/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla Communicator client code, released * March 31, 1998. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef jsstr_h___ #define jsstr_h___ /* * JS string type implementation. * * A JS string is a counted array of unicode characters. To support handoff * of API client memory, the chars are allocated separately from the length, * necessitating a pointer after the count, to form a separately allocated * string descriptor. String descriptors are GC'ed, while their chars are * allocated from the malloc heap. */ #include #include "jsapi.h" #include "jsprvtd.h" #include "jshashtable.h" #include "jslock.h" #include "jsobj.h" #include "jsvalue.h" #define JSSTRING_BIT(n) ((size_t)1 << (n)) #define JSSTRING_BITMASK(n) (JSSTRING_BIT(n) - 1) enum { UNIT_STRING_LIMIT = 256U, INT_STRING_LIMIT = 256U }; extern jschar * js_GetDependentStringChars(JSString *str); extern JSString * JS_FASTCALL js_ConcatStrings(JSContext *cx, JSString *left, JSString *right); JS_STATIC_ASSERT(JS_BITS_PER_WORD >= 32); struct JSRopeBufferInfo { /* Number of jschars we can hold, not including null terminator. */ size_t capacity; }; /* * The GC-thing "string" type. * * In FLAT strings, the mChars field points to a flat character array owned by * its GC-thing descriptor. The array is terminated at index length by a zero * character and the size of the array in bytes is * (length + 1) * sizeof(jschar). The terminator is purely a backstop, in case * the chars pointer flows out to native code that requires \u0000 termination. * * A flat string with the ATOMIZED flag means that the string is hashed as * an atom. This flag is used to avoid re-hashing the already-atomized string. * * A flat string with the MUTABLE flag means that the string may change into a * dependent string as part of an optimization with js_ConcatStrings. Flat * strings without the MUTABLE flag can be safely accessed by multiple threads. * * When the string is DEPENDENT, the string depends on characters of another * string strongly referenced by the mBase field. The base member may point to * another dependent string if chars() has not been called yet. * * To optimize js_ConcatStrings and some other cases, we lazily concatenate * strings when possible, creating concatenation trees, a.k.a. ropes. A string * is an INTERIOR_NODE if it is a non-root, non-leaf node in a rope, and a * string is a TOP_NODE if it is the root of a rope. In order to meet API * requirements, chars() is not allowed to fail, so we build ropes so that they * form a well-defined tree structure, and the top node of every rope contains * an (almost) empty buffer that is large enough to contain the entire string. * Whenever chars() is called on a rope, it traverses its tree and fills that * buffer in, and when concatenating strings, we reuse these empty buffers * whenever possible, so that we can build a string through concatenation in * linear time, and have relatively few malloc calls when doing so. * * NB: Always use the length() and chars() accessor methods. */ struct JSString { friend class js::TraceRecorder; friend JSAtom * js_AtomizeString(JSContext *cx, JSString *str, uintN flags); // Not private because we want to be able to use static // initializers for them. Don't use these directly! union { size_t mCapacity; /* in flat strings (optional) */ JSString *mParent; /* in rope interior nodes */ JSRopeBufferInfo *mBufferWithInfo; /* in rope top nodes */ }; union { size_t mOffset; /* in dependent strings */ JSString *mLeft; /* in rope interior and top nodes */ }; size_t mLengthAndFlags; /* in all strings */ union { jschar *mChars; /* in flat strings */ JSString *mBase; /* in dependent strings */ JSString *mRight; /* in rope interior and top nodes */ }; /* * The mLengthAndFlags field in string headers has data arranged in the * following way: * * [ length (bits 4-31) ][ flags (bits 2-3) ][ type (bits 0-1) ] * * The length is packed in mLengthAndFlags, even in string types that don't * need 3 other fields, to make the length check simpler. * * When the string type is FLAT, the flags can contain ATOMIZED or MUTABLE. * When the string type is INTERIOR_NODE or TOP_NODE, the flags area is * used to store the rope traversal count. */ static const size_t FLAT = 0; static const size_t DEPENDENT = 1; static const size_t INTERIOR_NODE = 2; static const size_t TOP_NODE = 3; /* Rope/non-rope can be checked by checking one bit. */ static const size_t ROPE_BIT = JSSTRING_BIT(1); static const size_t ATOMIZED = JSSTRING_BIT(2); static const size_t MUTABLE = JSSTRING_BIT(3); static const size_t FLAGS_LENGTH_SHIFT = 4; static const size_t ROPE_TRAVERSAL_COUNT_SHIFT = 2; static const size_t ROPE_TRAVERSAL_COUNT_MASK = JSSTRING_BITMASK(4) - JSSTRING_BITMASK(2); static const size_t ROPE_TRAVERSAL_COUNT_UNIT = (1 << ROPE_TRAVERSAL_COUNT_SHIFT); static const size_t TYPE_MASK = JSSTRING_BITMASK(2); inline bool hasFlag(size_t flag) const { return (mLengthAndFlags & flag) != 0; } public: /* * Generous but sane length bound; the "-1" is there for comptibility with * OOM tests. */ static const size_t MAX_LENGTH = (1 << 28) - 1; inline size_t type() const { return mLengthAndFlags & TYPE_MASK; } JS_ALWAYS_INLINE bool isDependent() const { return type() == DEPENDENT; } JS_ALWAYS_INLINE bool isFlat() const { return type() == FLAT; } inline bool isMutable() const { return isFlat() && hasFlag(MUTABLE); } inline bool isRope() const { return hasFlag(ROPE_BIT); } JS_ALWAYS_INLINE bool isAtomized() const { return isFlat() && hasFlag(ATOMIZED); } inline bool isInteriorNode() const { return type() == INTERIOR_NODE; } inline bool isTopNode() const { return type() == TOP_NODE; } JS_ALWAYS_INLINE jschar *chars() { return isFlat() ? flatChars() : nonFlatChars(); } JS_ALWAYS_INLINE jschar *nonFlatChars() { if (isDependent()) return dependentChars(); else { flatten(); JS_ASSERT(isFlat() || isDependent()); if (isFlat()) return flatChars(); else return dependentChars(); } } JS_ALWAYS_INLINE size_t length() const { return mLengthAndFlags >> FLAGS_LENGTH_SHIFT; } JS_ALWAYS_INLINE bool empty() const { return length() == 0; } JS_ALWAYS_INLINE void getCharsAndLength(const jschar *&chars, size_t &length) { chars = this->chars(); length = this->length(); } JS_ALWAYS_INLINE void getCharsAndEnd(const jschar *&chars, const jschar *&end) { end = length() + (chars = this->chars()); } /* Specific flat string initializer and accessor methods. */ JS_ALWAYS_INLINE void initFlat(jschar *chars, size_t length) { JS_ASSERT(length <= MAX_LENGTH); mOffset = 0; mCapacity = 0; mLengthAndFlags = (length << FLAGS_LENGTH_SHIFT) | FLAT; mChars = chars; } JS_ALWAYS_INLINE void initFlatMutable(jschar *chars, size_t length, size_t cap) { JS_ASSERT(length <= MAX_LENGTH); mOffset = 0; mCapacity = cap; mLengthAndFlags = (length << FLAGS_LENGTH_SHIFT) | FLAT | MUTABLE; mChars = chars; } JS_ALWAYS_INLINE jschar *flatChars() const { JS_ASSERT(isFlat()); return mChars; } JS_ALWAYS_INLINE size_t flatLength() const { JS_ASSERT(isFlat()); return length(); } JS_ALWAYS_INLINE size_t flatCapacity() const { JS_ASSERT(isFlat()); return mCapacity; } /* * Methods to manipulate atomized and mutable flags of flat strings. It is * safe to use these without extra locking due to the following properties: * * * We do not have a flatClearAtomized method, as a string remains * atomized until the GC collects it. * * * A thread may call flatSetMutable