/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set sw=2 ts=2 et tw=80 : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include "mozilla/DebugOnly.h" #include "base/basictypes.h" #if defined(MOZ_WIDGET_ANDROID) # include # include "AndroidBridge.h" #endif #include "AsyncPanZoomController.h" #include "AutoOpenSurface.h" #include "BasicLayers.h" #include "CompositorParent.h" #include "LayerManagerOGL.h" #include "nsGkAtoms.h" #include "nsIWidget.h" #include "RenderTrace.h" #include "ShadowLayersParent.h" #include "BasicLayers.h" #include "LayerManagerOGL.h" #include "nsIWidget.h" #include "nsGkAtoms.h" #include "RenderTrace.h" #include "nsStyleAnimation.h" #include "nsDisplayList.h" #include "AnimationCommon.h" #include "nsAnimationManager.h" #include "TiledLayerBuffer.h" #include "gfxPlatform.h" #include "mozilla/dom/ScreenOrientation.h" #include "mozilla/AutoRestore.h" using namespace base; using namespace mozilla; using namespace mozilla::ipc; using namespace mozilla::dom; using namespace std; namespace mozilla { namespace layers { // FIXME/bug 774386: we're assuming that there's only one // CompositorParent, but that's not always true. This assumption only // affects CrossProcessCompositorParent below. static CompositorParent* sCurrentCompositor; static Thread* sCompositorThread = nullptr; // manual reference count of the compositor thread. static int sCompositorThreadRefCount = 0; static MessageLoop* sMainLoop = nullptr; // When ContentParent::StartUp() is called, we use the Thread global. // When StartUpWithExistingThread() is used, we have to use the two // duplicated globals, because there's no API to make a Thread from an // existing thread. static PlatformThreadId sCompositorThreadID = 0; static MessageLoop* sCompositorLoop = nullptr; struct LayerTreeState { nsRefPtr mRoot; nsRefPtr mController; TargetConfig mTargetConfig; }; static uint8_t sPanZoomUserDataKey; struct PanZoomUserData : public LayerUserData { PanZoomUserData(AsyncPanZoomController* aController) : mController(aController) { } // We don't keep a strong ref here because PanZoomUserData is only // set transiently, and APZC is thread-safe refcounted so // AddRef/Release is expensive. AsyncPanZoomController* mController; }; /** * Lookup the indirect shadow tree for |aId| and return it if it * exists. Otherwise null is returned. This must only be called on * the compositor thread. */ static const LayerTreeState* GetIndirectShadowTree(uint64_t aId); static void DeferredDeleteCompositorParent(CompositorParent* aNowReadyToDie) { aNowReadyToDie->Release(); } static void DeleteCompositorThread() { if (NS_IsMainThread()){ delete sCompositorThread; sCompositorThread = nullptr; sCompositorLoop = nullptr; sCompositorThreadID = 0; } else { sMainLoop->PostTask(FROM_HERE, NewRunnableFunction(&DeleteCompositorThread)); } } static void ReleaseCompositorThread() { if(--sCompositorThreadRefCount == 0) { DeleteCompositorThread(); } } void CompositorParent::StartUpWithExistingThread(MessageLoop* aMsgLoop, PlatformThreadId aThreadID) { MOZ_ASSERT(!sCompositorThread); CreateCompositorMap(); sCompositorLoop = aMsgLoop; sCompositorThreadID = aThreadID; sMainLoop = MessageLoop::current(); sCompositorThreadRefCount = 1; } void CompositorParent::StartUp() { MOZ_ASSERT(!sCompositorLoop); CreateCompositorMap(); CreateThread(); sMainLoop = MessageLoop::current(); } void CompositorParent::ShutDown() { DestroyThread(); DestroyCompositorMap(); } bool CompositorParent::CreateThread() { NS_ASSERTION(NS_IsMainThread(), "Should be on the main Thread!"); if (sCompositorThread || sCompositorLoop) { return true; } sCompositorThreadRefCount = 1; sCompositorThread = new Thread("Compositor"); if (!sCompositorThread->Start()) { delete sCompositorThread; sCompositorThread = nullptr; return false; } return true; } void CompositorParent::DestroyThread() { NS_ASSERTION(NS_IsMainThread(), "Should be on the main Thread!"); ReleaseCompositorThread(); } MessageLoop* CompositorParent::CompositorLoop() { return sCompositorThread ? sCompositorThread->message_loop() : sCompositorLoop; } CompositorParent::CompositorParent(nsIWidget* aWidget, bool aRenderToEGLSurface, int aSurfaceWidth, int aSurfaceHeight) : mWidget(aWidget) , mCurrentCompositeTask(NULL) , mPaused(false) , mXScale(1.0) , mYScale(1.0) , mIsFirstPaint(false) , mLayersUpdated(false) , mRenderToEGLSurface(aRenderToEGLSurface) , mEGLSurfaceSize(aSurfaceWidth, aSurfaceHeight) , mPauseCompositionMonitor("PauseCompositionMonitor") , mResumeCompositionMonitor("ResumeCompositionMonitor") , mForceCompositionTask(nullptr) , mOverrideComposeReadiness(false) { NS_ABORT_IF_FALSE(sCompositorThread != nullptr || sCompositorThreadID, "The compositor thread must be Initialized before instanciating a COmpositorParent."); MOZ_COUNT_CTOR(CompositorParent); mCompositorID = 0; // FIXME: This holds on the the fact that right now the only thing that // can destroy this instance is initialized