEBUG size_t reserved() const { MOZ_ASSERT(mReserved <= mCapacity); MOZ_ASSERT(mLength <= mReserved); return mReserved; } #endif /* Append operations guaranteed to succeed due to pre-reserved space. */ template void internalAppend(const U& u); template void internalAppendAll(const VectorBase& u); void internalAppendN(const T& t, size_t n); template void internalAppend(const U* begin, size_t length); public: static const size_t sMaxInlineStorage = N; typedef T ElementType; VectorBase(AllocPolicy = AllocPolicy()); VectorBase(MoveRef); /* Move constructor. */ ThisVector& operator=(MoveRef); /* Move assignment. */ ~VectorBase(); /* accessors */ const AllocPolicy& allocPolicy() const { return *this; } AllocPolicy& allocPolicy() { return *this; } enum { InlineLength = N }; size_t length() const { return mLength; } bool empty() const { return mLength == 0; } size_t capacity() const { return mCapacity; } T* begin() { MOZ_ASSERT(!entered); return mBegin; } const T* begin() const { MOZ_ASSERT(!entered); return mBegin; } T* end() { MOZ_ASSERT(!entered); return mBegin + mLength; } const T* end() const { MOZ_ASSERT(!entered); return mBegin + mLength; } T& operator[](size_t i) { MOZ_ASSERT(!entered); MOZ_ASSERT(i < mLength); return begin()[i]; } const T& operator[](size_t i) const { MOZ_ASSERT(!entered); MOZ_ASSERT(i < mLength); return begin()[i]; } T& back() { MOZ_ASSERT(!entered); MOZ_ASSERT(!empty()); return *(end() - 1); } const T& back() const { MOZ_ASSERT(!entered); MOZ_ASSERT(!empty()); return *(end() - 1); } class Range { friend class VectorBase; T* cur_; T* end_; Range(T* cur, T* end) : cur_(cur), end_(end) {} public: Range() {} bool empty() const { return cur_ == end_; } size_t remain() const { return end_ - cur_; } T& front() const { return *cur_; } void popFront() { MOZ_ASSERT(!empty()); ++cur_; } T popCopyFront() { MOZ_ASSERT(!empty()); return *cur_++; } }; Range all() { return Range(begin(), end()); } /* mutators */ /** * Given that the vector is empty and has no inline storage, grow to * |capacity|. */ bool initCapacity(size_t request); /** * If reserve(length() + N) succeeds, the N next appends are guaranteed to * succeed. */ bool reserve(size_t request); /** * Destroy elements in the range [end() - incr, end()). Does not deallocate * or unreserve storage for those elements. */ void shrinkBy(size_t incr); /** Grow the vector by incr elements. */ bool growBy(size_t incr); /** Call shrinkBy or growBy based on whether newSize > length(). */ bool resize(size_t newLength); /** * Increase the length of the vector, but don't initialize the new elements * -- leave them as uninitialized memory. */ bool growByUninitialized(size_t incr); bool resizeUninitialized(size_t newLength); /** Shorthand for shrinkBy(length()). */ void clear(); /** Clears and releases any heap-allocated storage. */ void clearAndFree(); /** * If true, appending |needed| elements won't reallocate elements storage. * This *doesn't* mean that infallibleAppend may be used! You still must * reserve the extra space, even if this method indicates that appends won't * need to reallocate elements storage. */ bool canAppendWithoutRealloc(size_t needed) const; /** * Potentially fallible append operations. * * The function templates that take an unspecified type U require a const T& * or a MoveRef. The MoveRef variants move their operands into the * vector, instead of copying them. If they fail, the operand is left * unmoved. */ template bool append(const U& u); template bool appendAll(const VectorBase& u); bool appendN(const T& t, size_t n); template bool append(const U* begin, const U* end); template bool append(const U* begin, size_t length); /* * Guaranteed-infallible append operations for use upon vectors whose * memory has been pre-reserved. Don't use this if you haven't reserved the * memory! */ template void infallibleAppend(const