only when it is the only * thread accessing the string until a later call to * flatClearMutable. * * * Multiple threads can call flatClearMutable but the function actually * clears the mutable flag only when the flag is set -- in which case * only one thread can access the string (see previous property). * * Thus, when multiple threads access the string, JSString::flatSetAtomized * is the only function that can update the mLengthAndFlags field of the * string by changing the mutable bit from 0 to 1. We call the method only * after the string has been hashed. When some threads in js_ValueToStringId * see that the flag is set, it knows that the string was atomized. * * On the other hand, if the thread sees that the flag is unset, it could * be seeing a stale value when another thread has just atomized the string * and set the flag. But this can lead only to an extra call to * js_AtomizeString. This function would find that the string was already * hashed and return it with the atomized bit set. */ inline void flatSetAtomized() { JS_ASSERT(isFlat()); JS_ATOMIC_SET_MASK((jsword *)&mLengthAndFlags, ATOMIZED); } inline void flatSetMutable() { JS_ASSERT(isFlat()); JS_ASSERT(!isAtomized()); mLengthAndFlags |= MUTABLE; } inline void flatClearMutable() { JS_ASSERT(isFlat()); mLengthAndFlags &= ~MUTABLE; } inline void initDependent(JSString *bstr, size_t off, size_t len) { JS_ASSERT(len <= MAX_LENGTH); mParent = NULL; mOffset = off; mLengthAndFlags = DEPENDENT | (len << FLAGS_LENGTH_SHIFT); mBase = bstr; } inline JSString *dependentBase() const { JS_ASSERT(isDependent()); return mBase; } JS_ALWAYS_INLINE jschar *dependentChars() { return dependentBase()->isFlat() ? dependentBase()->flatChars() + dependentStart() : js_GetDependentStringChars(this); } inline size_t dependentStart() const { return mOffset; } inline size_t dependentLength() const { JS_ASSERT(isDependent()); return length(); } /* Rope-related initializers and accessors. */ inline void initTopNode(JSString *left, JSString *right, size_t len, JSRopeBufferInfo *buf) { JS_ASSERT(left->length() + right->length() <= MAX_LENGTH); mLengthAndFlags = TOP_NODE | (len << FLAGS_LENGTH_SHIFT); mLeft = left; mRight = right; mBufferWithInfo = buf; } inline void convertToInteriorNode(JSString *parent) { JS_ASSERT(isTopNode()); mParent = parent; mLengthAndFlags = INTERIOR_NODE | (length() << FLAGS_LENGTH_SHIFT); } inline JSString *interiorNodeParent() const { JS_ASSERT(isInteriorNode()); return mParent; } inline JSString *ropeLeft() const { JS_ASSERT(isRope()); return mLeft; } inline JSString *ropeRight() const { JS_ASSERT(isRope()); return mRight; } inline size_t topNodeCapacity() const { JS_ASSERT(isTopNode()); return mBufferWithInfo->capacity; } inline JSRopeBufferInfo *topNodeBuffer() const { JS_ASSERT(isTopNode()); return mBufferWithInfo; } inline void nullifyTopNodeBuffer() { JS_ASSERT(isTopNode()); mBufferWithInfo = NULL; } /* * When flattening a rope, we need to convert a rope node to a dependent * string in two separate parts instead of calling initDependent. */ inline void startTraversalConversion(size_t offset) { JS_ASSERT(isInteriorNode()); mOffset = offset; } inline void finishTraversalConversion(JSString *base, size_t end) { JS_ASSERT(isInteriorNode()); /* Note that setting flags also clears the traversal count. */ mLengthAndFlags = JSString::DEPENDENT | ((end - mOffset) << JSString::FLAGS_LENGTH_SHIFT); mBase = base; } inline void ropeClearTraversalCount() { JS_ASSERT(isRope()); mLengthAndFlags &= ~ROPE_TRAVERSAL_COUNT_MASK; } inline size_t ropeTraversalCount() const { JS_ASSERT(isRope()); return (mLengthAndFlags & ROPE_TRAVERSAL_COUNT_MASK) >> ROPE_TRAVERSAL_COUNT_SHIFT; } inline void