on the compositor thread after // this task has been processed. CompositorLoop()->PostTask(FROM_HERE, NewRunnableFunction(&AddCompositor, this, &mCompositorID)); if (!sCurrentCompositor) { sCurrentCompositor = this; } ++sCompositorThreadRefCount; } PlatformThreadId CompositorParent::CompositorThreadID() { return sCompositorThread ? sCompositorThread->thread_id() : sCompositorThreadID; } CompositorParent::~CompositorParent() { MOZ_COUNT_DTOR(CompositorParent); if (this == sCurrentCompositor) { sCurrentCompositor = NULL; } ReleaseCompositorThread(); } void CompositorParent::Destroy() { NS_ABORT_IF_FALSE(ManagedPLayersParent().Length() == 0, "CompositorParent destroyed before managed PLayersParent"); // Ensure that the layer manager is destructed on the compositor thread. mLayerManager = NULL; } static void DispatchMemoryPressureToLayers(Layer* aLayer) { ShadowLayer* shadowLayer = aLayer->AsShadowLayer(); if (shadowLayer) { TiledLayerComposer* tileComposer = shadowLayer->AsTiledLayerComposer(); if (tileComposer) { tileComposer->MemoryPressure(); } } for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { DispatchMemoryPressureToLayers(child); } } bool CompositorParent::RecvMemoryPressure() { if (!mLayerManager) return true; Layer* layer = mLayerManager->GetRoot(); if (layer) DispatchMemoryPressureToLayers(layer); return true; } bool CompositorParent::RecvWillStop() { mPaused = true; RemoveCompositor(mCompositorID); // Ensure that the layer manager is destroyed before CompositorChild. mLayerManager->Destroy(); return true; } bool CompositorParent::RecvStop() { Destroy(); // There are chances that the ref count reaches zero on the main thread shortly // after this function returns while some ipdl code still needs to run on // this thread. // We must keep the compositor parent alive untill the code handling message // reception is finished on this thread. this->AddRef(); // Corresponds to DeferredDeleteCompositorParent's Release CompositorLoop()->PostTask(FROM_HERE, NewRunnableFunction(&DeferredDeleteCompositorParent, this)); return true; } bool CompositorParent::RecvPause() { PauseComposition(); return true; } bool CompositorParent::RecvResume() { ResumeComposition(); return true; } bool CompositorParent::RecvMakeSnapshot(const SurfaceDescriptor& aInSnapshot, SurfaceDescriptor* aOutSnapshot) { AutoOpenSurface opener(OPEN_READ_WRITE, aInSnapshot); nsRefPtr target = new gfxContext(opener.Get()); ComposeToTarget(target); *aOutSnapshot = aInSnapshot; return true; } void CompositorParent::ScheduleRenderOnCompositorThread() { CancelableTask *renderTask = NewRunnableMethod(this, &CompositorParent::ScheduleComposition); CompositorLoop()->PostTask(FROM_HERE, renderTask); } void CompositorParent::PauseComposition() { NS_ABORT_IF_FALSE(CompositorThreadID() == PlatformThread::CurrentId(), "PauseComposition() can only be called on the compositor thread"); MonitorAutoLock lock(mPauseCompositionMonitor); if (!mPaused) { mPaused = true; #ifdef MOZ_WIDGET_ANDROID static_cast(mLayerManager.get())->gl()->ReleaseSurface(); #endif } // if anyone's waiting to make sure that composition really got paused, tell them lock.NotifyAll(); } void CompositorParent::ResumeComposition() { NS_ABORT_IF_FALSE(CompositorThreadID() == PlatformThread::CurrentId(), "ResumeComposition() can only be called on the compositor thread"); MonitorAutoLock lock(mResumeCompositionMonitor); mPaused = false; #ifdef MOZ_WIDGET_ANDROID static_cast(mLayerManager.get())->gl()->RenewSurface(); #endif Composite(); // if anyone's waiting to make sure that composition really got resumed, tell them lock.NotifyAll(); } void CompositorParent::ForceComposition() { // Cancel the orientation changed state to force composition mForceCompositionTask = nullptr; ScheduleRenderOnCompositorThread(); } void CompositorParent::SetEGLSurfaceSize(int width, int height) { NS_ASSERTION(mRenderToEGLSurface, "Compositor created without RenderToEGLSurface ar provided"); mEGLSurfaceSize.SizeTo(width, height); if (mLayerManager) { static_cast(mLayerManager.get())->SetSurfaceSize(mEGLSurfaceSize.width, mEGLSurfaceSize.height); } } void CompositorParent::ResumeCompositionAndResize(int width, int height) { mWidgetSize.width = width; mWidgetSize.height = height; SetEGLSurfaceSize(width, height); ResumeComposition(); } /* * This will execute a pause synchronously, waiting to make sure that the compositor * really is paused. */ void CompositorParent::SchedulePauseOnCompositorThread() { MonitorAutoLock lock(mPauseCompositionMonitor); CancelableTask *pauseTask = NewRunnableMethod(this, &CompositorParent::PauseComposition); CompositorLoop()->PostTask(FROM_HERE, pauseTask); // Wait until the pause has actually been processed by the compositor thread lock.Wait(); } void CompositorParent::ScheduleResumeOnCompositorThread(int width, int height) { MonitorAutoLock lock(mResumeCompositionMonitor); CancelableTask *resumeTask = NewRunnableMethod(this, &CompositorParent::ResumeCompositionAndResize, width, height); CompositorLoop()->PostTask(FROM_HERE, resumeTask); // Wait until the resume has actually been processed by the compositor thread lock.Wait(); } void CompositorParent::ScheduleTask(CancelableTask* task, int time) { if (time == 0) { MessageLoop::current()->PostTask(FROM_HERE, task); } else { MessageLoop::current()->PostDelayedTask(FROM_HERE, task, time); } } void CompositorParent::NotifyShadowTreeTransaction() { if (mLayerManager) { ShadowLayerManager *shadow = mLayerManager->AsShadowManager(); if (shadow) { shadow->NotifyShadowTreeTransaction(); } } ScheduleComposition(); } void CompositorParent::ScheduleComposition() { if (mCurrentCompositeTask) { return; } bool initialComposition = mLastCompose.IsNull(); TimeDuration delta; if (!initialComposition) delta = TimeStamp::Now() - mLastCompose; #ifdef COMPOSITOR_PERFORMANCE_WARNING mExpectedComposeTime = TimeStamp::Now() + TimeDuration::FromMilliseconds(15); #endif mCurrentCompositeTask = NewRunnableMethod(this, &CompositorParent::Composite); // Since 60 fps is the maximum frame rate we can acheive, scheduling composition // events less than 15 ms apart wastes computation.. if (!initialComposition && delta.ToMilliseconds() < 15) { #ifdef COMPOSITOR_PERFORMANCE_WARNING mExpectedComposeTime = TimeStamp::Now() + TimeDuration::FromMilliseconds(15 - delta.ToMilliseconds()); #endif ScheduleTask(mCurrentCompositeTask, 15 - delta.ToMilliseconds()); } else { ScheduleTask(mCurrentCompositeTask, 0); } } void CompositorParent::SetTransformation(float aScale, nsIntPoint aScrollOffset) { mXScale = aScale; mYScale = aScale; mScrollOffset = aScrollOffset; } /** * DRAWING PHASE ONLY * * For reach RefLayer in |aRoot|, look up its referent and connect it * to the layer tree, if found. On exiting scope, detaches all * resolved referents. */ class NS_STACK_CLASS AutoResolveRefLayers { public: /** * |aRoot| must remain valid in the scope of this, which should be * guaranteed by this helper only being used during the drawing * phase. */ AutoResolveRefLayers(Layer* aRoot, const TargetConfig& aConfig) : mRoot(aRoot), mTargetConfig(aConfig), mReadyForCompose(true) { WalkTheTree(mRoot, nullptr); } ~AutoResolveRefLayers() { WalkTheTree(mRoot, nullptr); } bool IsReadyForCompose() { return mReadyForCompose; } private: enum Op { Resolve, Detach }; template void WalkTheTree(Layer* aLayer, Layer* aParent) { if (RefLayer* ref = aLayer->AsRefLayer()) { if (const LayerTreeState* state = GetIndirectShadowTree(ref->GetReferentId())) { Layer* referent = state->mRoot; if (!ref->GetVisibleRegion().IsEmpty()) { ScreenOrientation chromeOrientation = mTargetConfig.orientation(); ScreenOrientation contentOrientation = state->mTargetConfig.orientation(); if (!IsSameDimension(chromeOrientation, contentOrientation) && ContentMightReflowOnOrientationChange(mTargetConfig.clientBounds())) { mReadyForCompose = false; } } if (OP == Resolve) { ref->ConnectReferentLayer(referent); if (AsyncPanZoomController* apzc = state->mController) { referent->SetUserData(&sPanZoomUserDataKey, new PanZoomUserData(apzc)); } else { CompensateForContentScrollOffset(ref, referent); } } else { ref->DetachReferentLayer(referent); referent->RemoveUserData(&sPanZoomUserDataKey); } } } for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { WalkTheTree(child, aLayer); } } // XXX the fact that we have to do this evidence of bad API design. void CompensateForContentScrollOffset(Layer* aContainer, Layer* aShadowContent) { ContainerLayer* c = aShadowContent->AsContainerLayer(); if (!c) { return; } const FrameMetrics& fm = c->GetFrameMetrics(); gfx3DMatrix m(aContainer->GetTransform()); m.Translate(gfxPoint3D(-fm.GetScrollOffsetInLayerPixels().x, -fm.GetScrollOffsetInLayerPixels().y, 0)); // The transform already takes the resolution scale into account. Since we // will apply the resolution scale again when computing the effective // transform, we must apply the inverse resolution scale here. m.Scale(1.0f/c->GetPreXScale(), 1.0f/c->GetPreYScale(), 1); m.ScalePost(1.0f/c->GetPostXScale(), 1.0f/c->GetPostYScale(), 1); aContainer->AsShadowLayer()->SetShadowTransform(m); } bool IsSameDimension(ScreenOrientation o1, ScreenOrientation o2) { bool isO1portrait = (o1 == eScreenOrientation_PortraitPrimary || o1 == eScreenOrientation_PortraitSecondary); bool isO2portrait = (o2 == eScreenOrientation_PortraitPrimary || o2 == eScreenOrientation_PortraitSecondary); return !