/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this file, * You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include #include #include #include #include #include #include #include "ElfLoader.h" #include "CustomElf.h" #include "Mappable.h" #include "Logging.h" #if defined(ANDROID) #include #if __ANDROID_API__ < 8 /* Android API < 8 doesn't provide sigaltstack */ #include extern "C" { inline int sigaltstack(const stack_t *ss, stack_t *oss) { return syscall(__NR_sigaltstack, ss, oss); } } /* extern "C" */ #endif /* __ANDROID_API__ */ #endif /* ANDROID */ using namespace mozilla; #ifndef PAGE_SIZE #define PAGE_SIZE 4096 #endif #ifndef PAGE_MASK #define PAGE_MASK (~ (PAGE_SIZE - 1)) #endif /** * dlfcn.h replacements functions */ void * __wrap_dlopen(const char *path, int flags) { RefPtr handle = ElfLoader::Singleton.Load(path, flags); if (handle) handle->AddDirectRef(); return handle; } const char * __wrap_dlerror(void) { const char *error = ElfLoader::Singleton.lastError; ElfLoader::Singleton.lastError = NULL; return error; } void * __wrap_dlsym(void *handle, const char *symbol) { if (!handle) { ElfLoader::Singleton.lastError = "dlsym(NULL, sym) unsupported"; return NULL; } if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) { LibHandle *h = reinterpret_cast(handle); return h->GetSymbolPtr(symbol); } return dlsym(handle, symbol); } int __wrap_dlclose(void *handle) { if (!handle) { ElfLoader::Singleton.lastError = "No handle given to dlclose()"; return -1; } reinterpret_cast(handle)->ReleaseDirectRef(); return 0; } int __wrap_dladdr(void *addr, Dl_info *info) { RefPtr handle = ElfLoader::Singleton.GetHandleByPtr(addr); if (!handle) return 0; info->dli_fname = handle->GetPath(); return 1; } int __wrap_dl_iterate_phdr(dl_phdr_cb callback, void *data) { if (!ElfLoader::Singleton.dbg) return -1; for (ElfLoader::DebuggerHelper::iterator it = ElfLoader::Singleton.dbg.begin(); it < ElfLoader::Singleton.dbg.end(); ++it) { dl_phdr_info info; info.dlpi_addr = reinterpret_cast(it->l_addr); info.dlpi_name = it->l_name; info.dlpi_phdr = NULL; info.dlpi_phnum = 0; // Assuming l_addr points to Elf headers (in most cases, this is true), // get the Phdr location from there. uint8_t mapped; // If the page is not mapped, mincore returns an error. if (!mincore(const_cast(it->l_addr), PAGE_SIZE, &mapped)) { const Elf::Ehdr *ehdr = Elf::Ehdr::validate(it->l_addr); if (ehdr) { info.dlpi_phdr = reinterpret_cast( reinterpret_cast(ehdr) + ehdr->e_phoff); info.dlpi_phnum = ehdr->e_phnum; } } int ret = callback(&info, sizeof(dl_phdr_info), data); if (ret) return ret; } return 0; } /** * faulty.lib public API */ MFBT_API size_t __dl_get_mappable_length(void *handle) { if (!handle) return 0; return reinterpret_cast(handle)->GetMappableLength(); } MFBT_API void * __dl_mmap(void *handle, void *addr, size_t length, off_t offset) { if (!handle) return NULL; return reinterpret_cast(handle)->MappableMMap(addr, length, offset); } MFBT_API void __dl_munmap(void *handle, void *addr, size_t length) { if (!handle) return; return reinterpret_cast(handle)->MappableMUnmap(addr, length); } namespace { /** * Returns the part after the last '/' for the given path */ const char * LeafName(const char *path) { const char *lastSlash = strrchr(path, '/'); if (lastSlash) return lastSlash + 1; return path; } } /* Anonymous namespace */ /** * LibHandle */ LibHandle::~LibHandle() { free(path); if (mappable->GetKind() != Mappable::MAPPABLE_EXTRACT_FILE) delete mappable; } const char * LibHandle::GetName() const { return path ? LeafName(path) : NULL; } size_t LibHandle::GetMappableLength() const { MOZ_ASSERT(mappable != NULL, "GetMappableLength needs to be called first," " and only once"); mappable = GetMappable(); if (!mappable) return 0; return mappable->GetLength(); } void * LibHandle::MappableMMap(void *addr, size_t length, off_t offset) const { MOZ_ASSERT(mappable == NULL, "MappableMMap