/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is gfx thebes code. * * The Initial Developer of the Original Code is Mozilla Foundation. * Portions created by the Initial Developer are Copyright (C) 2008 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Eric Butler * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "gfxBlur.h" #include "nsMathUtils.h" #include "nsTArray.h" #ifndef M_PI #define M_PI 3.14159265358979323846 #endif gfxAlphaBoxBlur::gfxAlphaBoxBlur() { } gfxAlphaBoxBlur::~gfxAlphaBoxBlur() { } gfxContext* gfxAlphaBoxBlur::Init(const gfxRect& aRect, const gfxIntSize& aSpreadRadius, const gfxIntSize& aBlurRadius, const gfxRect* aDirtyRect, const gfxRect* aSkipRect) { mSpreadRadius = aSpreadRadius; mBlurRadius = aBlurRadius; gfxRect rect(aRect); rect.Outset(aBlurRadius + aSpreadRadius); rect.RoundOut(); if (rect.IsEmpty()) return nsnull; if (aDirtyRect) { // If we get passed a dirty rect from layout, we can minimize the // shadow size and make painting faster. mHasDirtyRect = PR_TRUE; mDirtyRect = *aDirtyRect; gfxRect requiredBlurArea = mDirtyRect.Intersect(rect); requiredBlurArea.Outset(aBlurRadius + aSpreadRadius); rect = requiredBlurArea.Intersect(rect); } else { mHasDirtyRect = PR_FALSE; } if (aSkipRect) { // If we get passed a skip rect, we can lower the amount of // blurring/spreading we need to do. We convert it to nsIntRect to avoid // expensive int<->float conversions if we were to use gfxRect instead. gfxRect skipRect = *aSkipRect; skipRect.RoundIn(); skipRect.Inset(aBlurRadius + aSpreadRadius); mSkipRect = gfxThebesUtils::GfxRectToIntRect(skipRect); nsIntRect shadowIntRect = gfxThebesUtils::GfxRectToIntRect(rect); mSkipRect.IntersectRect(mSkipRect, shadowIntRect); if (mSkipRect == shadowIntRect) return nsnull; mSkipRect -= shadowIntRect.TopLeft(); } else { mSkipRect = nsIntRect(0, 0, 0, 0); } // Make an alpha-only surface to draw on. We will play with the data after // everything is drawn to create a blur effect. mImageSurface = new gfxImageSurface(gfxIntSize(static_cast(rect.Width()), static_cast(rect.Height())), gfxASurface::ImageFormatA8); if (!mImageSurface || mImageSurface->CairoStatus()) return nsnull; // Use a device offset so callers don't need to worry about translating // coordinates, they can draw as if this was part of the destination context // at the coordinates of rect. mImageSurface->SetDeviceOffset(-rect.TopLeft()); mContext = new gfxContext(mImageSurface); return mContext; } void gfxAlphaBoxBlur::PremultiplyAlpha(gfxFloat alpha) { if (!mImageSurface) return; unsigned char* data = mImageSurface->Data(); PRInt32 length = mImageSurface->GetDataSize(); for (PRInt32 i=0; i(data[i] * alpha); } /** * Box blur involves looking at one pixel, and setting its value to the average * of its neighbouring pixels. * @param aInput The input buffer. * @param aOutput The output buffer. * @param aLeftLobe The number of pixels to blend on the left. * @param aRightLobe The number of pixels to blend on the right. * @param aWidth The number of columns in the buffers. * @param aRows The number of rows in the buffers. * @param aSkipRect An area to skip blurring in. * XXX shouldn't we pass stride in separately here? */ static void BoxBlurHorizontal(unsigned char* aInput, unsigned char* aOutput, PRInt32 aLeftLobe, PRInt32 aRightLobe, PRInt32 aWidth, PRInt32 aRows, const nsIntRect& aSkipRect) { PRInt32 boxSize = aLeftLobe + aRightLobe + 1; PRBool skipRectCoversWholeRow = 0 >= aSkipRect.x && aWidth <= aSkipRect.XMost(); for (PRInt32 y = 0; y < aRows; y++) { // Check whether the skip rect intersects this row. If the skip // rect covers the whole surface in this row, we can avoid // this row entirely (and any others along the skip rect). PRBool inSkipRectY = y >= aSkipRect.y && y < aSkipRect.YMost(); if (inSkipRectY && skipRectCoversWholeRow) { y = aSkipRect.YMost() - 1; continue; } PRInt32 alphaSum = 0; for (PRInt32 i = 0; i < boxSize; i++) { PRInt32 pos = i - aLeftLobe; pos = NS_MAX(pos, 0); pos = NS_MIN(pos, aWidth - 1); alphaSum += aInput[aWidth * y + pos]; } for (PRInt32 x = 0; x < aWidth; x++) { // Check whether we are within the skip rect. If so, go // to the