U& u) { internalAppend(u); } void infallibleAppendN(const T& t, size_t n) { internalAppendN(t, n); } template void infallibleAppend(const U* aBegin, const U* aEnd) { internalAppend(aBegin, PointerRangeSize(aBegin, aEnd)); } template void infallibleAppend(const U* aBegin, size_t aLength) { internalAppend(aBegin, aLength); } void popBack(); T popCopy(); /** * Transfers ownership of the internal buffer used by this vector to the * caller. (It's the caller's responsibility to properly deallocate this * buffer, in accordance with this vector's AllocPolicy.) After this call, * the vector is empty. Since the returned buffer may need to be allocated * (if the elements are currently stored in-place), the call can fail, * returning nullptr. * * N.B. Although a T*, only the range [0, length()) is constructed. */ T* extractRawBuffer(); /** * Transfer ownership of an array of objects into the vector. The caller * must have allocated the array in accordance with this vector's * AllocPolicy. * * N.B. This call assumes that there are no uninitialized elements in the * passed array. */ void replaceRawBuffer(T* p, size_t length); /** * Places |val| at position |p|, shifting existing elements from |p| onward * one position higher. On success, |p| should not be reused because it'll * be a dangling pointer if reallocation of the vector storage occurred; the * return value should be used instead. On failure, nullptr is returned. * * Example usage: * * if (!(p = vec.insert(p, val))) * * * * This is inherently a linear-time operation. Be careful! */ T* insert(T* p, const T& val); /** * Removes the element |t|, which must fall in the bounds [begin, end), * shifting existing elements from |t + 1| onward one position lower. */ void erase(T* t); /** * Measure the size of the vector's heap-allocated storage. */ size_t sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const; /** * Like sizeOfExcludingThis, but also measures the size of the vector * object (which must be heap-allocated) itself. */ size_t sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const; void swap(ThisVector& other); private: VectorBase(const ThisVector&) MOZ_DELETE; void operator=(const ThisVector&) MOZ_DELETE; }; /* This does the re-entrancy check plus several other sanity checks. */ #define MOZ_REENTRANCY_GUARD_ET_AL \ ReentrancyGuard g(*this); \ MOZ_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \ MOZ_ASSERT(reserved() <= mCapacity); \ MOZ_ASSERT(mLength <= reserved()); \ MOZ_ASSERT(mLength <= mCapacity) /* Vector Implementation */ template MOZ_ALWAYS_INLINE VectorBase::VectorBase(AP ap) : AP(ap), mBegin(static_cast(storage.addr())), mLength(0), mCapacity(sInlineCapacity) #ifdef DEBUG , mReserved(sInlineCapacity), entered(false) #endif {} /* Move constructor. */ template MOZ_ALWAYS_INLINE VectorBase::VectorBase(MoveRef rhs) : AllocPolicy(rhs) #ifdef DEBUG , entered(false) #endif { mLength = rhs->mLength; mCapacity = rhs->mCapacity; #ifdef DEBUG mReserved = rhs->mReserved; #endif if (rhs->usingInlineStorage()) { /* We can't move the buffer over in this case, so copy elements. */ mBegin = static_cast(storage.addr()); Impl::moveConstruct(mBegin, rhs->beginNoCheck(), rhs->endNoCheck()); /* * Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are. * The elements in its in-line storage still need to be destroyed. */ } else { /* * Take src's buffer, and turn src into an empty vector using * in-line storage. */ mBegin = rhs->mBegin; rhs->mBegin = static_cast(rhs->storage.addr()); rhs->mCapacity = sInlineCapacity; rhs->mLength = 0; #ifdef DEBUG rhs->mReserved = sInlineCapacity; #endif } } /* Move assignment. */ template MOZ_ALWAYS_INLINE TV& VectorBase::operator=(MoveRef rhs) { TV* tv = static_cast(this); tv->~TV(); new(tv) TV(rhs); return *tv; } template MOZ_ALWAYS_INLINE