(isO1portrait ^ isO2portrait); } bool ContentMightReflowOnOrientationChange(nsIntRect& rect) { return rect.width != rect.height; } Layer* mRoot; TargetConfig mTargetConfig; bool mReadyForCompose; AutoResolveRefLayers(const AutoResolveRefLayers&) MOZ_DELETE; AutoResolveRefLayers& operator=(const AutoResolveRefLayers&) MOZ_DELETE; }; void CompositorParent::Composite() { NS_ABORT_IF_FALSE(CompositorThreadID() == PlatformThread::CurrentId(), "Composite can only be called on the compositor thread"); mCurrentCompositeTask = nullptr; mLastCompose = TimeStamp::Now(); if (!CanComposite()) { return; } Layer* layer = mLayerManager->GetRoot(); AutoResolveRefLayers resolve(layer, mTargetConfig); if (mForceCompositionTask && !mOverrideComposeReadiness) { if (!resolve.IsReadyForCompose()) { return; } else { mForceCompositionTask->Cancel(); mForceCompositionTask = nullptr; } } bool requestNextFrame = TransformShadowTree(mLastCompose); if (requestNextFrame) { ScheduleComposition(); } RenderTraceLayers(layer, "0000"); if (LAYERS_OPENGL == mLayerManager->GetBackendType() && !mTargetConfig.naturalBounds().IsEmpty()) { LayerManagerOGL* lm = static_cast(mLayerManager.get()); lm->SetWorldTransform( ComputeGLTransformForRotation(mTargetConfig.naturalBounds(), mTargetConfig.rotation())); } mLayerManager->EndEmptyTransaction(); #ifdef COMPOSITOR_PERFORMANCE_WARNING if (mExpectedComposeTime + TimeDuration::FromMilliseconds(15) < TimeStamp::Now()) { printf_stderr("Compositor: Composite took %i ms.\n", 15 + (int)(TimeStamp::Now() - mExpectedComposeTime).ToMilliseconds()); } #endif } void CompositorParent::ComposeToTarget(gfxContext* aTarget) { AutoRestore override(mOverrideComposeReadiness); mOverrideComposeReadiness = true; if (!CanComposite()) { return; } mLayerManager->BeginTransactionWithTarget(aTarget); // Since CanComposite() is true, Composite() must end the layers txn // we opened above. Composite(); } bool CompositorParent::CanComposite() { return !(mPaused || !mLayerManager || !mLayerManager->GetRoot()); } // Do a breadth-first search to find the first layer in the tree that is // scrollable. static void Translate2D(gfx3DMatrix& aTransform, const gfxPoint& aOffset) { aTransform._41 += aOffset.x; aTransform._42 += aOffset.y; } void CompositorParent::TransformFixedLayers(Layer* aLayer, const gfxPoint& aTranslation, const gfxPoint& aScaleDiff) { if (aLayer->GetIsFixedPosition() && !aLayer->GetParent()->GetIsFixedPosition()) { // When a scale has been applied to a layer, it focuses around (0,0). // The anchor position is used here as a scale focus point (assuming that // aScaleDiff has already been applied) to re-focus the scale. const gfxPoint& anchor = aLayer->GetFixedPositionAnchor(); gfxPoint translation(aTranslation.x - (anchor.x - anchor.x / aScaleDiff.x), aTranslation.y - (anchor.y - anchor.y / aScaleDiff.y)); // The transform already takes the resolution scale into account. Since we // will apply the resolution scale again when computing the effective // transform, we must apply the inverse resolution scale here. gfx3DMatrix layerTransform = aLayer->GetTransform(); Translate2D(layerTransform, translation); if (ContainerLayer* c = aLayer->AsContainerLayer()) { layerTransform.Scale(1.0f/c->GetPreXScale(), 1.0f/c->GetPreYScale(), 1); } layerTransform.ScalePost(1.0f/aLayer->GetPostXScale(), 1.0f/aLayer->GetPostYScale(), 1); ShadowLayer* shadow = aLayer->AsShadowLayer(); shadow->SetShadowTransform(layerTransform); const nsIntRect* clipRect = aLayer->GetClipRect(); if (clipRect) { nsIntRect transformedClipRect(*clipRect); transformedClipRect.MoveBy(translation.x, translation.y); shadow->SetShadowClipRect(&transformedClipRect); } } for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { TransformFixedLayers(child, aTranslation, aScaleDiff); } } // Go down shadow layer tree, setting properties to match their non-shadow // counterparts. static void SetShadowProperties(Layer* aLayer) { // FIXME: Bug 717688 -- Do these updates in ShadowLayersParent::RecvUpdate. ShadowLayer* shadow = aLayer->AsShadowLayer(); // Set the shadow's base transform to the layer's base transform. shadow->SetShadowTransform(aLayer->GetBaseTransform()); shadow->SetShadowVisibleRegion(aLayer->GetVisibleRegion()); shadow->SetShadowClipRect(aLayer->GetClipRect()); shadow->SetShadowOpacity(aLayer->GetOpacity()); for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { SetShadowProperties(child); } } static void SampleValue(float aPortion, Animation& aAnimation, nsStyleAnimation::Value& aStart, nsStyleAnimation::Value& aEnd, Animatable* aValue) { nsStyleAnimation::Value interpolatedValue; NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() || aStart.GetUnit() == nsStyleAnimation::eUnit_None || aEnd.GetUnit() == nsStyleAnimation::eUnit_None, "Must have same unit"); nsStyleAnimation::Interpolate(aAnimation.property(), aStart, aEnd, aPortion, interpolatedValue); if (aAnimation.property() == eCSSProperty_opacity) { *aValue = interpolatedValue.GetFloatValue(); return; } nsCSSValueList* interpolatedList = interpolatedValue.GetCSSValueListValue(); TransformData& data = aAnimation.data().get_TransformData(); nsPoint origin = data.origin(); int32_t auPerCSSPixel = nsDeviceContext::AppUnitsPerCSSPixel(); nsDisplayTransform::FrameTransformProperties props(interpolatedList, data.mozOrigin(), data.perspectiveOrigin(), data.perspective()); gfx3DMatrix transform = nsDisplayTransform::GetResultingTransformMatrix(props, data.origin(), nsDeviceContext::AppUnitsPerCSSPixel(), &data.bounds()); // NB: See nsDisplayTransform::GetTransform(). gfxPoint3D newOrigin = gfxPoint3D(NS_round(NSAppUnitsToFloatPixels(origin.x, auPerCSSPixel)), NS_round(NSAppUnitsToFloatPixels(origin.y, auPerCSSPixel)), 0.0f); transform.Translate(newOrigin); InfallibleTArray* functions = new InfallibleTArray(); functions->AppendElement(TransformMatrix(transform)); *aValue = *functions; } static bool SampleAnimations(Layer* aLayer, TimeStamp aPoint) { AnimationArray& animations = aLayer->GetAnimations(); InfallibleTArray& animationData = aLayer->GetAnimationData(); bool activeAnimations = false; for (uint32_t i = animations.Length(); i-- !