ropeIncrementTraversalCount() { JS_ASSERT(isRope()); mLengthAndFlags += ROPE_TRAVERSAL_COUNT_UNIT; } inline bool ensureNotDependent(JSContext *cx) { return !isDependent() || undepend(cx); } inline void ensureNotRope() { if (isRope()) flatten(); } const jschar *undepend(JSContext *cx); /* By design, this is not allowed to fail. */ void flatten(); static inline bool isUnitString(void *ptr) { jsuword delta = reinterpret_cast(ptr) - reinterpret_cast(unitStringTable); if (delta >= UNIT_STRING_LIMIT * sizeof(JSString)) return false; /* If ptr points inside the static array, it must be well-aligned. */ JS_ASSERT(delta % sizeof(JSString) == 0); return true; } static inline bool isIntString(void *ptr) { jsuword delta = reinterpret_cast(ptr) - reinterpret_cast(intStringTable); if (delta >= INT_STRING_LIMIT * sizeof(JSString)) return false; /* If ptr points inside the static array, it must be well-aligned. */ JS_ASSERT(delta % sizeof(JSString) == 0); return true; } static inline bool isStatic(void *ptr) { return isUnitString(ptr) || isIntString(ptr); } #ifdef __SUNPRO_CC #pragma align 8 (__1cIJSStringPunitStringTable_, __1cIJSStringOintStringTable_) #endif static JSString unitStringTable[]; static JSString intStringTable[]; static const char *deflatedIntStringTable[]; static const char deflatedUnitStringTable[]; static JSString *unitString(jschar c); static JSString *getUnitString(JSContext *cx, JSString *str, size_t index); static JSString *intString(jsint i); }; /* * An iterator that iterates through all nodes in a rope (the top node, the * interior nodes, and the leaves) without writing to any of the nodes. * * It is safe to iterate through a rope in this way, even when something else is * already iterating through it. * * To use, pass any node of the rope into the constructor. The first call should * be to init, which returns the first node, and each subsequent call should * be to next. NULL is returned when there are no more nodes to return. */ class JSRopeNodeIterator { private: JSString *mStr; size_t mUsedFlags; static const size_t DONE_LEFT = 0x1; static const size_t DONE_RIGHT = 0x2; public: JSRopeNodeIterator(JSString *str) { mStr = str; } JSString *init() { /* If we were constructed with a non-rope string, just return that. */ if (!mStr->isRope()) { JSString *oldStr = mStr; mStr = NULL; return oldStr; } /* Move to the farthest-left leaf in the rope. */ while (mStr->isInteriorNode()) mStr = mStr->interiorNodeParent(); while (mStr->ropeLeft()->isInteriorNode()) mStr = mStr->ropeLeft(); mUsedFlags = 0; return mStr; } JSString *next() { if (!mStr) return NULL; if (!mStr->ropeLeft()->isInteriorNode() && !(mUsedFlags & DONE_LEFT)) { mUsedFlags |= DONE_LEFT; return mStr->ropeLeft(); } if (!mStr->ropeRight()->isInteriorNode() && !(mUsedFlags & DONE_RIGHT)) { mUsedFlags |= DONE_RIGHT; return mStr->ropeRight(); } if (mStr->ropeRight()->isInteriorNode()) { /* * If we have a right child, go right once, then left as far as * possible. */ mStr = mStr->ropeRight(); while (mStr->ropeLeft()->isInteriorNode()) mStr = mStr->ropeLeft(); } else { /* * If we have no right child, follow our parent until we move * up-right. */ JSString *prev; do { prev = mStr; /* Set the string to NULL if we reach the end of the tree. */ mStr = mStr->isInteriorNode() ? mStr->interiorNodeParent() : NULL; } while (mStr && mStr->ropeRight() == prev); } mUsedFlags = 0; return mStr; } }; /* * An iterator that returns the leaves of a rope (which hold the actual string * data) in order. The usage is the same as JSRopeNodeIterator. */ class JSRopeLeafIterator { private: JSRopeNodeIterator mNodeIterator; public: JSRopeLeafIterator(JSString *topNode) : mNodeIterator(topNode) { JS_ASSERT(topNode->isTopNode()); } inline