must be called after" " GetMappableLength"); return mappable->mmap(addr, length, PROT_READ, MAP_PRIVATE, offset); } void LibHandle::MappableMUnmap(void *addr, size_t length) const { MOZ_ASSERT(mappable == NULL, "MappableMUnmap must be called after" " MappableMMap and GetMappableLength"); mappable->munmap(addr, length); } /** * SystemElf */ TemporaryRef SystemElf::Load(const char *path, int flags) { /* The Android linker returns a handle when the file name matches an * already loaded library, even when the full path doesn't exist */ if (path && path[0] == '/' && (access(path, F_OK) == -1)){ debug("dlopen(\"%s\", 0x%x) = %p", path, flags, (void *)NULL); return NULL; } void *handle = dlopen(path, flags); debug("dlopen(\"%s\", 0x%x) = %p", path, flags, handle); ElfLoader::Singleton.lastError = dlerror(); if (handle) { SystemElf *elf = new SystemElf(path, handle); ElfLoader::Singleton.Register(elf); return elf; } return NULL; } SystemElf::~SystemElf() { if (!dlhandle) return; debug("dlclose(%p [\"%s\"])", dlhandle, GetPath()); dlclose(dlhandle); ElfLoader::Singleton.lastError = dlerror(); ElfLoader::Singleton.Forget(this); } void * SystemElf::GetSymbolPtr(const char *symbol) const { void *sym = dlsym(dlhandle, symbol); debug("dlsym(%p [\"%s\"], \"%s\") = %p", dlhandle, GetPath(), symbol, sym); ElfLoader::Singleton.lastError = dlerror(); return sym; } Mappable * SystemElf::GetMappable() const { const char *path = GetPath(); if (!path) return NULL; #ifdef ANDROID /* On Android, if we don't have the full path, try in /system/lib */ const char *name = LeafName(path); std::string systemPath; if (name == path) { systemPath = "/system/lib/"; systemPath += path; path = systemPath.c_str(); } #endif return MappableFile::Create(path); } /** * ElfLoader */ /* Unique ElfLoader instance */ ElfLoader ElfLoader::Singleton; TemporaryRef ElfLoader::Load(const char *path, int flags, LibHandle *parent) { RefPtr handle; /* Handle dlopen(NULL) directly. */ if (!path) { handle = SystemElf::Load(NULL, flags); return handle; } /* TODO: Handle relative paths correctly */ const char *name = LeafName(path); /* Search the list of handles we already have for a match. When the given * path is not absolute, compare file names, otherwise compare full paths. */ if (name == path) { for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) if ((*it)->GetName() && (strcmp((*it)->GetName(), name) == 0)) return *it; } else { for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) if ((*it)->GetPath() && (strcmp((*it)->GetPath(), path) == 0)) return *it; } char *abs_path = NULL; #ifdef MOZ_DEBUG_LINKER const char *requested_path = path; #endif /* When the path is not absolute and the library is being loaded for * another, first try to load the library from the directory containing * that parent library. */ if ((name == path) && parent) { const char *parentPath = parent->GetPath(); abs_path = new char[strlen(parentPath) + strlen(path)]; strcpy(abs_path, parentPath); char *slash = strrchr(abs_path, '/'); strcpy(slash + 1, path); path = abs_path; } Mappable *mappable = GetMappableFromPath(path); /* Try loading with the custom linker if we have a Mappable */ if (mappable) handle = CustomElf::Load(mappable, path, flags); /* Try loading with the system linker if everything above failed */ if (!handle) handle = SystemElf::Load(path, flags); /* If we didn't have an absolute path and haven't been able to load * a library yet, try in the system search path */ if (!handle && abs_path) handle = SystemElf::Load(name, flags); delete [] abs_path; debug("ElfLoader::Load(\"%s\", 0x%x, %p [\"%s\"]) = %p", requested_path, flags, reinterpret_cast(parent), parent ? parent->GetPath() : "", static_cast(handle)); return handle; } mozilla::TemporaryRef ElfLoader::GetHandleByPtr(void *addr) { /* Scan the list of handles we already have for a match */ for (LibHandleList::iterator it = handles.begin(); it < handles.end(); ++it) { if ((*it)->Contains(addr)) return *it; } return NULL; } Mappable * ElfLoader::GetMappableFromPath(const char *path) { const char *name = LeafName(path); Mappable *mappable = NULL; RefPtr zip; const char *subpath; if ((subpath = strchr(path, '!'))) { char *zip_path = strndup(path, subpath - path); while (*(++subpath) == '/') { } zip = ZipCollection::GetZip(zip_path); Zip::Stream s; if (zip && zip->GetStream(subpath, &s)) { /* When the MOZ_LINKER_EXTRACT environment variable is set to "1", * compressed libraries are going to be (temporarily) extracted as * files, in the directory pointed by the MOZ_LINKER_CACHE * environment variable. */ const char *extract = getenv("MOZ_LINKER_EXTRACT"); if (extract && !strncmp(extract, "1", 2 /* Including '\0' */)) mappable = MappableExtractFile::Create(name, zip, &s); if (!mappable) { if (s.GetType() == Zip::Stream::DEFLATE) { mappable = MappableDeflate::Create(name, zip, &s); } else if (s.GetType() == Zip::Stream::STORE) { mappable = MappableSeekableZStream::Create(name, zip, &s); } } } } /* If we couldn't load above, try with a MappableFile */ if (!mappable && !zip) mappable = MappableFile::Create(path); return mappable; } void ElfLoader::Register(LibHandle *handle) { handles.push_back(handle); if (dbg && !handle->IsSystemElf()) dbg.Add(static_cast(handle)); } void ElfLoader::Forget(LibHandle *handle) { LibHandleList::iterator it = std::find(handles.begin(), handles.end(), handle); if (it != handles.end()) { debug("ElfLoader::Forget(%p [\"%s\"])", reinterpret_cast(handle), handle->GetPath()); if (dbg && !handle->IsSystemElf()) dbg.Remove(static_cast(handle)); handles.erase(it); } else { debug("ElfLoader::Forget(%p [\"%s\"]): Handle not found", reinterpret_cast(handle), handle->GetPath()); } } ElfLoader::~ElfLoader() { LibHandleList list; /* Build up a list of all library handles with direct (external) references. * We actually skip system library handles because we want to keep at least * some of these open. Most notably, Mozilla codebase keeps a few libgnome * libraries deliberately open because of the mess that libORBit destruction * is. dlclose()ing these libraries actually leads to problems. */ for (LibHandleList::reverse_iterator it = handles.rbegin(); it < handles.rend(); ++it) { if ((*it)->DirectRefCount()) { if ((*it)->IsSystemElf()) { static_cast(*it)->Forget(); } else { list.push_back(*it); } } } /* Force release all external references to the handles collected above */ for (LibHandleList::iterator it = list.begin(); it < list.end(); ++it) { while ((*it)->ReleaseDirectRef()) { } } /* Remove the remaining system handles. */ if (handles.size()) { list = handles; for (LibHandleList::reverse_iterator it = list.rbegin(); it < list.rend(); ++it) { if ((*it)->IsSystemElf()) { debug("ElfLoader::~ElfLoader(): Remaining handle for \"%s\" " "[%d direct refs, %d refs total]", (*it)->GetPath(), (*it)->DirectRefCount(), (*it)->refCount()); } else { debug("ElfLoader::~ElfLoader(): Unexpected remaining handle for \"%s\" " "[%d direct refs, %d refs total]", (*it)->GetPath(), (*it)->DirectRefCount(), (*it)->refCount()); /* Not removing, since it could have references to other libraries, * destroying them as a side effect, and possibly leaving dangling * pointers in the handle list we're scanning */ } } } } void ElfLoader::stats(const char *when) { for (LibHandleList::iterator it = Singleton.handles.begin(); it < Singleton.handles.end(); ++it) if (!