next point outside the skip rect. if (inSkipRectY && x >= aSkipRect.x && x < aSkipRect.XMost()) { x = aSkipRect.XMost(); if (x >= aWidth) break; // Recalculate the neighbouring alpha values for // our new point on the surface. alphaSum = 0; for (PRInt32 i = 0; i < boxSize; i++) { PRInt32 pos = x + i - aLeftLobe; pos = NS_MAX(pos, 0); pos = NS_MIN(pos, aWidth - 1); alphaSum += aInput[aWidth * y + pos]; } } PRInt32 tmp = x - aLeftLobe; PRInt32 last = NS_MAX(tmp, 0); PRInt32 next = NS_MIN(tmp + boxSize, aWidth - 1); aOutput[aWidth * y + x] = alphaSum/boxSize; alphaSum += aInput[aWidth * y + next] - aInput[aWidth * y + last]; } } } /** * Identical to BoxBlurHorizontal, except it blurs top and bottom instead of * left and right. * XXX shouldn't we pass stride in separately here? */ static void BoxBlurVertical(unsigned char* aInput, unsigned char* aOutput, PRInt32 aTopLobe, PRInt32 aBottomLobe, PRInt32 aWidth, PRInt32 aRows, const nsIntRect& aSkipRect) { PRInt32 boxSize = aTopLobe + aBottomLobe + 1; PRBool skipRectCoversWholeColumn = 0 >= aSkipRect.y && aRows <= aSkipRect.YMost(); for (PRInt32 x = 0; x < aWidth; x++) { PRBool inSkipRectX = x >= aSkipRect.x && x < aSkipRect.XMost(); if (inSkipRectX && skipRectCoversWholeColumn) { x = aSkipRect.XMost() - 1; continue; } PRInt32 alphaSum = 0; for (PRInt32 i = 0; i < boxSize; i++) { PRInt32 pos = i - aTopLobe; pos = NS_MAX(pos, 0); pos = NS_MIN(pos, aRows - 1); alphaSum += aInput[aWidth * pos + x]; } for (PRInt32 y = 0; y < aRows; y++) { if (inSkipRectX && y >= aSkipRect.y && y < aSkipRect.YMost()) { y = aSkipRect.YMost(); if (y >= aRows) break; alphaSum = 0; for (PRInt32 i = 0; i < boxSize; i++) { PRInt32 pos = y + i - aTopLobe; pos = NS_MAX(pos, 0); pos = NS_MIN(pos, aRows - 1); alphaSum += aInput[aWidth * pos + x]; } } PRInt32 tmp = y - aTopLobe; PRInt32 last = NS_MAX(tmp, 0); PRInt32 next = NS_MIN(tmp + boxSize, aRows - 1); aOutput[aWidth * y + x] = alphaSum/boxSize; alphaSum += aInput[aWidth * next + x] - aInput[aWidth * last + x]; } } } static void ComputeLobes(PRInt32 aRadius, PRInt32 aLobes[3][2]) { PRInt32 major, minor, final; /* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for * some notes about approximating the Gaussian blur with box-blurs. * The comments below are in the terminology of that page. */ PRInt32 z = aRadius/3; switch (aRadius % 3) { case 0: // aRadius = z*3; choose d = 2*z + 1 major = minor = final = z; break; case 1: // aRadius = z*3 + 1 // This is a tricky case since there is no value of d which will // yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1 // for some integer k, then the radius will be 3*k. If d is even, // i.e. d=2*k, then the radius will be 3*k - 1. // So we have to choose values that don't match the standard // algorithm. major = z + 1; minor = final = z; break; case 2: // aRadius = z*3 + 2; choose d = 2*z + 2 major = final = z + 1; minor = z; break; } NS_ASSERTION(major + minor + final == aRadius, "Lobes don't sum to the right length"); aLobes[0][0] = major; aLobes[0][1] = minor; aLobes[1][0] = minor; aLobes[1][1] = major; aLobes[2][0] = final; aLobes[2][1] = final; } static void SpreadHorizontal(unsigned char* aInput, unsigned char* aOutput, PRInt32 aRadius, PRInt32 aWidth, PRInt32 aRows, PRInt32 aStride, const nsIntRect& aSkipRect) { if (aRadius == 0) { memcpy(aOutput, aInput, aStride*aRows); return; } PRBool skipRectCoversWholeRow = 0 >= aSkipRect.x && aWidth <= aSkipRect.XMost(); for (PRInt32 y = 0; y < aRows; y++) { // Check whether the skip rect intersects this row. If the skip // rect covers the whole surface in this row, we can avoid // this row entirely (and any others along the skip rect). PRBool inSkipRectY = y >= aSkipRect.y && y < aSkipRect.YMost(); if (inSkipRectY && skipRectCoversWholeRow) { y = aSkipRect.YMost() - 1; continue; } for (PRInt32 x = 0; x < aWidth; x++) { // Check whether we are within the skip rect. If so, go // to the next point outside the skip rect. if (inSkipRectY && x >= aSkipRect.x && x < aSkipRect.XMost()) { x = aSkipRect.XMost(); if (x >= aWidth) break; } PRInt32 sMin = PR_MAX(x - aRadius, 0); PRInt32 sMax = PR_MIN(x + aRadius, aWidth - 1); PRInt32 v = 