=0; ) { Animation& animation = animations[i]; AnimData& animData = animationData[i]; double numIterations = animation.numIterations() != -1 ? animation.numIterations() : NS_IEEEPositiveInfinity(); double positionInIteration = ElementAnimations::GetPositionInIteration(animation.startTime(), aPoint, animation.duration(), numIterations, animation.direction()); NS_ABORT_IF_FALSE(0.0 <= positionInIteration && positionInIteration <= 1.0, "position should be in [0-1]"); int segmentIndex = 0; AnimationSegment* segment = animation.segments().Elements(); while (segment->endPortion() < positionInIteration) { ++segment; ++segmentIndex; } double positionInSegment = (positionInIteration - segment->startPortion()) / (segment->endPortion() - segment->startPortion()); double portion = animData.mFunctions[segmentIndex]->GetValue(positionInSegment); activeAnimations = true; // interpolate the property Animatable interpolatedValue; SampleValue(portion, animation, animData.mStartValues[segmentIndex], animData.mEndValues[segmentIndex], &interpolatedValue); ShadowLayer* shadow = aLayer->AsShadowLayer(); switch (animation.property()) { case eCSSProperty_opacity: { shadow->SetShadowOpacity(interpolatedValue.get_float()); break; } case eCSSProperty_transform: { gfx3DMatrix matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value(); shadow->SetShadowTransform(matrix); break; } default: NS_WARNING("Unhandled animated property"); } } for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { activeAnimations |= SampleAnimations(child, aPoint); } return activeAnimations; } bool CompositorParent::ApplyAsyncContentTransformToTree(TimeStamp aCurrentFrame, Layer *aLayer, bool* aWantNextFrame) { bool appliedTransform = false; for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) { appliedTransform |= ApplyAsyncContentTransformToTree(aCurrentFrame, child, aWantNextFrame); } ContainerLayer* container = aLayer->AsContainerLayer(); if (!container) { return appliedTransform; } AsyncPanZoomController* controller = nullptr; // Check if an AsyncPanZoomController is attached to this layer. if (LayerUserData* data = aLayer->GetUserData(&sPanZoomUserDataKey)) { controller = static_cast(data)->mController; } else { // Check if a derived implementation provides a default AsyncPanZoomController. controller = GetDefaultPanZoomController(); } if (controller) { ShadowLayer* shadow = aLayer->AsShadowLayer(); gfx3DMatrix newTransform; *aWantNextFrame |= controller->SampleContentTransformForFrame(aCurrentFrame, container, &newTransform); shadow->SetShadowTransform(newTransform); appliedTransform = true; } return appliedTransform; } bool CompositorParent::TransformShadowTree(TimeStamp aCurrentFrame) { bool wantNextFrame = false; Layer* layer = mLayerManager->GetPrimaryScrollableLayer(); ShadowLayer* shadow = layer->AsShadowLayer(); ContainerLayer* container = layer->AsContainerLayer(); Layer* root = mLayerManager->GetRoot(); // NB: we must sample animations *before* sampling pan/zoom // transforms. wantNextFrame |= SampleAnimations(root, aCurrentFrame); const FrameMetrics& metrics = container->GetFrameMetrics(); // We must apply the resolution scale before a pan/zoom transform, so we call // GetTransform here. const gfx3DMatrix& rootTransform = root->GetTransform(); const gfx3DMatrix& currentTransform = layer->GetTransform(); // FIXME/bug 775437: unify this interface with the ~native-fennec // derived code // // Attempt to apply an async content transform to any layer that has // an async pan zoom controller (which means that it is rendered // async using Gecko). If this fails, fall back to transforming the // primary scrollable layer. "Failing" here means that we don't // find a frame that is async scrollable. Note that the fallback // code also includes Fennec which is rendered async. Fennec uses // its own platform-specific async rendering that is done partially // in Gecko and partially in Java. if (!ApplyAsyncContentTransformToTree(aCurrentFrame, root, &wantNextFrame)) { gfx3DMatrix treeTransform; // Translate fixed position layers so that they stay in the correct position // when mScrollOffset and metricsScrollOffset differ. gfxPoint offset; gfxPoint scaleDiff; float rootScaleX = rootTransform.GetXScale(), rootScaleY = rootTransform.GetYScale(); // The ratio of layers pixels to device pixels. The Java // compositor wants to see values in units of device pixels, so we // map our FrameMetrics values to that space. This is not exposed // as a FrameMetrics helper because it's a deprecated conversion. float devPixelRatioX = 1 / rootScaleX, devPixelRatioY = 1 / rootScaleY; gfx::Point scrollOffsetLayersPixels(metrics.GetScrollOffsetInLayerPixels()); nsIntPoint scrollOffsetDevPixels( NS_lround(scrollOffsetLayersPixels.x * devPixelRatioX), NS_lround(scrollOffsetLayersPixels.y * devPixelRatioY)); if (mIsFirstPaint) { mContentRect = metrics.mContentRect; SetFirstPaintViewport(scrollOffsetDevPixels, 1/rootScaleX, mContentRect, metrics.mScrollableRect); mIsFirstPaint = false; } else if (!metrics.mContentRect.IsEqualEdges(mContentRect)) { mContentRect = metrics.mContentRect; SetPageRect(metrics.mScrollableRect); } // We synchronise the viewport information with Java after sending the above // notifications, so that Java can take these into account in its response. // Calculate the absolute display port to send to Java gfx::Rect displayPortLayersPixels(metrics.mCriticalDisplayPort.IsEmpty() ? metrics.mDisplayPort : metrics.mCriticalDisplayPort); nsIntRect displayPortDevPixels( NS_lround(displayPortLayersPixels.x * devPixelRatioX), NS_lround(displayPortLayersPixels.y * devPixelRatioY), NS_lround(displayPortLayersPixels.width * devPixelRatioX), NS_lround(displayPortLayersPixels.height * devPixelRatioY)); displayPortDevPixels.x += scrollOffsetDevPixels.x; displayPortDevPixels.y += scrollOffsetDevPixels.y; SyncViewportInfo(displayPortDevPixels, 1/rootScaleX, mLayersUpdated, mScrollOffset, mXScale, mYScale); mLayersUpdated = false; // Handle transformations for asynchronous panning and zooming. We determine the // zoom used by Gecko from the transformation set on the root layer, and we // determine the scroll offset used by Gecko from the frame metrics of the // primary scrollable layer. We compare this to the desired zoom and scroll // offset in the view transform we obtained from Java in order to compute the // transformation we need to apply. float tempScaleDiffX = rootScaleX * mXScale; float tempScaleDiffY = rootScaleY * mYScale; nsIntPoint metricsScrollOffset(0, 0); if (metrics.IsScrollable()) { metricsScrollOffset = scrollOffsetDevPixels; } nsIntPoint scrollCompensation( (mScrollOffset.x / tempScaleDiffX - metricsScrollOffset.x) * mXScale, (mScrollOffset.y / tempScaleDiffY - metricsScrollOffset.y) * mYScale); treeTransform = gfx3DMatrix(ViewTransform(-scrollCompensation, mXScale, mYScale)); // If the contents can fit entirely within the widget area on a particular // dimenson, we need to translate and scale so that the fixed layers remain // within the page boundaries. if (mContentRect.width * tempScaleDiffX < mWidgetSize.width) { offset.x = -metricsScrollOffset.x; scaleDiff.x = NS_MIN(1.0f, mWidgetSize.width / (float)mContentRect.width); } else { offset.x = clamped(mScrollOffset.x / tempScaleDiffX, (float)mContentRect.x, mContentRect.XMost() - mWidgetSize.width / tempScaleDiffX) - metricsScrollOffset.x; scaleDiff.x = tempScaleDiffX; } if (mContentRect.height * tempScaleDiffY < mWidgetSize.height) { offset.y = -metricsScrollOffset.y; scaleDiff.y = NS_MIN(1.0f, mWidgetSize.height / (float)mContentRect.height); } else { offset.y = clamped(mScrollOffset.y / tempScaleDiffY, (float)mContentRect.y, mContentRect.YMost() - mWidgetSize.height / tempScaleDiffY) - metricsScrollOffset.y; scaleDiff.y = tempScaleDiffY; } // The transform already takes the resolution scale into account. Since we // will apply the resolution scale again when computing the effective // transform, we must apply the inverse resolution scale here. gfx3DMatrix computedTransform = treeTransform * currentTransform; computedTransform.Scale(1.0f/container->GetPreXScale(), 1.0f/container->GetPreYScale(), 1); computedTransform.ScalePost(1.0f/container->GetPostXScale(), 1.0f/container->GetPostYScale(), 1); shadow->SetShadowTransform(computedTransform); TransformFixedLayers(layer, offset, scaleDiff); } return wantNextFrame; } void CompositorParent::SetFirstPaintViewport(const nsIntPoint& aOffset, float aZoom, const nsIntRect& aPageRect, const gfx::Rect& aCssPageRect) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aPageRect, aCssPageRect); #endif } void CompositorParent::SetPageRect(const gfx::Rect& aCssPageRect) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SetPageRect(aCssPageRect); #endif } void CompositorParent::SyncViewportInfo(const nsIntRect& aDisplayPort, float aDisplayResolution, bool aLayersUpdated, nsIntPoint& aScrollOffset, float& aScaleX, float& aScaleY) { #ifdef MOZ_WIDGET_ANDROID AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort, aDisplayResolution, aLayersUpdated, aScrollOffset, aScaleX, aScaleY); #endif } void CompositorParent::ShadowLayersUpdated(ShadowLayersParent* aLayerTree, const