(*it)->IsSystemElf()) static_cast(*it)->stats(when); } #ifdef __ARM_EABI__ int ElfLoader::__wrap_aeabi_atexit(void *that, ElfLoader::Destructor destructor, void *dso_handle) { Singleton.destructors.push_back( DestructorCaller(destructor, that, dso_handle)); return 0; } #else int ElfLoader::__wrap_cxa_atexit(ElfLoader::Destructor destructor, void *that, void *dso_handle) { Singleton.destructors.push_back( DestructorCaller(destructor, that, dso_handle)); return 0; } #endif void ElfLoader::__wrap_cxa_finalize(void *dso_handle) { /* Call all destructors for the given DSO handle in reverse order they were * registered. */ std::vector::reverse_iterator it; for (it = Singleton.destructors.rbegin(); it < Singleton.destructors.rend(); ++it) { if (it->IsForHandle(dso_handle)) { it->Call(); } } } void ElfLoader::DestructorCaller::Call() { if (destructor) { debug("ElfLoader::DestructorCaller::Call(%p, %p, %p)", FunctionPtr(destructor), object, dso_handle); destructor(object); destructor = NULL; } } ElfLoader::DebuggerHelper::DebuggerHelper(): dbg(NULL) { /* Find ELF auxiliary vectors. * * The kernel stores the following data on the stack when starting a * program: * argc * argv[0] (pointer into argv strings defined below) * argv[1] (likewise) * ... * argv[argc - 1] (likewise) * NULL * envp[0] (pointer into environment strings defined below) * envp[1] (likewise) * ... * envp[n] (likewise) * NULL * auxv[0] (first ELF auxiliary vector) * auxv[1] (second ELF auxiliary vector) * ... * auxv[p] (last ELF auxiliary vector) * (AT_NULL, NULL) * padding * argv strings, separated with '\0' * environment strings, separated with '\0' * NULL * * What we are after are the auxv values defined by the following struct. */ struct AuxVector { Elf::Addr type; Elf::Addr value; }; /* Pointer to the environment variables list */ extern char **environ; /* The environment may have changed since the program started, in which * case the environ variables list isn't the list the kernel put on stack * anymore. But in this new list, variables that didn't change still point * to the strings the kernel put on stack. It is quite unlikely that two * modified environment variables point to two consecutive strings in memory, * so we assume that if two consecutive environment variables point to two * consecutive strings, we found strings the kernel put on stack. */ char **env; for (env = environ; *env; env++) if (*env + strlen(*env) + 1 == env[1]) break; if (!*env) return; /* Next, we scan the stack backwards to find a pointer to one of those * strings we found above, which will give us the location of the original * envp list. As we are looking for pointers, we need to look at 32-bits or * 64-bits aligned values, depening on the architecture. */ char **scan = reinterpret_cast( reinterpret_cast(*env) & ~(sizeof(void *) - 1)); while (*env != *scan) scan--; /* Finally, scan forward to find the last environment variable pointer and * thus the first auxiliary vector. */ while (*scan++); AuxVector *auxv = reinterpret_cast(scan); /* The two values of interest in the auxiliary vectors are AT_PHDR and * AT_PHNUM, which gives us the the location and size of the ELF program * headers. */ Array phdrs; char *base = NULL; while (auxv->type) { if (auxv->type == AT_PHDR) { phdrs.Init(reinterpret_cast(auxv->value)); /* Assume the base address is the first byte of the same page */ base = reinterpret_cast(auxv->value & PAGE_MASK); } if (auxv->type == AT_PHNUM) phdrs.Init(auxv->value); auxv++; } if (!phdrs) { debug("Couldn't find program headers"); return; } /* In some cases, the address for the program headers we get from the * auxiliary vectors is not mapped, because of the PT_LOAD segments * definitions in the program executable. Trying to map anonymous memory * with a hint giving the base address will return a different address * if something is mapped there, and the base address otherwise. */ MappedPtr mem(mmap(base, PAGE_SIZE, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0), PAGE_SIZE); if (mem == base) { /* If program headers aren't mapped, try to map them */ int fd = open("/proc/self/exe", O_RDONLY); if (fd == -1) { debug("Failed to open /proc/self/exe"); return; } mem.Assign(mmap(base, PAGE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0), PAGE_SIZE); /* If we don't manage to map at the right address, just give up. */ if (mem != base) { debug("Couldn't read program headers"); return; } } /* Sanity check: the first bytes at the base address should be an ELF * header. */ if (!Elf::Ehdr::validate(base)) { debug("Couldn't find program base"); return; } /* Search for the program PT_DYNAMIC segment */ Array dyns; for (Array::iterator phdr = phdrs.begin(); phdr < phdrs.end(); ++phdr) { /* While the program headers are expected within the first mapped page of * the program executable, the executable PT_LOADs may actually make them * loaded at an address that is not the wanted base address of the * library. We thus need to adjust the base address, compensating for the * virtual address of the PT_LOAD segment corresponding to offset 0. */ if (phdr->p_type == PT_LOAD && phdr->p_offset == 0) base -= phdr->p_vaddr; if (phdr->p_type == PT_DYNAMIC) dyns.Init(base + phdr->p_vaddr, phdr->p_filesz); } if (!dyns) { debug("Failed to find PT_DYNAMIC section in program"); return; } /* Search for the DT_DEBUG information */ for (Array::iterator dyn = dyns.begin(); dyn < dyns.end(); ++dyn) { if (dyn->d_tag == DT_DEBUG) { dbg = reinterpret_cast(dyn->d_un.d_ptr); break; } } debug("DT_DEBUG points at %p", static_cast(dbg)); } /** * Helper class to ensure the given pointer is writable within the scope of * an instance. Permissions to the memory page where the pointer lies are * restored to their original value when the instance is destroyed. */ class EnsureWritable { public: template EnsureWritable(T *&ptr) { prot = getProt((uintptr_t) &ptr); if (prot == -1) MOZ_CRASH(); /* Pointers are aligned such that their value can't be spanning across * 2 pages. */ page = (void*)((uintptr_t) &ptr & PAGE_MASK); if (!(prot & PROT_WRITE)) mprotect(page, PAGE_SIZE, prot | PROT_WRITE); } ~EnsureWritable() { if (!(prot & PROT_WRITE)) mprotect(page, PAGE_SIZE, prot); } private: int getProt(uintptr_t addr) { /* The interesting part of the /proc/self/maps format looks like: * startAddr-endAddr rwxp */ int result = 0; AutoCloseFILE f(fopen("/proc/self/maps", "r")); while (f) { unsigned long long startAddr, endAddr; char perms[5]; if (fscanf(f, "%llx-%llx %4s %*1024[^\n] ", &startAddr, &endAddr, perms) != 3) return -1; if (addr < startAddr || addr >= endAddr) continue; if (perms[0] == 'r') result |= PROT_READ; else if (perms[0] != '-') return -1; if (perms[1] == 'w') result |= PROT_WRITE; else if (perms[1] != '-') return -1; if (perms[2] == 'x') result |= PROT_EXEC; else if (perms[2] != '-') return -1; return result; } return -1; } int prot; void *page; }; /** * The system linker maintains a doubly linked list of library it loads * for use by the debugger. Unfortunately, it also uses the list pointers * in a lot of operations and adding our data in the list is likely to * trigger crashes when the linker tries to use data we don't provide or * that fall off the amount data we allocated. Fortunately, the linker only * traverses the list forward and accesses the head of the list from a * private pointer instead of using the value in the r_debug structure. * This means we can safely add members at the beginning of the list. * Unfortunately, gdb checks the coherency of l_prev values, so we have * to adjust the l_prev value for the first element the system linker * knows about. Fortunately, it doesn't use l_prev, and the first element * is not ever going to be released before our elements, since it is the * program executable, so the system linker should not be changing * r_debug::r_map. */ void ElfLoader::DebuggerHelper::Add(ElfLoader::link_map *map) { if (!dbg->r_brk) return; dbg->r_state = r_debug::RT_ADD; dbg->r_brk(); map->l_prev = NULL; map->l_next = dbg->r_map; if (!firstAdded) { firstAdded = map; /* When adding a library for the first time, r_map points to data * handled by the system linker, and that data may be read-only */ EnsureWritable w(dbg->r_map->l_prev); dbg->r_map->l_prev = map; } else dbg->r_map->l_prev = map; dbg->r_map = map; dbg->r_state = r_debug::RT_CONSISTENT; dbg->r_brk(); } void ElfLoader::DebuggerHelper::Remove(ElfLoader::link_map *map) { if (!dbg->r_brk) return; dbg->r_state = r_debug::RT_DELETE; dbg->r_brk(); if (dbg->r_map == map) dbg->r_map = map->l_next; else map->l_prev->l_next = map->l_next; if (map == firstAdded) { firstAdded = map->l_prev; /* When removing the first added library, its l_next is going to be * data handled by the system linker, and that data may be read-only */ EnsureWritable w(map->l_next->l_prev); map->l_next->l_prev = map->l_prev; } else map->l_next->l_prev = map->l_prev; dbg->r_state = r_debug::RT_CONSISTENT; dbg->r_brk(); } SEGVHandler::SEGVHandler() { /* Setup an alternative stack if the already existing one is not big * enough, or if there is none. */ if (sigaltstack(NULL, &oldStack) == -1 || !oldStack.ss_sp || oldStack.ss_size < stackSize) { stackPtr.Assign(mmap(NULL, stackSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0), stackSize); stack_t stack; stack.ss_sp = stackPtr; stack.ss_size = stackSize; stack.ss_flags = 0; sigaltstack(&stack, NULL); } /* Register our own handler, and store the already registered one in * SEGVHandler's struct sigaction member */ struct sigaction action; action.sa_sigaction = &SEGVHandler::handler; sigemptyset(&action.sa_mask); action.sa_flags = SA_SIGINFO | SA_NODEFER | SA_ONSTACK; action.sa_restorer = NULL; sigaction(SIGSEGV, &action, &this->action); } SEGVHandler::~SEGVHandler() { /* Restore alternative stack for signals */ sigaltstack(&oldStack, NULL); /* Restore original signal handler */ sigaction(SIGSEGV, &this->action, NULL); } /* TODO: "properly" handle signal masks and flags */ void SEGVHandler::handler(int signum, siginfo_t *info, void *context) { //ASSERT(signum == SIGSEGV); debug("Caught segmentation fault @%p", info->si_addr); /* Check whether we segfaulted in the address space of a CustomElf. We're * only expecting that to happen as an access error. */ if (info->si_code == SEGV_ACCERR) { mozilla::RefPtr handle = ElfLoader::Singleton.GetHandleByPtr(info->si_addr); if (handle && !handle->IsSystemElf()) { debug("Within the address space of a CustomElf"); CustomElf *elf = static_cast(static_cast(handle)); if (elf->mappable->ensure(info->si_addr)) return; } } /* Redispatch to the registered handler */ SEGVHandler &that = ElfLoader::Singleton; if (that.action.sa_flags & SA_SIGINFO) { debug("Redispatching to registered handler @%p", FunctionPtr(that.action.sa_sigaction)); that.action.sa_sigaction(signum, info, context); } else if (that.action.sa_handler == SIG_DFL) { debug("Redispatching to default handler"); /* Reset the handler to the default one, and trigger it. */ sigaction(signum, &that.action, NULL); raise(signum); } else if (that.action.sa_handler != SIG_IGN) { debug("Redispatching to registered handler @%p", FunctionPtr(that.action.sa_handler)); that.action.sa_handler(signum); } else { debug("Ignoring"); } } sighandler_t __wrap_signal(int signum, sighandler_t handler) { /* Use system signal() function for all but SIGSEGV signals. */ if (signum != SIGSEGV) return signal(signum, handler); SEGVHandler &that = ElfLoader::Singleton; union { sighandler_t signal; void (*sigaction)(int, siginfo_t *, void *); } oldHandler; /* Keep the previous handler to return its value */ if (that.action.sa_flags & SA_SIGINFO) { oldHandler.sigaction = that.action.sa_sigaction; } else { oldHandler.signal = that.action.sa_handler; } /* Set the new handler */ that.action.sa_handler = handler; that.action.sa_flags = 0; return oldHandler.signal; } int __wrap_sigaction(int signum, const struct sigaction *act, struct sigaction *oldact) { /* Use system sigaction() function for all but SIGSEGV signals. */ if (signum != SIGSEGV) return sigaction(signum, act, oldact); SEGVHandler &that = ElfLoader::Singleton; if (oldact) *oldact = that.action; if (act) that.action = *act; return 0; }