JSString *init() { JSString *str = mNodeIterator.init(); while (str->isRope()) { str = mNodeIterator.next(); JS_ASSERT(str); } return str; } inline JSString *next() { JSString *str; do { str = mNodeIterator.next(); } while (str && str->isRope()); return str; } }; class JSRopeBuilder { private: JSString *mStr; public: JSRopeBuilder(JSContext *cx); inline bool append(JSContext *cx, JSString *str) { mStr = js_ConcatStrings(cx, mStr, str); if (!mStr) return false; return true; } inline JSString *getStr() { return mStr; } }; JS_STATIC_ASSERT(JSString::INTERIOR_NODE & JSString::ROPE_BIT); JS_STATIC_ASSERT(JSString::TOP_NODE & JSString::ROPE_BIT); JS_STATIC_ASSERT(((JSString::MAX_LENGTH << JSString::FLAGS_LENGTH_SHIFT) >> JSString::FLAGS_LENGTH_SHIFT) == JSString::MAX_LENGTH); JS_STATIC_ASSERT(sizeof(JSString) % JS_GCTHING_ALIGN == 0); extern const jschar * js_GetStringChars(JSContext *cx, JSString *str); extern const jschar * js_UndependString(JSContext *cx, JSString *str); extern JSBool js_MakeStringImmutable(JSContext *cx, JSString *str); extern JSString * JS_FASTCALL js_toLowerCase(JSContext *cx, JSString *str); extern JSString * JS_FASTCALL js_toUpperCase(JSContext *cx, JSString *str); struct JSSubString { size_t length; const jschar *chars; }; extern jschar js_empty_ucstr[]; extern JSSubString js_EmptySubString; /* Unicode character attribute lookup tables. */ extern const uint8 js_X[]; extern const uint8 js_Y[]; extern const uint32 js_A[]; /* Enumerated Unicode general category types. */ typedef enum JSCharType { JSCT_UNASSIGNED = 0, JSCT_UPPERCASE_LETTER = 1, JSCT_LOWERCASE_LETTER = 2, JSCT_TITLECASE_LETTER = 3, JSCT_MODIFIER_LETTER = 4, JSCT_OTHER_LETTER = 5, JSCT_NON_SPACING_MARK = 6, JSCT_ENCLOSING_MARK = 7, JSCT_COMBINING_SPACING_MARK = 8, JSCT_DECIMAL_DIGIT_NUMBER = 9, JSCT_LETTER_NUMBER = 10, JSCT_OTHER_NUMBER = 11, JSCT_SPACE_SEPARATOR = 12, JSCT_LINE_SEPARATOR = 13, JSCT_PARAGRAPH_SEPARATOR = 14, JSCT_CONTROL = 15, JSCT_FORMAT = 16, JSCT_PRIVATE_USE = 18, JSCT_SURROGATE = 19, JSCT_DASH_PUNCTUATION = 20, JSCT_START_PUNCTUATION = 21, JSCT_END_PUNCTUATION = 22, JSCT_CONNECTOR_PUNCTUATION = 23, JSCT_OTHER_PUNCTUATION = 24, JSCT_MATH_SYMBOL = 25, JSCT_CURRENCY_SYMBOL = 26, JSCT_MODIFIER_SYMBOL = 27, JSCT_OTHER_SYMBOL = 28 } JSCharType; /* Character classifying and mapping macros, based on java.lang.Character. */ #define JS_CCODE(c) (js_A[js_Y[(js_X[(uint16)(c)>>6]<<6)|((c)&0x3F)]]) #define JS_CTYPE(c) (JS_CCODE(c) & 0x1F) #define JS_ISALPHA(c) ((((1 << JSCT_UPPERCASE_LETTER) | \ (1 << JSCT_LOWERCASE_LETTER) | \ (1 << JSCT_TITLECASE_LETTER) | \ (1 << JSCT_MODIFIER_LETTER) | \ (1 << JSCT_OTHER_LETTER)) \ >> JS_CTYPE(c)) & 1) #define JS_ISALNUM(c) ((((1 << JSCT_UPPERCASE_LETTER) | \ (1 << JSCT_LOWERCASE_LETTER) | \ (1 << JSCT_TITLECASE_LETTER) | \ (1 << JSCT_MODIFIER_LETTER) | \ (1 << JSCT_OTHER_LETTER) | \ (1 << JSCT_DECIMAL_DIGIT_NUMBER)) \ >> JS_CTYPE(c)) & 1) /* A unicode letter, suitable for use in an identifier. */ #define JS_ISLETTER(c) ((((1 << JSCT_UPPERCASE_LETTER) | \ (1 << JSCT_LOWERCASE_LETTER) | \ (1 << JSCT_TITLECASE_LETTER) | \ (1 << JSCT_MODIFIER_LETTER) | \ (1 << JSCT_OTHER_LETTER) | \ (1 << JSCT_LETTER_NUMBER)) \ >> JS_CTYPE(c)) & 1) /* * 'IdentifierPart' from ECMA grammar, is Unicode letter or combining mark or * digit or connector punctuation. */ #define JS_ISIDPART(c) ((((1 << JSCT_UPPERCASE_LETTER) | \ (1 << JSCT_LOWERCASE_LETTER) | \ (1 << JSCT_TITLECASE_LETTER) | \ (1 << JSCT_MODIFIER_LETTER) | \ (1 << JSCT_OTHER_LETTER) | \ (1 << JSCT_LETTER_NUMBER) | \ (1 << JSCT_NON_SPACING_MARK) | \ (1 << JSCT_COMBINING_SPACING_MARK) | \ (1 << JSCT_DECIMAL_DIGIT_NUMBER) | \ (1 << JSCT_CONNECTOR_PUNCTUATION)) \ >> JS_CTYPE(c)) & 1) /* Unicode