VectorBase::~VectorBase() { MOZ_REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) this->free_(beginNoCheck()); } /* * This function will create a new heap buffer with capacity newCap, * move all elements in the inline buffer to this new buffer, * and fail on OOM. */ template inline bool VectorBase::convertToHeapStorage(size_t newCap) { MOZ_ASSERT(usingInlineStorage()); /* Allocate buffer. */ MOZ_ASSERT(!detail::CapacityHasExcessSpace(newCap)); T* newBuf = reinterpret_cast(this->malloc_(newCap * sizeof(T))); if (!newBuf) return false; /* Copy inline elements into heap buffer. */ Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* Switch in heap buffer. */ mBegin = newBuf; /* mLength is unchanged. */ mCapacity = newCap; return true; } template MOZ_NEVER_INLINE bool VectorBase::growStorageBy(size_t incr) { MOZ_ASSERT(mLength + incr > mCapacity); MOZ_ASSERT_IF(!usingInlineStorage(), !detail::CapacityHasExcessSpace(mCapacity)); /* * When choosing a new capacity, its size should is as close to 2**N bytes * as possible. 2**N-sized requests are best because they are unlikely to * be rounded up by the allocator. Asking for a 2**N number of elements * isn't as good, because if sizeof(T) is not a power-of-two that would * result in a non-2**N request size. */ size_t newCap; if (incr == 1) { if (usingInlineStorage()) { /* This case occurs in ~70--80% of the calls to this function. */ size_t newSize = tl::RoundUpPow2<(sInlineCapacity + 1) * sizeof(T)>::value; newCap = newSize / sizeof(T); goto convert; } if (mLength == 0) { /* This case occurs in ~0--10% of the calls to this function. */ newCap = 1; goto grow; } /* This case occurs in ~15--20% of the calls to this function. */ /* * Will mLength * 4 *sizeof(T) overflow? This condition limits a vector * to 1GB of memory on a 32-bit system, which is a reasonable limit. It * also ensures that * * static_cast(end()) - static_cast(begin()) * * doesn't overflow ptrdiff_t (see bug 510319). */ if (mLength & tl::MulOverflowMask<4 * sizeof(T)>::value) { this->reportAllocOverflow(); return false; } /* * If we reach here, the existing capacity will have a size that is already * as close to 2^N as sizeof(T) will allow. Just double the capacity, and * then there might be space for one more element. */ newCap = mLength * 2; if (detail::CapacityHasExcessSpace(newCap)) newCap += 1; } else { /* This case occurs in ~2% of the calls to this function. */ size_t newMinCap = mLength + incr; /* Did mLength + incr overflow? Will newCap * sizeof(T) overflow? */ if (newMinCap < mLength || newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value) { this->reportAllocOverflow(); return false; } size_t newMinSize = newMinCap * sizeof(T); size_t newSize = RoundUpPow2(newMinSize); newCap = newSize / sizeof(T); } if (usingInlineStorage()) { convert: return convertToHeapStorage(newCap); } grow: return Impl::growTo(*this, newCap); } template inline bool VectorBase::initCapacity(size_t request) { MOZ_ASSERT(empty()); MOZ_ASSERT(usingInlineStorage()); if (request == 0) return true; T* newbuf = reinterpret_cast(this->malloc_(request * sizeof(T))); if (!newbuf) return false; mBegin = newbuf; mCapacity = request; #ifdef DEBUG mReserved = request; #endif return true; } template inline bool VectorBase::reserve(size_t request) { MOZ_REENTRANCY_GUARD_ET_AL; if (request > mCapacity && !growStorageBy(request - mLength)) return false; #ifdef DEBUG if (request > mReserved) mReserved = request; MOZ_ASSERT(mLength <= mReserved); MOZ_ASSERT(mReserved <= mCapacity); #endif return true; } template inline void VectorBase::shrinkBy(size_t incr) { MOZ_REENTRANCY_GUARD_ET_AL; MOZ_ASSERT(incr <= mLength); Impl::destroy(endNoCheck() - incr, endNoCheck()); mLength -= incr; } template MOZ_ALWAYS_INLINE bool VectorBase::growBy(size_t incr) { MOZ_REENTRANCY_GUARD_ET_AL; if (incr > mCapacity - mLength && !growStorageBy(incr)) return false; MOZ_ASSERT(mLength + incr <= mCapacity); T* newend = endNoCheck() + incr; Impl::initialize(endNoCheck(), newend); mLength += incr; #ifdef DEBUG if (mLength > mReserved) mReserved = mLength; #endif return true; } template MOZ_ALWAYS_INLINE bool VectorBase::growByUninitialized(size_t incr) { MOZ_REENTRANCY_GUARD_ET_AL; if (incr > mCapacity - mLength && !growStorageBy(incr)) return false; MOZ_ASSERT(mLength + incr <= mCapacity); mLength += incr; #ifdef DEBUG if (mLength > mReserved) mReserved = mLength; #endif return true; } template inline bool VectorBase::resize(size_t newLength) { size_t curLength = mLength; if (newLength > curLength) return growBy(newLength - curLength); shrinkBy(curLength - newLength); return true; } template MOZ_ALWAYS_INLINE bool VectorBase::resizeUninitialized(size_t newLength) { size_t curLength = mLength; if (newLength > curLength) return growByUninitialized(newLength - curLength); shrinkBy(curLength - newLength); return true; } template inline void VectorBase::clear() { MOZ_REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); mLength = 0; } template inline void VectorBase::clearAndFree() { clear(); if (usingInlineStorage()) return; this->free_(beginNoCheck()); mBegin = static_cast(storage.addr()); mCapacity = sInlineCapacity; #ifdef DEBUG mReserved = sInlineCapacity; #endif } template inline bool VectorBase::canAppendWithoutRealloc(size_t needed) const { return mLength + needed <= mCapacity; } template template MOZ_ALWAYS_INLINE void VectorBase::internalAppendAll(const VectorBase& other) { internalAppend(other.begin(), other.length()); } template template MOZ_ALWAYS_INLINE void VectorBase::internalAppend(const U& u) { MOZ_ASSERT(mLength + 1 <= mReserved); MOZ_ASSERT(mReserved <= mCapacity); new(endNoCheck()) T(u); ++mLength; } template MOZ_ALWAYS_INLINE bool VectorBase::appendN(const T& t, size_t needed) { MOZ_REENTRANCY_GUARD_ET_AL; if (mLength + needed > mCapacity && !growStorageBy(needed)) return false; #ifdef DEBUG if (mLength + needed > mReserved) mReserved = mLength + needed; #endif internalAppendN(t, needed); return true; } template MOZ_ALWAYS_INLINE void VectorBase::internalAppendN(const T& t, size_t needed) { MOZ_ASSERT(mLength + needed <= mReserved); MOZ_ASSERT(mReserved <= mCapacity); Impl::copyConstructN(endNoCheck(), needed, t); mLength += needed; } template inline T* VectorBase::insert(T* p, const T& val) { MOZ_ASSERT(begin() <= p); MOZ_ASSERT(p <= end()); size_t pos = p - begin(); MOZ_ASSERT(pos <= mLength); size_t oldLength = mLength; if (pos == oldLength) { if (!append(val)) return nullptr; } else { T oldBack = back(); if (!append(oldBack)) /* Dup the last element. */ return nullptr; for (size_t i = oldLength; i > pos; --i) (*this)[i] = (*this)[i - 1]; (*this)[pos] = val; } return begin() + pos; } template inline void VectorBase::erase(T* it) { MOZ_ASSERT(begin() <= it); MOZ_ASSERT(it < end()); while (it + 1 < end()) { *it = *(it + 1); ++it; } popBack(); } template template MOZ_ALWAYS_INLINE bool VectorBase::append(const U* insBegin, const U* insEnd) { MOZ_REENTRANCY_GUARD_ET_AL; size_t needed = PointerRangeSize(insBegin, insEnd); if (mLength + needed > mCapacity && !growStorageBy(needed)) return false; #ifdef DEBUG if (mLength + needed > mReserved) mReserved = mLength + needed; #endif internalAppend(insBegin, needed); return true; } template template MOZ_ALWAYS_INLINE void VectorBase::internalAppend(const U* insBegin, size_t insLength) { MOZ_ASSERT(mLength + insLength <= mReserved); MOZ_ASSERT(mReserved <= mCapacity); Impl::copyConstruct(endNoCheck(), insBegin, insBegin + insLength); mLength += insLength; } template template MOZ_ALWAYS_INLINE bool VectorBase::append(const U& u) { MOZ_REENTRANCY_GUARD_ET_AL; if (mLength == mCapacity && !growStorageBy(1)) return false; #ifdef DEBUG if (mLength + 1 > mReserved) mReserved = mLength + 1; #endif