0; for (PRInt32 s = sMin; s <= sMax; ++s) { v = PR_MAX(v, aInput[aStride * y + s]); } aOutput[aStride * y + x] = v; } } } static void SpreadVertical(unsigned char* aInput, unsigned char* aOutput, PRInt32 aRadius, PRInt32 aWidth, PRInt32 aRows, PRInt32 aStride, const nsIntRect& aSkipRect) { if (aRadius == 0) { memcpy(aOutput, aInput, aStride*aRows); return; } PRBool skipRectCoversWholeColumn = 0 >= aSkipRect.y && aRows <= aSkipRect.YMost(); for (PRInt32 x = 0; x < aWidth; x++) { PRBool inSkipRectX = x >= aSkipRect.x && x < aSkipRect.XMost(); if (inSkipRectX && skipRectCoversWholeColumn) { x = aSkipRect.XMost() - 1; continue; } for (PRInt32 y = 0; y < aRows; y++) { // Check whether we are within the skip rect. If so, go // to the next point outside the skip rect. if (inSkipRectX && y >= aSkipRect.y && y < aSkipRect.YMost()) { y = aSkipRect.YMost(); if (y >= aRows) break; } PRInt32 sMin = PR_MAX(y - aRadius, 0); PRInt32 sMax = PR_MIN(y + aRadius, aRows - 1); PRInt32 v = 0; for (PRInt32 s = sMin; s <= sMax; ++s) { v = PR_MAX(v, aInput[aStride * s + x]); } aOutput[aStride * y + x] = v; } } } void gfxAlphaBoxBlur::Paint(gfxContext* aDestinationCtx, const gfxPoint& offset) { if (!mContext) return; unsigned char* boxData = mImageSurface->Data(); // no need to do all this if not blurring or spreading if (mBlurRadius != gfxIntSize(0,0) || mSpreadRadius != gfxIntSize(0,0)) { nsTArray tempAlphaDataBuf; PRSize szB = mImageSurface->GetDataSize(); if (!tempAlphaDataBuf.SetLength(szB)) return; // OOM unsigned char* tmpData = tempAlphaDataBuf.Elements(); // .SetLength above doesn't initialise the new elements since // they are unsigned chars and so have no default constructor. // So we have to initialise them by hand. memset(tmpData, 0, szB); PRInt32 stride = mImageSurface->Stride(); PRInt32 rows = mImageSurface->Height(); PRInt32 width = mImageSurface->Width(); if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) { SpreadHorizontal(boxData, tmpData, mSpreadRadius.width, width, rows, stride, mSkipRect); SpreadVertical(tmpData, boxData, mSpreadRadius.height, width, rows, stride, mSkipRect); } if (mBlurRadius.width > 0) { PRInt32 lobes[3][2]; ComputeLobes(mBlurRadius.width, lobes); BoxBlurHorizontal(boxData, tmpData, lobes[0][0], lobes[0][1], stride, rows, mSkipRect); BoxBlurHorizontal(tmpData, boxData, lobes[1][0], lobes[1][1], stride, rows, mSkipRect); BoxBlurHorizontal(boxData, tmpData, lobes[2][0], lobes[2][1], stride, rows, mSkipRect); } else { memcpy(tmpData, boxData, stride*rows); } if (mBlurRadius.height > 0) { PRInt32 lobes[3][2]; ComputeLobes(mBlurRadius.height, lobes); BoxBlurVertical(tmpData, boxData, lobes[0][0], lobes[0][1], stride, rows, mSkipRect); BoxBlurVertical(boxData, tmpData, lobes[1][0], lobes[1][1], stride, rows, mSkipRect); BoxBlurVertical(tmpData, boxData, lobes[2][0], lobes[2][1], stride, rows, mSkipRect); } else { memcpy(boxData, tmpData, stride*rows); } } // Avoid a semi-expensive clip operation if we can, otherwise // clip to the dirty rect if (mHasDirtyRect) { aDestinationCtx->Save(); aDestinationCtx->NewPath(); aDestinationCtx->Rectangle(mDirtyRect); aDestinationCtx->Clip(); aDestinationCtx->Mask(mImageSurface, offset); aDestinationCtx->Restore(); } else { aDestinationCtx->Mask(mImageSurface, offset); } } /** * Compute the box blur size (which we're calling the blur radius) from * the standard deviation. * * Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for * approximating a Gaussian using box blurs. This yields quite a good * approximation for a Gaussian. Then we multiply this by 1.5 since our * code wants the radius of the entire triple-box-blur kernel instead of * the diameter of an individual box blur. For more details, see: * http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement * https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19 */ static const gfxFloat GAUSSIAN_SCALE_FACTOR = (3 * sqrt(2 * M_PI) / 4) * 1.5; gfxIntSize gfxAlphaBoxBlur::CalculateBlurRadius(const gfxPoint& aStd) { return gfxIntSize( static_cast(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5)), static_cast(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5))); }