control-format characters, ignored in input */ #define JS_ISFORMAT(c) (((1 << JSCT_FORMAT) >> JS_CTYPE(c)) & 1) /* * This table is used in JS_ISWORD. The definition has external linkage to * allow the raw table data to be used in the regular expression compiler. */ extern const bool js_alnum[]; /* * This macro performs testing for the regular expression word class \w, which * is defined by ECMA-262 15.10.2.6 to be [0-9A-Z_a-z]. If we want a * Unicode-friendlier definition of "word", we should rename this macro to * something regexp-y. */ #define JS_ISWORD(c) ((c) < 128 && js_alnum[(c)]) #define JS_ISIDSTART(c) (JS_ISLETTER(c) || (c) == '_' || (c) == '$') #define JS_ISIDENT(c) (JS_ISIDPART(c) || (c) == '_' || (c) == '$') #define JS_ISXMLSPACE(c) ((c) == ' ' || (c) == '\t' || (c) == '\r' || \ (c) == '\n') #define JS_ISXMLNSSTART(c) ((JS_CCODE(c) & 0x00000100) || (c) == '_') #define JS_ISXMLNS(c) ((JS_CCODE(c) & 0x00000080) || (c) == '.' || \ (c) == '-' || (c) == '_') #define JS_ISXMLNAMESTART(c) (JS_ISXMLNSSTART(c) || (c) == ':') #define JS_ISXMLNAME(c) (JS_ISXMLNS(c) || (c) == ':') #define JS_ISDIGIT(c) (JS_CTYPE(c) == JSCT_DECIMAL_DIGIT_NUMBER) static inline bool JS_ISSPACE(jschar c) { unsigned w = c; if (w < 256) return (w <= ' ' && (w == ' ' || (9 <= w && w <= 0xD))) || w == 0xA0; return (JS_CCODE(w) & 0x00070000) == 0x00040000; } #define JS_ISPRINT(c) ((c) < 128 && isprint(c)) #define JS_ISUPPER(c) (JS_CTYPE(c) == JSCT_UPPERCASE_LETTER) #define JS_ISLOWER(c) (JS_CTYPE(c) == JSCT_LOWERCASE_LETTER) #define JS_TOUPPER(c) ((jschar) ((JS_CCODE(c) & 0x00100000) \ ? (c) - ((int32)JS_CCODE(c) >> 22) \ : (c))) #define JS_TOLOWER(c) ((jschar) ((JS_CCODE(c) & 0x00200000) \ ? (c) + ((int32)JS_CCODE(c) >> 22) \ : (c))) /* * Shorthands for ASCII (7-bit) decimal and hex conversion. * Manually inline isdigit for performance; MSVC doesn't do this for us. */ #define JS7_ISDEC(c) ((((unsigned)(c)) - '0') <= 9) #define JS7_UNDEC(c) ((c) - '0') #define JS7_ISHEX(c) ((c) < 128 && isxdigit(c)) #define JS7_UNHEX(c) (uintN)(JS7_ISDEC(c) ? (c) - '0' : 10 + tolower(c) - 'a') #define JS7_ISLET(c) ((c) < 128 && isalpha(c)) /* Initialize the String class, returning its prototype object. */ extern js::Class js_StringClass; inline bool JSObject::isString() const { return getClass() == &js_StringClass; } extern JSObject * js_InitStringClass(JSContext *cx, JSObject *obj); extern const char js_escape_str[]; extern const char js_unescape_str[]; extern const char js_uneval_str[]; extern const char js_decodeURI_str[]; extern const char js_encodeURI_str[]; extern const char js_decodeURIComponent_str[]; extern const char js_encodeURIComponent_str[]; /* GC-allocate a string descriptor for the given malloc-allocated chars. */ extern JSString * js_NewString(JSContext *cx, jschar *chars, size_t length); /* * GC-allocate a string descriptor and steal the char buffer held by |cb|. * This function takes responsibility for adding the terminating '\0' required * by js_NewString. */ extern JSString * js_NewStringFromCharBuffer(JSContext *cx, JSCharBuffer &cb); extern JSString * js_NewDependentString(JSContext *cx, JSString *base, size_t start, size_t length); /* Copy a counted string and GC-allocate a descriptor for it. */ extern JSString * js_NewStringCopyN(JSContext *cx, const jschar *s, size_t n); /* Copy a C string and GC-allocate a descriptor for it. */ extern JSString * js_NewStringCopyZ(JSContext *cx, const jschar *s); /* * Convert a value to a printable C string. */ typedef JSString *(*JSValueToStringFun)(JSContext *cx, const js::Value &v); extern JS_FRIEND_API(const char *) js_ValueToPrintable(JSContext *cx, const js::Value &, JSValueToStringFun v2sfun); #define js_ValueToPrintableString(cx,v) \ js_ValueToPrintable(cx, v, js_ValueToString) #define js_ValueToPrintableSource(cx,v) \ js_ValueToPrintable(cx, v, js_ValueToSource) /* * Convert a value to a string, returning null after reporting an error, * otherwise returning a new string reference. */ extern JSString * js_ValueToString(JSContext *cx, const js::Value &v); /* * This function implements E-262-3 section 9.8, toString. Convert the given * value to a string of jschars appended to the given buffer. On error, the * passed buffer may have partial results appended. */ extern JSBool js_ValueToCharBuffer(JSContext *cx, const js::Value &v, JSCharBuffer &cb); /* * Convert a value to its source expression, returning null after reporting * an error, otherwise returning a new string reference. */ extern JS_FRIEND_API(JSString *) js_ValueToSource(JSContext *cx, const js::Value &v); /* * Compute a hash function from str. The caller can call this function even if * str is not a GC-allocated thing. */ extern uint32 js_HashString(JSString *str); /* * Test if strings are equal. The caller can call the function even if str1 * or str2 are not GC-allocated things. */ extern JSBool JS_FASTCALL js_EqualStrings(JSString *str1, JSString *str2); /* * Return less than, equal to, or greater than zero depending on whether * str1 is less than, equal to, or greater than str2. */ extern int32 JS_FASTCALL js_CompareStrings(JSString *str1, JSString *str2); /* * Boyer-Moore-Horspool superlinear search for pat:patlen in text:textlen. * The patlen argument must be positive and no greater than sBMHPatLenMax. * * Return the index of pat in text, or -1 if not found. */ static const jsuint sBMHCharSetSize = 256; /* ISO-Latin-1 */ static const jsuint sBMHPatLenMax = 255; /* skip table element is uint8 */ static const jsint sBMHBadPattern = -2; /* return value if pat is not ISO-Latin-1 */ extern jsint js_BoyerMooreHorspool(const jschar *text, jsuint textlen, const jschar *pat, jsuint patlen); extern size_t js_strlen(const jschar *s); extern jschar * js_strchr(const jschar *s, jschar c); extern jschar * js_strchr_limit(const jschar *s, jschar c, const jschar *limit); #define js_strncpy(t, s, n) memcpy((t), (s), (n) * sizeof(jschar)) /* * Return s advanced past any Unicode white space characters. */ static inline const jschar * js_SkipWhiteSpace(const jschar *s, const jschar *end) { JS_ASSERT(s <= end); while (s != end && JS_ISSPACE(*s)) s++; return s; } /* * Inflate bytes to JS chars and vice versa. Report out of memory via cx * and return null on error, otherwise return the jschar or byte vector that * was JS_malloc'ed. length is updated with the length of the new string in jschars. */ extern jschar * js_InflateString(JSContext *cx, const char *bytes, size_t *length); extern char * js_DeflateString(JSContext *cx, const jschar *chars, size_t length); /* * Inflate bytes to JS chars into a buffer. 'chars' must be large enough for * 'length' jschars. The buffer is NOT null-terminated. The destination length * must be be initialized with the buffer size and will contain on return the * number of copied chars. Conversion behavior depends on js_CStringsAreUTF8. */ extern JSBool js_InflateStringToBuffer(JSContext *cx, const char *bytes, size_t length, jschar *chars, size_t *charsLength); /* * Same as js_InflateStringToBuffer, but always treats 'bytes' as UTF-8. */ extern JSBool js_InflateUTF8StringToBuffer(JSContext *cx, const char *bytes, size_t length, jschar *chars, size_t *charsLength); /* * Get number of bytes in the deflated sequence of characters. Behavior depends * on js_CStringsAreUTF8. */ extern size_t js_GetDeflatedStringLength(JSContext *cx, const jschar *chars, size_t charsLength); /* * Same as js_GetDeflatedStringLength, but always treats the result as UTF-8. */ extern size_t js_GetDeflatedUTF8StringLength(JSContext *cx, const jschar *chars, size_t charsLength); /* * Deflate JS chars to bytes into a buffer. 