internalAppend(u); return true; } template template MOZ_ALWAYS_INLINE bool VectorBase::appendAll(const VectorBase& other) { return append(other.begin(), other.length()); } template template MOZ_ALWAYS_INLINE bool VectorBase::append(const U *insBegin, size_t insLength) { return append(insBegin, insBegin + insLength); } template MOZ_ALWAYS_INLINE void VectorBase::popBack() { MOZ_REENTRANCY_GUARD_ET_AL; MOZ_ASSERT(!empty()); --mLength; endNoCheck()->~T(); } template MOZ_ALWAYS_INLINE T VectorBase::popCopy() { T ret = back(); popBack(); return ret; } template inline T* VectorBase::extractRawBuffer() { T* ret; if (usingInlineStorage()) { ret = reinterpret_cast(this->malloc_(mLength * sizeof(T))); if (!ret) return NULL; Impl::copyConstruct(ret, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* mBegin, mCapacity are unchanged. */ mLength = 0; } else { ret = mBegin; mBegin = static_cast(storage.addr()); mLength = 0; mCapacity = sInlineCapacity; #ifdef DEBUG mReserved = sInlineCapacity; #endif } return ret; } template inline void VectorBase::replaceRawBuffer(T* p, size_t aLength) { MOZ_REENTRANCY_GUARD_ET_AL; /* Destroy what we have. */ Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) this->free_(beginNoCheck()); /* Take in the new buffer. */ if (aLength <= sInlineCapacity) { /* * We convert to inline storage if possible, even though p might * otherwise be acceptable. Maybe this behaviour should be * specifiable with an argument to this function. */ mBegin = static_cast(storage.addr()); mLength = aLength; mCapacity = sInlineCapacity; Impl::moveConstruct(mBegin, p, p + aLength); Impl::destroy(p, p + aLength); this->free_(p); } else { mBegin = p; mLength = aLength; mCapacity = aLength; } #ifdef DEBUG mReserved = aLength; #endif } template inline size_t VectorBase::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const { return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck()); } template inline size_t VectorBase::sizeOfIncludingThis(MallocSizeOf mallocSizeOf) const { return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf); } template inline void VectorBase::swap(TV& other) { MOZ_STATIC_ASSERT(N == 0, "still need to implement this for N != 0"); // This only works when inline storage is always empty. if (!usingInlineStorage() && other.usingInlineStorage()) { other.mBegin = mBegin; mBegin = inlineStorage(); } else if (usingInlineStorage() && !other.usingInlineStorage()) { mBegin = other.mBegin; other.mBegin = other.inlineStorage(); } else if (!usingInlineStorage() && !other.usingInlineStorage()) { Swap(mBegin, other.mBegin); } else { // This case is a no-op, since we'd set both to use their inline storage. } Swap(mLength, other.mLength); Swap(mCapacity, other.mCapacity); #ifdef DEBUG Swap(mReserved, other.mReserved); #endif } /* * STL-like container providing a short-lived, dynamic buffer. Vector calls the * constructors/destructors of all elements stored in its internal buffer, so * non-PODs may be safely used. Additionally, Vector will store the first N * elements in-place before resorting to dynamic allocation. * * T requirements: * - default and copy constructible, assignable, destructible * - operations do not throw * N requirements: * - any value, however, N is clamped to min/max values * AllocPolicy: * - see "Allocation policies" in AllocPolicy.h (defaults to * mozilla::MallocAllocPolicy) * * Vector is not reentrant: T member functions called during Vector member * functions must not call back into the same object! */ template class Vector : public VectorBase > { typedef VectorBase Base; public: Vector(AllocPolicy alloc = AllocPolicy()) : Base(alloc) {} Vector(mozilla::MoveRef vec) : Base(vec) {} Vector& operator=(mozilla::MoveRef vec) { return Base::operator=(vec); } }; } // namespace mozilla #ifdef _MSC_VER #pragma warning(pop) #endif #endif /* mozilla_Vector_h */