TargetConfig& aTargetConfig, bool isFirstPaint) { if (!isFirstPaint && !mIsFirstPaint && mTargetConfig.orientation() != aTargetConfig.orientation()) { if (mForceCompositionTask != NULL) { mForceCompositionTask->Cancel(); } mForceCompositionTask = NewRunnableMethod(this, &CompositorParent::ForceComposition); ScheduleTask(mForceCompositionTask, gfxPlatform::GetPlatform()->GetOrientationSyncMillis()); } // Instruct the LayerManager to update its render bounds now. Since all the orientation // change, dimension change would be done at the stage, update the size here is free of // race condition. if (LAYERS_OPENGL == mLayerManager->GetBackendType()) { LayerManagerOGL* lm = static_cast(mLayerManager.get()); lm->UpdateRenderBounds(aTargetConfig.clientBounds()); } mTargetConfig = aTargetConfig; mIsFirstPaint = mIsFirstPaint || isFirstPaint; mLayersUpdated = true; Layer* root = aLayerTree->GetRoot(); mLayerManager->SetRoot(root); if (root) { SetShadowProperties(root); } ScheduleComposition(); ShadowLayerManager *shadow = mLayerManager->AsShadowManager(); if (shadow) { shadow->NotifyShadowTreeTransaction(); } } PLayersParent* CompositorParent::AllocPLayers(const LayersBackend& aBackendHint, const uint64_t& aId, LayersBackend* aBackend, int32_t* aMaxTextureSize) { MOZ_ASSERT(aId == 0); // mWidget doesn't belong to the compositor thread, so it should be set to // NULL before returning from this method, to avoid accessing it elsewhere. nsIntRect rect; mWidget->GetClientBounds(rect); mWidgetSize.width = rect.width; mWidgetSize.height = rect.height; *aBackend = aBackendHint; if (aBackendHint == mozilla::layers::LAYERS_OPENGL) { nsRefPtr layerManager; layerManager = new LayerManagerOGL(mWidget, mEGLSurfaceSize.width, mEGLSurfaceSize.height, mRenderToEGLSurface); mWidget = NULL; mLayerManager = layerManager; ShadowLayerManager* shadowManager = layerManager->AsShadowManager(); if (shadowManager) { shadowManager->SetCompositorID(mCompositorID); } if (!layerManager->Initialize()) { NS_ERROR("Failed to init OGL Layers"); return NULL; } ShadowLayerManager* slm = layerManager->AsShadowManager(); if (!slm) { return NULL; } *aMaxTextureSize = layerManager->GetMaxTextureSize(); return new ShadowLayersParent(slm, this, 0); } else if (aBackendHint == mozilla::layers::LAYERS_BASIC) { nsRefPtr layerManager = new BasicShadowLayerManager(mWidget); mWidget = NULL; mLayerManager = layerManager; ShadowLayerManager* slm = layerManager->AsShadowManager(); if (!slm) { return NULL; } *aMaxTextureSize = layerManager->GetMaxTextureSize(); return new ShadowLayersParent(slm, this, 0); } else { NS_ERROR("Unsupported backend selected for Async Compositor"); return NULL; } } bool CompositorParent::DeallocPLayers(PLayersParent* actor) { delete actor; return true; } typedef map CompositorMap; static CompositorMap* sCompositorMap; void CompositorParent::CreateCompositorMap() { if (sCompositorMap == nullptr) { sCompositorMap = new CompositorMap; } } void CompositorParent::DestroyCompositorMap() { if (sCompositorMap != nullptr) { NS_ASSERTION(sCompositorMap->empty(), "The Compositor map should be empty when destroyed>"); delete sCompositorMap; sCompositorMap = nullptr; } } CompositorParent* CompositorParent::GetCompositor(uint64_t id) { CompositorMap::iterator it = sCompositorMap->find(id); return it != sCompositorMap->end() ? it->second : nullptr; } void CompositorParent::AddCompositor(CompositorParent* compositor, uint64_t* outID) { static uint64_t sNextID = 1; ++sNextID; (*sCompositorMap)[sNextID] = compositor; *outID = sNextID; } CompositorParent* CompositorParent::RemoveCompositor(uint64_t id) { CompositorMap::iterator it = sCompositorMap->find(id); if (it == sCompositorMap->end()) { return nullptr; } sCompositorMap->erase(it); return it->second; } typedef map LayerTreeMap; static LayerTreeMap sIndirectLayerTrees; /*static*/ uint64_t CompositorParent::AllocateLayerTreeId() { MOZ_ASSERT(CompositorLoop()); MOZ_ASSERT(NS_IsMainThread()); static uint64_t ids; return ++ids; } static void EraseLayerState(uint64_t aId) { sIndirectLayerTrees.erase(aId); } /*static*/ void CompositorParent::DeallocateLayerTreeId(uint64_t aId) { MOZ_ASSERT(NS_IsMainThread()); CompositorLoop()->PostTask(FROM_HERE, NewRunnableFunction(&EraseLayerState, aId)); } static void UpdateControllerForLayersId(uint64_t aLayersId, AsyncPanZoomController* aController) { // Adopt ref given to us by SetPanZoomControllerForLayerTree() sIndirectLayerTrees[aLayersId].mController = already_AddRefed(aController); // Notify the AsyncPanZoomController about the current compositor so that it // can request composites off the compositor thread. aController->SetCompositorParent(sCurrentCompositor); } /*static*/ void CompositorParent::SetPanZoomControllerForLayerTree(uint64_t aLayersId, AsyncPanZoomController* aController) { // This ref is adopted by