'bytes' must be large enough for * 'length chars. The buffer is NOT null-terminated. The destination length * must to be initialized with the buffer size and will contain on return the * number of copied bytes. Conversion behavior depends on js_CStringsAreUTF8. */ extern JSBool js_DeflateStringToBuffer(JSContext *cx, const jschar *chars, size_t charsLength, char *bytes, size_t *length); /* * Same as js_DeflateStringToBuffer, but always treats 'bytes' as UTF-8. */ extern JSBool js_DeflateStringToUTF8Buffer(JSContext *cx, const jschar *chars, size_t charsLength, char *bytes, size_t *length); /* * Find or create a deflated string cache entry for str that contains its * characters chopped from Unicode code points into bytes. */ extern const char * js_GetStringBytes(JSContext *cx, JSString *str); /* Export a few natives and a helper to other files in SpiderMonkey. */ extern JSBool js_str_escape(JSContext *cx, JSObject *obj, uintN argc, js::Value *argv, js::Value *rval); extern JSBool js_str_toString(JSContext *cx, uintN argc, js::Value *vp); /* * Convert one UCS-4 char and write it into a UTF-8 buffer, which must be at * least 6 bytes long. Return the number of UTF-8 bytes of data written. */ extern int js_OneUcs4ToUtf8Char(uint8 *utf8Buffer, uint32 ucs4Char); /* * Write str into buffer escaping any non-printable or non-ASCII character. * Guarantees that a NUL is at the end of the buffer. Returns the length of * the written output, NOT including the NUL. If buffer is null, just returns * the length of the output. If quote is not 0, it must be a single or double * quote character that will quote the output. * * The function is only defined for debug builds. */ #define js_PutEscapedString(buffer, bufferSize, str, quote) \ js_PutEscapedStringImpl(buffer, bufferSize, NULL, str, quote) /* * Write str into file escaping any non-printable or non-ASCII character. * Returns the number of bytes written to file. If quote is not 0, it must * be a single or double quote character that will quote the output. * * The function is only defined for debug builds. */ #define js_FileEscapedString(file, str, quote) \ (JS_ASSERT(file), js_PutEscapedStringImpl(NULL, 0, file, str, quote)) extern JS_FRIEND_API(size_t) js_PutEscapedStringImpl(char *buffer, size_t bufferSize, FILE *fp, JSString *str, uint32 quote); extern JSBool js_String(JSContext *cx, JSObject *obj, uintN argc, js::Value *argv, js::Value *rval); namespace js { class DeflatedStringCache { public: DeflatedStringCache(); bool init(); ~DeflatedStringCache(); void sweep(JSContext *cx); void remove(JSString *str); bool setBytes(JSContext *cx, JSString *str, char *bytes); private: struct StringPtrHasher { typedef JSString *Lookup; static HashNumber hash(JSString *str) { /* * We hash only GC-allocated Strings. They are aligned on * sizeof(JSString) boundary so we can improve hashing by stripping * initial zeros. */ const jsuword ALIGN_LOG = tl::FloorLog2::result; JS_STATIC_ASSERT(sizeof(JSString) == (size_t(1) << ALIGN_LOG)); jsuword ptr = reinterpret_cast(str); jsuword key = ptr >> ALIGN_LOG; JS_ASSERT((key << ALIGN_LOG) == ptr); return HashNumber(key); } static bool match(JSString *s1, JSString *s2) { return s1 == s2; } }; typedef HashMap Map; /* cx is NULL when the caller is JS_GetStringBytes(JSString *). */ char *getBytes(JSContext *cx, JSString *str); friend const char * ::js_GetStringBytes(JSContext *cx, JSString *str); Map map; #ifdef JS_THREADSAFE JSLock *lock; #endif }; } /* namespace js */ #endif /* jsstr_h___ */