UpdateControllerForLayersId(). aController->AddRef(); CompositorLoop()->PostTask(FROM_HERE, NewRunnableFunction(&UpdateControllerForLayersId, aLayersId, aController)); } /** * This class handles layer updates pushed directly from child * processes to the compositor thread. It's associated with a * CompositorParent on the compositor thread. While it uses the * PCompositor protocol to manage these updates, it doesn't actually * drive compositing itself. For that it hands off work to the * CompositorParent it's associated with. */ class CrossProcessCompositorParent : public PCompositorParent, public ShadowLayersManager { friend class CompositorParent; NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CrossProcessCompositorParent) public: CrossProcessCompositorParent() {} virtual ~CrossProcessCompositorParent() {} virtual void ActorDestroy(ActorDestroyReason aWhy) MOZ_OVERRIDE; // FIXME/bug 774388: work out what shutdown protocol we need. virtual bool RecvWillStop() MOZ_OVERRIDE { return true; } virtual bool RecvStop() MOZ_OVERRIDE { return true; } virtual bool RecvPause() MOZ_OVERRIDE { return true; } virtual bool RecvResume() MOZ_OVERRIDE { return true; } virtual bool RecvMakeSnapshot(const SurfaceDescriptor& aInSnapshot, SurfaceDescriptor* aOutSnapshot) { return true; } virtual PLayersParent* AllocPLayers(const LayersBackend& aBackendType, const uint64_t& aId, LayersBackend* aBackend, int32_t* aMaxTextureSize) MOZ_OVERRIDE; virtual bool DeallocPLayers(PLayersParent* aLayers) MOZ_OVERRIDE; virtual void ShadowLayersUpdated(ShadowLayersParent* aLayerTree, const TargetConfig& aTargetConfig, bool isFirstPaint) MOZ_OVERRIDE; virtual PGrallocBufferParent* AllocPGrallocBuffer( const gfxIntSize&, const uint32_t&, const uint32_t&, MaybeMagicGrallocBufferHandle*) MOZ_OVERRIDE { return nullptr; } virtual bool DeallocPGrallocBuffer(PGrallocBufferParent*) { return false; } virtual bool RecvMemoryPressure() { return true; } private: void DeferredDestroy(); // There can be many CPCPs, and IPDL-generated code doesn't hold a // reference to top-level actors. So we hold a reference to // ourself. This is released (deferred) in ActorDestroy(). nsRefPtr mSelfRef; }; static void OpenCompositor(CrossProcessCompositorParent* aCompositor, Transport* aTransport, ProcessHandle aHandle, MessageLoop* aIOLoop) { DebugOnly ok = aCompositor->Open(aTransport, aHandle, aIOLoop); MOZ_ASSERT(ok); } /*static*/ PCompositorParent* CompositorParent::Create(Transport* aTransport, ProcessId aOtherProcess) { nsRefPtr cpcp = new CrossProcessCompositorParent(); ProcessHandle handle; if (!base::OpenProcessHandle(aOtherProcess, &handle)) { // XXX need to kill |aOtherProcess|, it's boned return nullptr; } cpcp->mSelfRef = cpcp; CompositorLoop()->PostTask( FROM_HERE, NewRunnableFunction(OpenCompositor, cpcp.get(), aTransport, handle, XRE_GetIOMessageLoop())); // The return value is just compared to null for success checking, // we're not sharing a ref. return cpcp.get(); } static void UpdateIndirectTree(uint64_t aId, Layer* aRoot, const TargetConfig& aTargetConfig, bool isFirstPaint) { sIndirectLayerTrees[aId].mRoot = aRoot; sIndirectLayerTrees[aId].mTargetConfig = aTargetConfig; if (ContainerLayer* root = aRoot->AsContainerLayer()) { if (AsyncPanZoomController* apzc = sIndirectLayerTrees[aId].mController) { apzc->NotifyLayersUpdated(root->GetFrameMetrics(), isFirstPaint); } } } static const LayerTreeState* GetIndirectShadowTree(uint64_t aId) { LayerTreeMap::const_iterator cit = sIndirectLayerTrees.find(aId); if (sIndirectLayerTrees.end() == cit) { return nullptr; } return &cit->second; } static void RemoveIndirectTree(uint64_t aId) { sIndirectLayerTrees.erase(aId); } void CrossProcessCompositorParent::ActorDestroy(ActorDestroyReason aWhy) { MessageLoop::current()->PostTask( FROM_HERE, NewRunnableMethod(this, &CrossProcessCompositorParent::DeferredDestroy)); } PLayersParent* CrossProcessCompositorParent::AllocPLayers(const LayersBackend& aBackendType, const uint64_t& aId, LayersBackend* aBackend, int32_t* aMaxTextureSize) { MOZ_ASSERT(aId != 0); nsRefPtr lm = sCurrentCompositor->GetLayerManager(); *aBackend = lm->GetBackendType(); *aMaxTextureSize = lm->GetMaxTextureSize(); return new ShadowLayersParent(lm->AsShadowManager(), this, aId); } bool CrossProcessCompositorParent::DeallocPLayers(PLayersParent* aLayers) { ShadowLayersParent* slp = static_cast(aLayers); RemoveIndirectTree(slp->GetId()); delete aLayers; return true; } void CrossProcessCompositorParent::ShadowLayersUpdated( ShadowLayersParent* aLayerTree, const TargetConfig& aTargetConfig, bool isFirstPaint) { uint64_t id = aLayerTree->GetId(); MOZ_ASSERT(id != 0); Layer* shadowRoot = aLayerTree->GetRoot(); if (shadowRoot) { SetShadowProperties(shadowRoot); } UpdateIndirectTree(id, shadowRoot, aTargetConfig, isFirstPaint); sCurrentCompositor->NotifyShadowTreeTransaction(); } void CrossProcessCompositorParent::DeferredDestroy() { mSelfRef = NULL; // |this| was just destroyed, hands off } } // namespace layers } // namespace mozilla